A Multi-Working States Sensor Anomaly Detection Method Using Deep Learning Algorithms

The data collected from sensors are subject to the presence of anomaly data. These anomalies may stem from sensor malfunctions or poor communication. Prior to the processing of the data, it is imperative to detect and isolate the anomaly data from the substantial volume of normal data. The utilizati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 25; číslo 18; s. 5686
Hlavní autori: Wu, Di, Koskinen, Kari, Coatanea, Eric
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 12.09.2025
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The data collected from sensors are subject to the presence of anomaly data. These anomalies may stem from sensor malfunctions or poor communication. Prior to the processing of the data, it is imperative to detect and isolate the anomaly data from the substantial volume of normal data. The utilization of data-driven approaches for sensor anomaly detection and isolation frequently confronts the predicament of inadequately labeled data. In one aspect, the data obtained from sensors usually contain no or few examples of faults and those faults are difficult to identify manually from a large amount of raw data. Additionally, the operational states of a machine may undergo alterations during its functioning, potentially resulting in different sensor measurement behaviors. However, the operational states of a machine are not clearly labeled either. In order to address the challenges posed by the absence or lack of labeled data in both domains, a sensor anomaly detection and isolation method using LSTM (long short-term memory) networks is proposed in this paper. In order to predict sensor measurements at a subsequent timestep, behaviors in the preceding timesteps are utilized to consider the influence of the varying operational states. The inputs of the LSTM networks are selected based on prediction errors trained by a small dataset to increase the prediction accuracy and reduce the influence of redundant sensors. The residual between the predicted data and the measurement data is used to determine whether an anomaly has been identified. The proposed method is evaluated using a real dataset obtained from a truck operating in a mine. The results showed that the proposed network with the input-selection method demonstrated the ability to accurately detect drift and stall anomalies accurately in the experiments.
AbstractList The data collected from sensors are subject to the presence of anomaly data. These anomalies may stem from sensor malfunctions or poor communication. Prior to the processing of the data, it is imperative to detect and isolate the anomaly data from the substantial volume of normal data. The utilization of data-driven approaches for sensor anomaly detection and isolation frequently confronts the predicament of inadequately labeled data. In one aspect, the data obtained from sensors usually contain no or few examples of faults and those faults are difficult to identify manually from a large amount of raw data. Additionally, the operational states of a machine may undergo alterations during its functioning, potentially resulting in different sensor measurement behaviors. However, the operational states of a machine are not clearly labeled either. In order to address the challenges posed by the absence or lack of labeled data in both domains, a sensor anomaly detection and isolation method using LSTM (long short-term memory) networks is proposed in this paper. In order to predict sensor measurements at a subsequent timestep, behaviors in the preceding timesteps are utilized to consider the influence of the varying operational states. The inputs of the LSTM networks are selected based on prediction errors trained by a small dataset to increase the prediction accuracy and reduce the influence of redundant sensors. The residual between the predicted data and the measurement data is used to determine whether an anomaly has been identified. The proposed method is evaluated using a real dataset obtained from a truck operating in a mine. The results showed that the proposed network with the input-selection method demonstrated the ability to accurately detect drift and stall anomalies accurately in the experiments.
