Uncertainty meets 3D-spatial feature in colonoscopic polyp-size determination

This paper presents a new 3D-spatial feature extraction from a 2D colonoscopic image for polyp-size estimation. The polyp-size estimation poses potential demands on colonoscopy, since an endoscopist's subjective estimation is apt to result in uncertain polyp-size determination. This uncertain d...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in biomechanics and biomedical engineering. Vol. 10; no. 3; pp. 289 - 298
Main Authors: Itoh, Hayato, Oda, Masahiro, Jiang, Kai, Mori, Yuichi, Misawa, Masashi, Kudo, Shin-Ei, Imai, Kenichiro, Ito, Sayo, Hotta, Kinichi, Mori, Kensaku
Format: Journal Article
Language:English
Published: Taylor & Francis 04.05.2022
Subjects:
ISSN:2168-1163, 2168-1171
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a new 3D-spatial feature extraction from a 2D colonoscopic image for polyp-size estimation. The polyp-size estimation poses potential demands on colonoscopy, since an endoscopist's subjective estimation is apt to result in uncertain polyp-size determination. This uncertain determination is derived from the lack of 3D-spatial information. Even though a previous work clarified that depth estimation mitigates uncertainty in binary polyp-size classification, precise estimation of 3D structure from a colonoscopic image(s) remains an unsolved challenge in medical image analysis. This work proposes a 3D-spatial feature that expresses a polyp's precise 3D shape to mitigate uncertainty in polyp-size determination. First, we introduce an accurate depth estimation method to capture the 3D structure of a colon. Next, we integrate depth estimation and polyp localisation to extract a 3D polyp shape as a feature. Finally, we achieve polyp-size estimation by statistical learning of extracted features. The experimental results demonstrated the validity both of our depth estimation and 3D-spatial feature. Compared with deep RGB and RGB-D convolutional neural networks (CNNs), a shallow CNN with the proposed 3D-spatial feature achieved a more accurate polyp-size estimation with a mean absolute error of 1.36 mm, whereas the one of the deep CNN is 3.11 mm.
AbstractList This paper presents a new 3D-spatial feature extraction from a 2D colonoscopic image for polyp-size estimation. The polyp-size estimation poses potential demands on colonoscopy, since an endoscopist's subjective estimation is apt to result in uncertain polyp-size determination. This uncertain determination is derived from the lack of 3D-spatial information. Even though a previous work clarified that depth estimation mitigates uncertainty in binary polyp-size classification, precise estimation of 3D structure from a colonoscopic image(s) remains an unsolved challenge in medical image analysis. This work proposes a 3D-spatial feature that expresses a polyp's precise 3D shape to mitigate uncertainty in polyp-size determination. First, we introduce an accurate depth estimation method to capture the 3D structure of a colon. Next, we integrate depth estimation and polyp localisation to extract a 3D polyp shape as a feature. Finally, we achieve polyp-size estimation by statistical learning of extracted features. The experimental results demonstrated the validity both of our depth estimation and 3D-spatial feature. Compared with deep RGB and RGB-D convolutional neural networks (CNNs), a shallow CNN with the proposed 3D-spatial feature achieved a more accurate polyp-size estimation with a mean absolute error of 1.36 mm, whereas the one of the deep CNN is 3.11 mm.
