Uncertainty meets 3D-spatial feature in colonoscopic polyp-size determination
This paper presents a new 3D-spatial feature extraction from a 2D colonoscopic image for polyp-size estimation. The polyp-size estimation poses potential demands on colonoscopy, since an endoscopist's subjective estimation is apt to result in uncertain polyp-size determination. This uncertain d...
Gespeichert in:
| Veröffentlicht in: | Computer methods in biomechanics and biomedical engineering. Jg. 10; H. 3; S. 289 - 298 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis
04.05.2022
|
| Schlagworte: | |
| ISSN: | 2168-1163, 2168-1171 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper presents a new 3D-spatial feature extraction from a 2D colonoscopic image for polyp-size estimation. The polyp-size estimation poses potential demands on colonoscopy, since an endoscopist's subjective estimation is apt to result in uncertain polyp-size determination. This uncertain determination is derived from the lack of 3D-spatial information. Even though a previous work clarified that depth estimation mitigates uncertainty in binary polyp-size classification, precise estimation of 3D structure from a colonoscopic image(s) remains an unsolved challenge in medical image analysis. This work proposes a 3D-spatial feature that expresses a polyp's precise 3D shape to mitigate uncertainty in polyp-size determination. First, we introduce an accurate depth estimation method to capture the 3D structure of a colon. Next, we integrate depth estimation and polyp localisation to extract a 3D polyp shape as a feature. Finally, we achieve polyp-size estimation by statistical learning of extracted features. The experimental results demonstrated the validity both of our depth estimation and 3D-spatial feature. Compared with deep RGB and RGB-D convolutional neural networks (CNNs), a shallow CNN with the proposed 3D-spatial feature achieved a more accurate polyp-size estimation with a mean absolute error of 1.36 mm, whereas the one of the deep CNN is 3.11 mm. |
|---|---|
| AbstractList | This paper presents a new 3D-spatial feature extraction from a 2D colonoscopic image for polyp-size estimation. The polyp-size estimation poses potential demands on colonoscopy, since an endoscopist's subjective estimation is apt to result in uncertain polyp-size determination. This uncertain determination is derived from the lack of 3D-spatial information. Even though a previous work clarified that depth estimation mitigates uncertainty in binary polyp-size classification, precise estimation of 3D structure from a colonoscopic image(s) remains an unsolved challenge in medical image analysis. This work proposes a 3D-spatial feature that expresses a polyp's precise 3D shape to mitigate uncertainty in polyp-size determination. First, we introduce an accurate depth estimation method to capture the 3D structure of a colon. Next, we integrate depth estimation and polyp localisation to extract a 3D polyp shape as a feature. Finally, we achieve polyp-size estimation by statistical learning of extracted features. The experimental results demonstrated the validity both of our depth estimation and 3D-spatial feature. Compared with deep RGB and RGB-D convolutional neural networks (CNNs), a shallow CNN with the proposed 3D-spatial feature achieved a more accurate polyp-size estimation with a mean absolute error of 1.36 mm, whereas the one of the deep CNN is 3.11 mm. |