The data collected from sensors are subject to the presence of anomaly data. These anomalies may stem from sensor malfunctions or poor communication. Prior to the processing of the data, it is imperative to detect and isolate the anomaly data from the substantial volume of normal data. The utilization of data-driven approaches for sensor anomaly detection and isolation frequently confronts the predicament of inadequately labeled data. In one aspect, the data obtained from sensors usually contain no or few examples of faults and those faults are difficult to identify manually from a large amount of raw data. Additionally, the operational states of a machine may undergo alterations during its functioning, potentially resulting in different sensor measurement behaviors. However, the operational states of a machine are not clearly labeled either. In order to address the challenges posed by the absence or lack of labeled data in both domains, a sensor anomaly detection and isolation method using LSTM (long short-term memory) networks is proposed in this paper. In order to predict sensor measurements at a subsequent timestep, behaviors in the preceding timesteps are utilized to consider the influence of the varying operational states. The inputs of the LSTM networks are selected based on prediction errors trained by a small dataset to increase the prediction accuracy and reduce the influence of redundant sensors. The residual between the predicted data and the measurement data is used to determine whether an anomaly has been identified. The proposed method is evaluated using a real dataset obtained from a truck operating in a mine. The results showed that the proposed network with the input-selection method demonstrated the ability to accurately detect drift and stall anomalies accurately in the experiments.The data collected from sensors are subject to the presence of anomaly data. These anomalies may stem from sensor malfunctions or poor communication. Prior to the processing of the data, it is imperative to detect and isolate the anomaly data from the substantial volume of normal data. The utilization of data-driven approaches for sensor anomaly detection and isolation frequently confronts the predicament of inadequately labeled data. In one aspect, the data obtained from sensors usually contain no or few examples of faults and those faults are difficult to identify manually from a large amount of raw data. Additionally, the operational states of a machine may undergo alterations during its functioning, potentially resulting in different sensor measurement behaviors. However, the operational states of a machine are not clearly labeled either. In order to address the challenges posed by the absence or lack of labeled data in both domains, a sensor anomaly detection and isolation method using LSTM (long short-term memory) networks is proposed in this paper. In order to predict sensor measurements at a subsequent timestep, behaviors in the preceding timesteps are utilized to consider the influence of the varying operational states. The inputs of the LSTM networks are selected based on prediction errors trained by a small dataset to increase the prediction accuracy and reduce the influence of redundant sensors. The residual between the predicted data and the measurement data is used to determine whether an anomaly has been identified. The proposed method is evaluated using a real dataset obtained from a truck operating in a mine. The results showed that the proposed network with the input-selection method demonstrated the ability to accurately detect drift and stall anomalies accurately in the experiments.
Author Wu, Di
Coatanea, Eric
Koskinen, Kari
Author_xml – sequence: 1
  givenname: Di
  orcidid: 0000-0002-5255-4027
  surname: Wu
  fullname: Wu, Di
– sequence: 2
  givenname: Kari
  orcidid: 0000-0002-8538-8184
  surname: Koskinen
  fullname: Koskinen, Kari
– sequence: 3
  givenname: Eric
  surname: Coatanea
  fullname: Coatanea, Eric
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41012925$$D View this record in MEDLINE/PubMed
BookMark eNpd0clO6zAUBmALgZgXvMBVJDawCDge4nhZMUtFLKBiaTnOcUlvYhfbWfD2pBQqxMrT59_DOUDbzjtA6KTAF5RKfBkJLypeVuUW2i8YYXlFCN7-1d9DBzEuMCaU0moX7bECF0QSvo9mk-xx6FKbv_rwv3Xz7DnpBDF7Bhd9yCbO97r7yK4hgUmtd9kjpDffZLO4wtcAy2wKOrjVaNLNfWjTWx-P0I7VXYTj7_YQzW5vXq7u8-nT3cPVZJobKsqUAxDNuAEupCgtGGahKqWxtTbACJYCrKhNIQy3hrHVMlTWEKMbi42oGD1ED-vcxuuFWoa21-FDed2qrwkf5kqH1JoOFMVWjCfUQlvOqMBalqwprMFEE9pU9Zh1ts5aBv8-QEyqb6OBrtMO_BAVJZxJMu7iIz39Qxd-CG586ZcaCZdyVP--1VD30Gyu9_P5IzhfAxN8jAHshhRYrQqrNoWlnwFClBo
Cites_doi 10.1145/3292500.3330672
10.1109/TII.2017.2785395
10.1109/ACCESS.2020.2974769
10.1109/TNNLS.2020.3040224
10.1109/JIOT.2020.2994200
10.1016/j.chemolab.2017.12.005
10.1109/LRA.2018.2801475
10.1162/neco.1997.9.8.1735
10.1007/978-3-030-96794-9
10.1109/JSEN.2022.3227713
10.1109/TIE.2014.2361600
10.1016/j.ymssp.2021.108723
10.1115/1.2837314
10.1109/JSEN.2013.2244881
10.1002/cem.800
10.1205/026387698525108
10.1145/1525856.1525863
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/s25185686