Author Itoh, Hayato
Hotta, Kinichi
Ito, Sayo
Oda, Masahiro
Misawa, Masashi
Imai, Kenichiro
Jiang, Kai
Mori, Yuichi
Kudo, Shin-Ei
Mori, Kensaku
Author_xml – sequence: 1
  givenname: Hayato
  surname: Itoh
  fullname: Itoh, Hayato
  email: hitoh@mori.m.is.nagoya-u.ac.jp
  organization: Graduate School of Informatics, Nagoya University
– sequence: 2
  givenname: Masahiro
  surname: Oda
  fullname: Oda, Masahiro
  organization: Nagoya University
– sequence: 3
  givenname: Kai
  surname: Jiang
  fullname: Jiang, Kai
  organization: Graduate School of Informatics, Nagoya University
– sequence: 4
  givenname: Yuichi
  surname: Mori
  fullname: Mori, Yuichi
  organization: Showa University Northern Yokohama Hospital
– sequence: 5
  givenname: Masashi
  surname: Misawa
  fullname: Misawa, Masashi
  organization: Showa University Northern Yokohama Hospital
– sequence: 6
  givenname: Shin-Ei
  surname: Kudo
  fullname: Kudo, Shin-Ei
  organization: Showa University Northern Yokohama Hospital
– sequence: 7
  givenname: Kenichiro
  surname: Imai
  fullname: Imai, Kenichiro
  organization: Shizuoka Cancer Center
– sequence: 8
  givenname: Sayo
  surname: Ito
  fullname: Ito, Sayo
  organization: Shizuoka Cancer Center
– sequence: 9
  givenname: Kinichi
  surname: Hotta
  fullname: Hotta, Kinichi
  organization: Shizuoka Cancer Center
– sequence: 10
  givenname: Kensaku
  surname: Mori
  fullname: Mori, Kensaku
  organization: National Institute of Informatics
BookMark eNqFkM9KAzEQh4NUsNY-grAvsDWz2WS7eFHqX6h4seeQzU4gspssSUTWp7e11YMHncPMMPD9GL5TMnHeISHnQBdAl_SiALEEEGxR0AK2jZZlyY_IdHfPASqY_OyCnZB5jK90W0shmOBT8rRxGkNS1qUx6xFTzNhNHgeVrOoygyq9Bcysy7TvvPNR-8HqbPDdOOTRfmDWYsLQW7cFvDsjx0Z1EeeHOSObu9uX1UO-fr5_XF2vc80qkXKsy9qwpuFY8rZqFTIB0LR1Dao1VUOxwoKj0A03nFXQ6pIWyhRImwYYUzWbEb7P1cHHGNDIIdhehVEClTst8luL3GmRBy1b7vIXp236-jwFZbt_6as9bZ3xoVfvPnStTGrsfDBBOW2jZH9HfAKnNH6-
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3527720
crossref_primary_10_1055_a_2502_9733
Cites_doi 10.1053/j.gastro.2012.06.001
10.1007/s11548-019-01962-w
10.1007/s11548-021-02398-x
10.1016/j.dld.2010.12.015
10.1109/3DV.2016.32
10.1007/978-3-030-32254-0_64
10.1109/ICCV.2019.00393
10.1016/j.gie.2020.07.060
10.1007/978-3-030-00934-2_68
10.1109/CVPR.2018.00907
10.1049/htl.2019.0071
10.1016/j.gie.2015.06.058
10.1109/CVPR42600.2020.00475
10.1053/j.gastro.2006.03.012
10.1055/s-0042-112580
10.1109/ICCV.2015.304
10.1109/ICRA.2018.8460184
10.1109/CVPR.2017.195
10.1055/s-0042-108727
10.1109/CVPR.2017.700
10.1016/j.gie.2015.08.082
10.1109/CVPR.2017.238
10.1109/CVPR.2019.01252
10.1109/CVPR.2018.00216
10.1117/12.480417
10.1109/ICCV.2017.244
10.1055/s-0033-1344548
10.1016/j.media.2018.06.005
ContentType Journal Article
Copyright 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
Copyright_xml – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
DBID AAYXX
CITATION
DOI 10.1080/21681163.2021.2004445
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-1171
EndPage 298
ExternalDocumentID 10_1080_21681163_2021_2004445
2004445
Genre Research Article
GroupedDBID 0BK
30N
4.4
AAGDL
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABLIJ
ABPAQ
ABXUL
ABXYU
ACGFS
ADCVX
ADGTB
ADMLS
AEISY
AFRVT
AGDLA
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQTUD
ARCSS
BLEHA
CCCUG
EBS
EUPTU
GTTXZ
H13
HZ~
KYCEM
LJTGL
M4Z
O9-
RIG
RNANH
ROSJB
RTWRZ
SNACF
SOJIQ
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
AAYXX
CITATION
ID FETCH-LOGICAL-c376t-e949f3bb5e45d7dae3611bd991adf7b0e7e25e6cb5f5371dc402af2e0bb133a93
IEDL.DBID TFW
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000746807700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-1163
IngestDate Sat Nov 29 06:34:10 EST 2025
Tue Nov 18 21:03:47 EST 2025
Mon Oct 20 23:46:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-e949f3bb5e45d7dae3611bd991adf7b0e7e25e6cb5f5371dc402af2e0bb133a93
PageCount 10
ParticipantIDs informaworld_taylorfrancis_310_1080_21681163_2021_2004445
crossref_citationtrail_10_1080_21681163_2021_2004445
crossref_primary_10_1080_21681163_2021_2004445
PublicationCentury 2000
PublicationDate 2022-05-04
PublicationDateYYYYMMDD 2022-05-04
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-04
  day: 04
PublicationDecade 2020
PublicationTitle Computer methods in biomechanics and biomedical engineering.
