Relative Pareto minimizers for multiobjective problems: existence and optimality conditions

In this paper we introduce and study enhanced notions of relative Pareto minimizers for constrained multiobjective problems that are defined via several kinds of relative interiors of ordering cones and occupy intermediate positions between the classical notions of Pareto and weak Pareto efficiency/...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 122; no. 2; pp. 301 - 347
Main Authors: Bao, Truong Q., Mordukhovich, Boris S.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer-Verlag 01.04.2010
Springer
Springer Nature B.V
Subjects:
ISSN:0025-5610, 1436-4646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we introduce and study enhanced notions of relative Pareto minimizers for constrained multiobjective problems that are defined via several kinds of relative interiors of ordering cones and occupy intermediate positions between the classical notions of Pareto and weak Pareto efficiency/minimality. Using advanced tools of variational analysis and generalized differentiation, we establish the existence of relative Pareto minimizers for general multiobjective problems under a refined version of the subdifferential Palais-Smale condition for set-valued mappings with values in partially ordered spaces and then derive necessary optimality conditions for these minimizers (as well as for conventional efficient and weak efficient counterparts) that are new in both finite-dimensional and infinite-dimensional settings. Our proofs are based on variational and extremal principles of variational analysis; in particular, on new versions of the Ekeland variational principle and the subdifferential variational principle for set-valued and single-valued mappings in infinite-dimensional spaces.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-008-0249-2