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_30f7ec4b7af54370a964d1fc02a23d8b
41012925
10_3390_s25185686
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PUEGO
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c376t-ee2a45ce57976fec4fe869cfbace42097ef7bc17c5fc44c4fee8fc2cadf0c7843
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001581124600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:53:29 EDT 2025
Thu Oct 02 21:19:42 EDT 2025
Tue Oct 07 07:24:18 EDT 2025
Wed Oct 01 06:56:48 EDT 2025
Sat Nov 29 07:18:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords sensor anomaly detection
deep learning
LSTM
data-driven
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-ee2a45ce57976fec4fe869cfbace42097ef7bc17c5fc44c4fee8fc2cadf0c7843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5255-4027
0000-0002-8538-8184
OpenAccessLink https://doaj.org/article/30f7ec4b7af54370a964d1fc02a23d8b
PMID 41012925
PQID 3254645599
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_30f7ec4b7af54370a964d1fc02a23d8b
proquest_miscellaneous_3254929645
proquest_journals_3254645599
pubmed_primary_41012925
crossref_primary_10_3390_s25185686
PublicationCentury 2000
PublicationDate 2025-09-12
PublicationDateYYYYMMDD 2025-09-12
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-12
  day: 12
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liu (ref_5) 2020; 7
Gao (ref_7) 2018; 14
Hochreiter (ref_16) 1997; 9
(ref_17) 2003; 17
Darvishi (ref_13) 2023; 23
Ren (ref_8) 2018; 172
Hussain (ref_12) 2015; 62
Jana (ref_10) 2022; 169
ref_20
Ruba (ref_2) 2020; 8
Park (ref_19) 2018; 3
ref_15
Ni (ref_1) 2009; 5
ref_9
Reddy (ref_18) 1998; 76
Li (ref_3) 2007; 133
Lo (ref_4) 2013; 13
Haldimann (ref_14) 2022; 33
Mandal (ref_6) 2017; 64
Campa (ref_11) 2008; 130
References_xml – ident: ref_20
  doi: 10.1145/3292500.3330672
– volume: 64
  start-page: 1526
  year: 2017
  ident: ref_6
  article-title: Nuclear Power Plant Thermocouple Sensor-Fault Detection and Classification Using Deep Learning and Generalized Likelihood Ratio Test
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 14
  start-page: 2199
  year: 2018
  ident: ref_7
  article-title: On Threshold-Free Error Detection for Industrial Wireless Sensor Networks
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2785395
– volume: 133
  start-page: 1222
  year: 2007
  ident: ref_3
  article-title: Detecting sensor failure via decoupled error function and inverse input-output model
  publication-title: J. Eng. Mech.
– volume: 8
  start-page: 34820
  year: 2020
  ident: ref_2
  article-title: Simple and Robust Current Sensor Fault Detection and Compensation Method for 3-Phase Inverters
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974769
– volume: 33
  start-page: 1093
  year: 2022
  ident: ref_14
  article-title: A Scalable Algorithm for Identifying Multiple-Sensor Faults Using Disentangled RNNs
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3040224
– volume: 7
  start-page: 9664
  year: 2020
  ident: ref_5
  article-title: Optimization of Edge-PLC-Based Fault Diagnosis with Random Forest in Industrial Internet of Things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2994200
– volume: 172
  start-page: 118
  year: 2018
  ident: ref_8
  article-title: A new reconstruction-based auto-associative neural network for fault diagnosis in nonlinear systems
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.12.005
– volume: 3
  start-page: 1544
  year: 2018
  ident: ref_19
  article-title: A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2801475
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_16
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_9
  doi: 10.1007/978-3-030-96794-9
– volume: 23
  start-page: 2522
  year: 2023
  ident: ref_13
  article-title: A Machine-Learning Architecture for Sensor Fault Detection, Isolation, and Accommodation in Digital Twins
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3227713
– volume: 62
  start-page: 1683
  year: 2015
  ident: ref_12
  article-title: Sensor Failure Detection, Identification, and Accommodation Using Fully Connected Cascade Neural Network
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2361600
– ident: ref_15
– volume: 169
  start-page: 108723
  year: 2022
  ident: ref_10
  article-title: CNN and Convolutional Autoencoder (CAE) based real-time sensor fault detection, localization, and correction
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108723
– volume: 130
  start-page: 021008
  year: 2008
  ident: ref_11
  article-title: A Neural Network Based Sensor Validation Scheme for Heavy-Duty Diesel Engines
  publication-title: J. Dyn. Syst. Meas. Control
  doi: 10.1115/1.2837314
– volume: 13
  start-page: 2009
  year: 2013
  ident: ref_4
  article-title: Distributed Reference-Free Fault Detection Method for Autonomous Wireless Sensor Networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2244881
– volume: 17
  start-page: 480
  year: 2003
  ident: ref_17
  article-title: Statistical process monitoring: Basics and beyond
  publication-title: J. Chemom.