PublicationYear 2022
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0011
cit0033
cit0012
cit0034
cit0031
cit0010
cit0032
cit0030
cit0019
cit0017
cit0018
Hartley R (cit0006) 2003
cit0015
cit0016
Goodfellow I (cit0005) 2014
cit0013
cit0014
cit0022
cit0001
cit0023
cit0020
cit0021
Szegedy C (cit0029) 2017
Saxena A (cit0028) 2006; 18
cit0008
cit0009
cit0007
cit0004
cit0026
cit0027
cit0002
cit0024
cit0003
cit0025
References_xml – ident: cit0016
  doi: 10.1053/j.gastro.2012.06.001
– ident: cit0026
  doi: 10.1007/s11548-019-01962-w
– volume-title: Multiple view geometry in computer vision
  year: 2003
  ident: cit0006
– ident: cit0011
  doi: 10.1007/s11548-021-02398-x
– ident: cit0009
  doi: 10.1016/j.dld.2010.12.015
– ident: cit0015
  doi: 10.1109/3DV.2016.32
– ident: cit0018
  doi: 10.1007/978-3-030-32254-0_64
– ident: cit0004
  doi: 10.1109/ICCV.2019.00393
– ident: cit0027
– ident: cit0021
  doi: 10.1016/j.gie.2020.07.060
– volume: 18
  start-page: 1161
  year: 2006
  ident: cit0028
  publication-title: Adv Neural Inf Process Syst
– ident: cit0012
  doi: 10.1007/978-3-030-00934-2_68
– ident: cit0034
  doi: 10.1109/CVPR.2018.00907
– ident: cit0023
  doi: 10.1049/htl.2019.0071
– ident: cit0001
  doi: 10.1016/j.gie.2015.06.058
– ident: cit0020
  doi: 10.1109/CVPR42600.2020.00475
– ident: cit0031
  doi: 10.1053/j.gastro.2006.03.012
– ident: cit0008
  doi: 10.1055/s-0042-112580
– start-page: 4278
  volume-title: Proc. Thirty-First AAAI Conference on Artificial Intelligence
  year: 2017
  ident: cit0029
– ident: cit0003
  doi: 10.1109/ICCV.2015.304
– ident: cit0017
  doi: 10.1109/ICRA.2018.8460184
– ident: cit0002
  doi: 10.1109/CVPR.2017.195
– ident: cit0010
– start-page: 2672
  volume-title: Advances in neural information processing systems
  year: 2014
  ident: cit0005
– ident: cit0024
  doi: 10.1055/s-0042-108727
– ident: cit0032
  doi: 10.1109/CVPR.2017.700
– ident: cit0013
  doi: 10.1016/j.gie.2015.08.082
– ident: cit0014
  doi: 10.1109/CVPR.2017.238
– ident: cit0025
  doi: 10.1109/CVPR.2019.01252
– ident: cit0030
  doi: 10.1109/CVPR.2018.00216
– ident: cit0022
  doi: 10.1117/12.480417
– ident: cit0033
  doi: 10.1109/ICCV.2017.244
– ident: cit0007
  doi: 10.1055/s-0033-1344548
– ident: cit0019
  doi: 10.1016/j.media.2018.06.005
SSID ssj0000866365
Score 2.22588
Snippet This paper presents a new 3D-spatial feature extraction from a 2D colonoscopic image for polyp-size estimation. The polyp-size estimation poses potential...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 289
SubjectTerms computer-aided diagnosis
depth estimation
polyp localisation
Polyp-size estimation
Title Uncertainty meets 3D-spatial feature in colonoscopic polyp-size determination
URI https://www.tandfonline.com/doi/abs/10.1080/21681163.2021.2004445