| Author | Itoh, Hayato Hotta, Kinichi Ito, Sayo Oda, Masahiro Misawa, Masashi Imai, Kenichiro Jiang, Kai Mori, Yuichi Kudo, Shin-Ei Mori, Kensaku |
| Author_xml | – sequence: 1 givenname: Hayato surname: Itoh fullname: Itoh, Hayato email: hitoh@mori.m.is.nagoya-u.ac.jp organization: Graduate School of Informatics, Nagoya University – sequence: 2 givenname: Masahiro surname: Oda fullname: Oda, Masahiro organization: Nagoya University – sequence: 3 givenname: Kai surname: Jiang fullname: Jiang, Kai organization: Graduate School of Informatics, Nagoya University – sequence: 4 givenname: Yuichi surname: Mori fullname: Mori, Yuichi organization: Showa University Northern Yokohama Hospital – sequence: 5 givenname: Masashi surname: Misawa fullname: Misawa, Masashi organization: Showa University Northern Yokohama Hospital – sequence: 6 givenname: Shin-Ei surname: Kudo fullname: Kudo, Shin-Ei organization: Showa University Northern Yokohama Hospital – sequence: 7 givenname: Kenichiro surname: Imai fullname: Imai, Kenichiro organization: Shizuoka Cancer Center – sequence: 8 givenname: Sayo surname: Ito fullname: Ito, Sayo organization: Shizuoka Cancer Center – sequence: 9 givenname: Kinichi surname: Hotta fullname: Hotta, Kinichi organization: Shizuoka Cancer Center – sequence: 10 givenname: Kensaku surname: Mori fullname: Mori, Kensaku organization: National Institute of Informatics |
| BookMark | eNqFkM9KAzEQh4NUsNY-grAvsDWz2WS7eFHqX6h4seeQzU4gspssSUTWp7e11YMHncPMMPD9GL5TMnHeISHnQBdAl_SiALEEEGxR0AK2jZZlyY_IdHfPASqY_OyCnZB5jK90W0shmOBT8rRxGkNS1qUx6xFTzNhNHgeVrOoygyq9Bcysy7TvvPNR-8HqbPDdOOTRfmDWYsLQW7cFvDsjx0Z1EeeHOSObu9uX1UO-fr5_XF2vc80qkXKsy9qwpuFY8rZqFTIB0LR1Dao1VUOxwoKj0A03nFXQ6pIWyhRImwYYUzWbEb7P1cHHGNDIIdhehVEClTst8luL3GmRBy1b7vIXp236-jwFZbt_6as9bZ3xoVfvPnStTGrsfDBBOW2jZH9HfAKnNH6- |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3527720 crossref_primary_10_1055_a_2502_9733 |
| Cites_doi | 10.1053/j.gastro.2012.06.001 10.1007/s11548-019-01962-w 10.1007/s11548-021-02398-x 10.1016/j.dld.2010.12.015 10.1109/3DV.2016.32 10.1007/978-3-030-32254-0_64 10.1109/ICCV.2019.00393 10.1016/j.gie.2020.07.060 10.1007/978-3-030-00934-2_68 10.1109/CVPR.2018.00907 10.1049/htl.2019.0071 10.1016/j.gie.2015.06.058 10.1109/CVPR42600.2020.00475 10.1053/j.gastro.2006.03.012 10.1055/s-0042-112580 10.1109/ICCV.2015.304 10.1109/ICRA.2018.8460184 10.1109/CVPR.2017.195 10.1055/s-0042-108727 10.1109/CVPR.2017.700 10.1016/j.gie.2015.08.082 10.1109/CVPR.2017.238 10.1109/CVPR.2019.01252 10.1109/CVPR.2018.00216 10.1117/12.480417 10.1109/ICCV.2017.244 10.1055/s-0033-1344548 10.1016/j.media.2018.06.005 |
| ContentType | Journal Article |
| Copyright | 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 |
| Copyright_xml | – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/21681163.2021.2004445 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-1171 |
| EndPage | 298 |
| ExternalDocumentID | 10_1080_21681163_2021_2004445 2004445 |
| Genre | Research Article |