  doi: 10.1002/cem.800
– volume: 76
  start-page: 478
  year: 1998
  ident: ref_18
  article-title: An Input-Training Neural Network Approach for Gross Error Detection and Sensor Replacement
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/026387698525108
– volume: 5
  start-page: 25
  year: 2009
  ident: ref_1
  article-title: Sensor network data fault types
  publication-title: ACM Trans. Sens. Netw.
  doi: 10.1145/1525856.1525863
SSID ssj0023338
Score 2.4591632
Snippet The data collected from sensors are subject to the presence of anomaly data. These anomalies may stem from sensor malfunctions or poor communication. Prior to...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 5686
SubjectTerms Accuracy
Behavior
data-driven
deep learning
Influence
LSTM
Methods
Neural networks
Physics
sensor anomaly detection
Sensors
Support vector machines
Working conditions
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFiQ48CivQEEGcY02GztxckLLowKJVitBUTlFzmS8ILXJskmR-Pd4HG_oBU5cbcsa6bPHM_b4-wBeOpyJVMYMACxhVmcyNk1OMdkCS1ui1v7C7ctHfXxcnJ6Wq_A9ug9llTuf6B31yPbMddvOCc-bDvnGfC6Zxl0xW9arzY-YNaT4rTUIalyFPSbeKmawt_pwtPo6JWDS5WMju5B0qf68d2d7keX8jfrSmeSp-_8eb_pz5_D2_7X4DtwK8adYjgvmLlyhdh9uXmIl3IfrvioU-3twshT-g24crtTFGJqKTy737bZi2Xbn5uyXeEuDL-hqxZHXoxa-DsE100YE_ta1WJ6tnTnDt_P-Ppwcvvv85n0cdBhidO5niIlSozKkTLvYxRIqS0Veoq0NkkqTUpPVNS40ZhaV4m4qLKZoGpugLpR8ALO2a-kRiJz5Ztx0LuxzoQtSra1MjbFo0rxZaIrgxQ6JajPSbVQuTWG4qgmuCF4zRtMAZsj2Dd12XYUNV8nEamdqrY3NlNSJKXPVLCwmqUllU9QRHOxQq8K27as_IEXwfOp2G45fUUxL3cU4puTH6iyCh-PKmCxRzJZWptnjf0_-BG6kLCPslSgOYDZsL-gpXMOfw_d--yys2t9Vqf9h
  priority: 102
  providerName: ProQuest
Title A Multi-Working States Sensor Anomaly Detection Method Using Deep Learning Algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/41012925
https://www.proquest.com/docview/3254645599
https://www.proquest.com/docview/3254929645
https://doaj.org/article/30f7ec4b7af54370a964d1fc02a23d8b
Volume 25
WOSCitedRecordID