Volume 10
WOSCitedRecordID wos000746807700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 2168-1171
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866365
  issn: 2168-1163
  databaseCode: TFW
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVQxQEO7IiyKQeuhjpekhwRUHGAikMreou8jKVIJa2agFS-HjtL1R6AA3zAi5KZiWfGevMGoSthXBXCTYIFJRa7jM9wLE2MIysMj7TUTFWefooGg3g8Tl4aNmHR0Cp9D21roYjqrPY_t1RFy4i7CYmIiasjXHcX1i0eY37M3FX2PsaH_dflLYsr2AWt9kl6EPaodoznuwetJag1-dKVxNPf_YdX3kM7TdUZ3NZhso82ID9A2ytahIfoeeTcX9EDykXwBlAWAb3HhSdcO6SFSgA0yPLAy1znUz_NkulgNp0sZrjIPiEwLbHGu_oIjfoPw7tH3OxawNodMSWGhCWWKsWBcRMZCVQQooyrHqWxkepBBCEHoRW3nEbEaNd3ShtCTynX5cqEHqNOPs3hxE-BM-0yngAlLAu1kTQW1rgPlkQqJm0XsdbAqW6EyP0-jElKGr3S1lqpt1baWKuLrpewWa3E8RsgWfVeWlZXILbeV5LSH7Gnf8Ceoa3Qz0h4ViQ7R51y_g4XaFN_lFkxv6zi8wsJNeCw
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELWgIAEHdkRZc-BqqOMlyREBVRFtT63oLfIqVSpp1QSk8vXYWar0ABzgA16UzDieRW_eAHDDlM1CqIogw8hAG_EJDLkKYWCYooHkkojc092g3w9Ho6g-C-Nola6GNoVQRH5Xu5_bNaMrStydj1iIbCJhyzu_qPEIoetgg9pY62h9g_brss9iU3aG842SDgUdrBrk-e5JKyFqRcC0Fnrae__x0vtgt0w8vfvipByANZ0cgp2aHOER6A3tCcgZAtnCe9M6Sz38CFPHubZIo3MNUG-ceE7pOpm6gZax9GbTyWIG0_Gn9lTFrXHePgbD9tPgoQPLdQtQ2lsmgzoikcFCUE2oChTXmCEklE0guTKBaOlA-1QzKaihOEBK2tKTG1-3hLCFLo_wCWgk00SfukFwIm3QY1owQ3ypOA6ZUfaDOeKCcNMEpLJwLEstcrcSYxKjUrK0slbsrBWX1mqC2yVsVohx_AaI6u6Ls7wLYoqVJTH-EXv2B-w12OoMet24-9x_OQfbvhuZcCRJcgEa2fxdX4JN-ZGN0_lVfli_AD6e5NE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELWgIAQHdkRZc-BqwLHjJEdEiUCUqodW9BZ5lSKVNGoCUvl67CxVewAO8AEvSmYmnhnrzRsArqg0VYgnQ0gx0tBkfAIDJgPoayo9XzBBeOnprt_rBaNR2K_ZhHlNq7Q9tK6EIsqz2v7cmdQNI-7GRTRApo4w3Z1btXiEeKtgrRTHMiE9iF7n1yymYqe4XChpUdDCmjme7560lKGW9EsXMk-08w_vvAu267LTuaviZA-sqHQfbC2IER6Al6Hxf8kPKGbOm1JF7uAOzC3j2iC1KhVAnSR1rM51OrHjLIlwssl4lsE8-VSObJg11teHYBg9DO4fYb1sAQpzxhRQhSTUmHNPEU_6kilMEeLSlI9Map_fKl-5nqKCe9rDPpLCNJ5Mu-qWc9PmshAfgVY6SdWxHQMnwqQ8qjjVxBWS4YBqaT6YIcYJ021AGgPHolYitwsxxjGqBUsba8XWWnFtrTa4nsOySorjN0C46L24KO9AdLWwJMY_Yk_-gL0EG_1OFHefes-nYNO18xKWIUnOQKuYvqtzsC4-iiSfXpSh-gV1auN1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+meets+3D-spatial+feature+in+colonoscopic+polyp-size+determination&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering.&rft.au=Itoh%2C+Hayato&rft.au=Oda%2C+Masahiro&rft.au=Jiang%2C+Kai&rft.au=Mori%2C+Yuichi&rft.date=2022-05-04&rft.issn=2168-1163&rft.eissn=2168-1171&rft.volume=10&rft.issue=3&rft.spage=289&rft.epage=298&rft_id=info:doi/10.1080%2F21681163.2021.2004445&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_21681163_2021_2004445
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-1163&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-1163&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-1163&client=summon