| GroupedDBID | 0BK 30N 4.4 AAGDL AAJMT AALDU AAMIU AAPUL AAQRR ABLIJ ABPAQ ABXUL ABXYU ACGFS ADCVX ADGTB ADMLS AEISY AFRVT AGDLA AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQTUD ARCSS BLEHA CCCUG EBS EUPTU GTTXZ H13 HZ~ KYCEM LJTGL M4Z O9- RIG RNANH ROSJB RTWRZ SNACF SOJIQ TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ AAYXX CITATION |
| ID | FETCH-LOGICAL-c376t-e949f3bb5e45d7dae3611bd991adf7b0e7e25e6cb5f5371dc402af2e0bb133a93 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000746807700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-1163 |
| IngestDate | Sat Nov 29 06:34:10 EST 2025 Tue Nov 18 21:03:47 EST 2025 Mon Oct 20 23:46:52 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c376t-e949f3bb5e45d7dae3611bd991adf7b0e7e25e6cb5f5371dc402af2e0bb133a93 |
| PageCount | 10 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_21681163_2021_2004445 crossref_citationtrail_10_1080_21681163_2021_2004445 crossref_primary_10_1080_21681163_2021_2004445 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-04 |
| PublicationDateYYYYMMDD | 2022-05-04 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer methods in biomechanics and biomedical engineering. |
| PublicationYear | 2022 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | cit0011 cit0033 cit0012 cit0034 cit0031 cit0010 cit0032 cit0030 cit0019 cit0017 cit0018 Hartley R (cit0006) 2003 cit0015 cit0016 Goodfellow I (cit0005) 2014 cit0013 cit0014 cit0022 cit0001 cit0023 cit0020 cit0021 Szegedy C (cit0029) 2017 Saxena A (cit0028) 2006; 18 cit0008 cit0009 cit0007 cit0004 cit0026 cit0027 cit0002 cit0024 cit0003 cit0025 |
| References_xml | – ident: cit0016 doi: 10.1053/j.gastro.2012.06.001 – ident: cit0026 doi: 10.1007/s11548-019-01962-w – volume-title: Multiple view geometry in computer vision year: 2003 ident: cit0006 – ident: cit0011 doi: 10.1007/s11548-021-02398-x – ident: cit0009 doi: 10.1016/j.dld.2010.12.015 – ident: cit0015 doi: 10.1109/3DV.2016.32 – ident: cit0018 doi: 10.1007/978-3-030-32254-0_64 – ident: cit0004 doi: 10.1109/ICCV.2019.00393 – ident: cit0027 – ident: cit0021 doi: 10.1016/j.gie.2020.07.060 – volume: 18 start-page: 1161 year: 2006 ident: cit0028 publication-title: Adv Neural Inf Process Syst – ident: cit0012 doi: 10.1007/978-3-030-00934-2_68 – ident: cit0034 doi: 10.1109/CVPR.2018.00907 – ident: cit0023 doi: 10.1049/htl.2019.0071 – ident: cit0001 doi: 10.1016/j.gie.2015.06.058 – ident: cit0020 doi: 10.1109/CVPR42600.2020.00475 – ident: cit0031 doi: 10.1053/j.gastro.2006.03.012 – ident: cit0008 doi: 10.1055/s-0042-112580 – start-page: 4278 volume-title: Proc. Thirty-First AAAI Conference on Artificial Intelligence year: 2017 ident: cit0029 – ident: cit0003 doi: 10.1109/ICCV.2015.304 – ident: cit0017 doi: 10.1109/ICRA.2018.8460184 – ident: cit0002 doi: 10.1109/CVPR.2017.195 – ident: cit0010 – start-page: 2672 volume-title: Advances in neural information processing systems year: 2014 ident: cit0005 – ident: cit0024 doi: 10.1055/s-0042-108727 – ident: cit0032 doi: 10.1109/CVPR.2017.700 – ident: cit0013 doi: 10.1016/j.gie.2015.08.082 – ident: cit0014 doi: 10.1109/CVPR.2017.238 – ident: cit0025 doi: 10.1109/CVPR.2019.01252 – ident: cit0030 doi: 10.1109/CVPR.2018.00216 – ident: cit0022 doi: 10.1117/12.480417 – ident: cit0033 doi: 10.1109/ICCV.2017.244 – ident: cit0007 doi: 10.1055/s-0033-1344548 – ident: cit0019 doi: 10.1016/j.media.2018.06.005 |
| SSID | ssj0000866365 |
| Score | 2.22588 |
| Snippet | This paper presents a new 3D-spatial feature extraction from a 2D colonoscopic image for polyp-size estimation. The polyp-size estimation poses potential... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 289 |
| SubjectTerms | computer-aided diagnosis depth estimation polyp localisation Polyp-size estimation |
| Title | Uncertainty meets 3D-spatial feature in colonoscopic polyp-size determination |
| URI | https://www.tandfonline.com/doi/abs/10.1080/21681163.2021.2004445 |
| Volume | 10 |
| WOSCitedRecordID | wos000746807700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 2168-1171 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866365 issn: 2168-1163 databaseCode: TFW dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELUQ4gAHdkTZ5ANXQxI7cX1EQMUBKg4t9BZ5GUuRSlo1Aal8PXaWqj0AB_iAZ0Uzjv3GevMGoUvHwRVQ4yrVhEvC3A1JhAZJvDGhCoSNoep6f3nk_X53NBLPjZqwaGSVvoa2tVFEdVb7n1uqolXEXUdh0g0dj3DVXVSXeIz5NnPH7P0eH_ReF68sjrAntJon6UHEo9o2nu8WWrmgVuxLly6e3s4_fPIu2m5YJ76pt8keWoN8H20teREeoKehS38lDyjn-A2gLDC9I4UXXDukhcoAFGc59jbX-cR3s2QaTyfj-ZQU2Sdg0wprfKoP0bB3P7h9IM2sBaLdEVMSEExYqlQMLDbcSKBJGCrj2KM0lqsAOEQub1rFNqY8NNrVndJGECjlqlwp6BFazyc5HCOsaCKlNUZ3FTDQXMWcauGIkRI8UEZ2EGsDnOrGiNzPwxinYeNX2kYr9dFKm2h10NUCNq2dOH4DiOXspWX1BGLreSUp_RF78gfsKdqMfI-EV0WyM7Rezt7hHG3ojzIrZhfV_vwC9-Dg7A |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELWgIAEHdkRZc-BqaOIkro8IqIpoe2qBW-RlLEUqadUEpPL12Fmq9AAc4AOeFc04nkVv3iB0ZXJwAUSZSjWkHPsmQmImgWMrTChaTAeQT70_9-hg0H59ZfVZGEurtDW0LoQi8rfa_ty2GV1R4m48N2y7JpEw5Z1X1Hi-H6yitcDEWkvrG3ZeFn0Wk7KHJN8oaVHYwqpBnu9OWgpRSwKmtdDT2fmPj95F22Xi6dwWN2UPrUCyj7ZqcoQHqD8yNyBnCGRz5w0gSx1yj1PLuTZIDbkGqBMnjlW6TiZ2oCWWznQynk9xGn-CoypujfX2IRp1HoZ3XVyuW8DSvDIZBuYzTYQIwA8UVRxI6LpCmQSSK01FCyh4xnVSBDog1FXSlJ5ce9ASwhS6nJEj1EgmCRwjR5CQc62UbAvwQVIRUCKZyY0Eoy2heBP5lYUjWWqR25UY48gtJUsra0XWWlFprSa6XsCmhRjHbwBWd1-U5V0QXawsiciP2JM_YC_RRnfY70W9x8HTKdr07MiEJUn6Z6iRzd7hHK3LjyxOZxf5Zf0CL5LlDQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELWgIAQHdkRZc-BqaOIkro-IUoEoVQ8t9BZ5GUuRSlo1Aal8PXaWqj0AB_iAZ0UzE8-M9eYNQlemBhdAlOlUQ8qxbzIkZhI4tsKEosF0APnU-0uHdrvN4ZD1SjZhWtIqbQ-tC6GI_K62P_dE6YoRd-O5YdM1dYTp7ryixfP9YBWt5eJYJqT77df5M4up2EOSL5S0KGxh1RzPdyctZagl_dKFzNPe-Ydv3kXbZdnp3BZxsodWINlHWwtihAfoeWD8n_MDspnzBpClDmnh1DKuDVJDrgDqxIljda6TsR1niaUzGY9mE5zGn-CoilljfX2IBu37_t0DLpctYGnumAwD85kmQgTgB4oqDiR0XaFM-ciVpqIBFDzjOCkCHRDqKmkaT649aAhh2lzOyBGqJeMEjpEjSMi5Vko2BfggqQgokcxURoLRhlC8jvzKwJEslcjtQoxR5JaCpZW1ImutqLRWHV3PYZNCiuM3AFv0XpTlbyC6WFgSkR-xJ3_AXqKNXqsddR67T6do07PzEpYh6Z-hWjZ9h3O0Lj-yOJ1e5KH6BWaG47E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+meets+3D-spatial+feature+in+colonoscopic+polyp-size+determination&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering.&rft.au=Itoh%2C+Hayato&rft.au=Oda%2C+Masahiro&rft.au=Jiang%2C+Kai&rft.au=Mori%2C+Yuichi&rft.date=2022-05-04&rft.pub=Taylor+%26+Francis&rft.issn=2168-1163&rft.eissn=2168-1171&rft.volume=10&rft.issue=3&rft.spage=289&rft.epage=298&rft_id=info:doi/10.1080%2F21681163.2021.2004445&rft.externalDocID=2004445 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-1163&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-1163&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-1163&client=summon |