wos001581124600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BwgEOiG8CS2UQ12hTf8TJsQtdgUSrClhUTpEzGe-utJuu2iwSF347YyetekFcuPhgW5E1E9vv2eM3AO_Yz0TaBAWAkMKsNip1TU4p-QJLX6K18cDt-2c7nxfLZbnYS_UVYsJ6eeDecEcq85ZQ19Z5o5XNXJnrZuwxk06qpqjD6suoZ0umBqqlmHn1OkKKSf3RhnfxwuThwfTe7hNF-v-OLOMOc_IQHgzQUEz6IT2CW9Q-hvt7goFP4HQi4ovZdDjjFj1WFF-ZjK7Wgrn8lbv8JT5QFyOsWjGLCaJFDAzgaroWg6DqmZhcnq3WF9351eYpnJ5Mv73_mA6JEVLk9aBLiaTTBslYBhOereOpyEv0tUPSMisteVvj2KLxqHVopsKjRNf4DG2h1TM4aFctvQCRBwEY_hzjMMYSSLX1Sjrn0cm8GVtK4O3WYNV1r39RMW8IVq12Vk3gOJhy1yFIVscKdmQ1OLL6lyMTONw6ohrm0aZSQa5fB1W0BN7smnkGhGsN19Lqpu9Thttjk8Dz3oG7keggX1ZK8_J_jPAV3JMh-29MIHEIB936hl7DXfzZXWzWI7htlzaWxQjuHE_niy-j-FNyOfs95brFp9nixx-2oefo
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VAgIOfJSvQAGD4Bg1aztxckBooVStul0h0aK9BccZL0htsmxSUP8UvxGPk2x7gVsPXGPLsuPn8Yw9fg_gtZtnRBkTAwBJmBWxCHWZYIg2NZnNjFL-wO3LRE2n6WyWfVqD38NbGEqrHGyiN9RlbeiMfEsQcbskfqx3ix8hqUbR7eogodHBYh_PfrmQrXm7t-3m9w3nOx8PP-yGvapAaNxiakNErmVsMFZuJ7ZopMU0yYwttEHJo0yhVYUZKRNbIyUVY2oNN7q0kVGpFK7dK3DV2XFFKWRqdh7gCRfvdexFQmTRVuN8hzRO6Jn2hT3PSwP83Z_1-9rOnf_tj9yF270HzcYd5O_BGlYbcOsCr-IGXPd5raa5D0dj5p8Yh_2lAOuca_bZRe_1ko2r-kQfn7FtbH1KWsUOvKI285kU7jMuWM9AO2fj47kbfvvtpHkAR5cywoewXtUVPgaWEGOOa845rs75MlgoK7jW1mielCOFAbwa5jpfdIQhuQu0CBD5ChABvCcUrCoQx7f_UC_neW8ychFZ5bpaKG1jKVSks0SWI2sirrko0yKAzQEXeW94mvwcFAG8XBU7k0H3QLrC-rSrk9F1exzAow57q55I4nvLePzk342_gBu7hweTfLI33X8KNzmJIntdjU1Yb5en-AyumZ_t92b53K8QBl8vG4B_ALFpVRU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2V8iE48FEoBAoYBMdos7YTJweEFpYVVcuqEhTtLTjOeKnUJssmBfWv8evwONltL3DrgWtsWXb8PJ6xx-8BvHLzjChjYgAgCbMiFqEuEwzRpiazmVHKH7h93VfTaTqbZQcb8Hv1FobSKlc20RvqsjZ0Rj4QRNwuiR9rYPu0iIPx5O3iR0gKUnTTupLT6CCyh2e_XPjWvNkdu7l-zfnkw5f3H8NeYSA0bmG1ISLXMjYYK7crWzTSYppkxhbaoORRptCqwgyVia2RkooxtYYbXdrIqFQK1-4VuKqEUCQboWbnwZ5wsV_HZCREFg0a50ekcUJPti_sf14m4O--rd_jJnf-579zF273njUbdUvhHmxgtQW3LvAtbsF1n-9qmvtwOGL-6XHYXxawzulmn11UXy_ZqKpP9PEZG2PrU9Uq9skrbTOfYeE-44L1zLRzNjqeu-G330-aB3B4KSPchs2qrvARsISYdFxzzqF1TpnBQlnBtbZG86QcKgzg5Wre80VHJJK7AIzAka_BEcA7QsS6AnF_-w_1cp73piQXkVWuq4XSNpYOeDpLZDm0JuKaizItAthZYSTvDVKTnwMkgBfrYmdK6H5IV1ifdnUyuoaPA3jY4XDdE0k8cBmPH_-78edww-Eu39-d7j2Bm5y0kr3cxg5ststTfArXzM_2qFk-84uFwbfLxt8fJW9dyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Working+States+Sensor+Anomaly+Detection+Method+Using+Deep+Learning+Algorithms&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wu%2C+Di&rft.au=Koskinen%2C+Kari&rft.au=Coatanea%2C+Eric&rft.date=2025-09-12&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=18&rft_id=info:doi/10.3390%2Fs25185686&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon