Intelligent Fault Diagnosis Method for Blade Damage of Quad-Rotor UAV Based on Stacked Pruning Sparse Denoising Autoencoder and Convolutional Neural Network

This paper introduces a new intelligent fault diagnosis method based on stack pruning sparse denoising autoencoder and convolutional neural network (sPSDAE-CNN). This method processes the original input data by using a stack denoising autoencoder. Different from the traditional autoencoder, stack pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machines (Basel) Jg. 9; H. 12; S. 360
Hauptverfasser: Yang, Pu, Wen, Chenwan, Geng, Huilin, Liu, Peng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.12.2021
Schlagworte:
ISSN:2075-1702, 2075-1702
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper introduces a new intelligent fault diagnosis method based on stack pruning sparse denoising autoencoder and convolutional neural network (sPSDAE-CNN). This method processes the original input data by using a stack denoising autoencoder. Different from the traditional autoencoder, stack pruning sparse denoising autoencoder includes a fully connected autoencoding network, the features extracted from the front layer of the network are used for the operation of the subsequent layer, which means that some new connections will appear between the front and rear layers of the network, reduce the loss of information, and obtain more effective features. Firstly, a one-dimensional sliding window is introduced for data enhancement. In addition, transforming one-dimensional time-domain data into the two-dimensional gray image can further improve the deep learning (DL) ability of models. At the same time, pruning operation is introduced to improve the training efficiency and accuracy of the network. The convolutional neural network model with sPSDAE has a faster training speed, strong adaptability to noise interference signals, and can also suppress the over-fitting problem of the convolutional neural network to a certain extent. Actual experiments show that for the fault of unmanned aerial vehicle (UAV) blade damage, the sPSDAE-CNN model we use has better stability and reliable prediction accuracy than traditional convolutional neural networks. At the same time, For noise signals, better results can be obtained. The experimental results show that the sPSDAE-CNN model still has a good diagnostic accuracy rate in a high-noise environment. In the case of a signal-to-noise ratio of −4, it still has an accuracy rate of 90%.
AbstractList This paper introduces a new intelligent fault diagnosis method based on stack pruning sparse denoising autoencoder and convolutional neural network (sPSDAE-CNN). This method processes the original input data by using a stack denoising autoencoder. Different from the traditional autoencoder, stack pruning sparse denoising autoencoder includes a fully connected autoencoding network, the features extracted from the front layer of the network are used for the operation of the subsequent layer, which means that some new connections will appear between the front and rear layers of the network, reduce the loss of information, and obtain more effective features. Firstly, a one-dimensional sliding window is introduced for data enhancement. In addition, transforming one-dimensional time-domain data into the two-dimensional gray image can further improve the deep learning (DL) ability of models. At the same time, pruning operation is introduced to improve the training efficiency and accuracy of the network. The convolutional neural network model with sPSDAE has a faster training speed, strong adaptability to noise interference signals, and can also suppress the over-fitting problem of the convolutional neural network to a certain extent. Actual experiments show that for the fault of unmanned aerial vehicle (UAV) blade damage, the sPSDAE-CNN model we use has better stability and reliable prediction accuracy than traditional convolutional neural networks. At the same time, For noise signals, better results can be obtained. The experimental results show that the sPSDAE-CNN model still has a good diagnostic accuracy rate in a high-noise environment. In the case of a signal-to-noise ratio of −4, it still has an accuracy rate of 90%.
Author Yang, Pu
Geng, Huilin
Liu, Peng
Wen, Chenwan
Author_xml – sequence: 1
  givenname: Pu
  orcidid: 0000-0003-2283-8835
  surname: Yang
  fullname: Yang, Pu
– sequence: 2
  givenname: Chenwan
  orcidid: 0000-0002-0694-8287
  surname: Wen
  fullname: Wen, Chenwan
– sequence: 3
  givenname: Huilin
  orcidid: 0000-0002-3653-5619
  surname: Geng
  fullname: Geng, Huilin
– sequence: 4
  givenname: Peng
  surname: Liu
  fullname: Liu, Peng
BookMark eNp1UcluFDEQbaEgEULOXC1xbmL3YrePkwmBkRK2BK5WtZeOJz2uie0G8S98bHpmQEKRqMsrvar3VMvL4ihgsEXxmtG3dS3p2Qb0nQ82SVbRmtNnxXFFRVsyQaujf_IXxWlKazqHZHXXdMfF71XIdhz9YEMmlzCNmVx4GAImn8i1zXdoiMNIzkcwllzABgZL0JEvE5jyK-a59G3xnZxDsoZgIDcZ9P2cfo5T8GEgN1uIaRbagD7tiMWU0QaNxkYCwZAlhh84TtljgJF8tFPcQ_6J8f5V8dzBmOzpHzwpbi_f3S4_lFef3q-Wi6tS14Ln0nROc9oaqaXsWc8c6LamVSsd0K6jjvPGtoJJXvW8dgaAiUYbVrtetFK7-qRYHWwNwlpto99A_KUQvNoTGAcFMXs9WtUKZ5gxjtfcNM6JjnHtTDW7iV67vdebg9c24sNkU1ZrnOK8WlIVZ5WQzQxzV3vo0hFTitYp7TPsbpAj-FExqnZvVU_eOuvOnuj-Tvs_xSOAW6ve
CitedBy_id crossref_primary_10_1088_1742_6596_2822_1_012084
crossref_primary_10_1016_j_jestch_2024_101702
crossref_primary_10_3390_machines10020146
crossref_primary_10_1007_s00170_023_12453_3
crossref_primary_10_3390_s23104907
crossref_primary_10_1007_s13272_024_00752_8
crossref_primary_10_1016_j_nanoen_2025_111073
crossref_primary_10_3390_machines13080697
crossref_primary_10_1007_s11227_023_05584_7
crossref_primary_10_1016_j_ymssp_2024_111418
crossref_primary_10_1155_2022_7674421
crossref_primary_10_1155_2023_6608967
crossref_primary_10_1177_09544100241262550
crossref_primary_10_3390_drones7050286
crossref_primary_10_1038_s41598_024_69462_9
crossref_primary_10_1007_s10846_025_02267_8
crossref_primary_10_1038_s41598_024_85076_7
crossref_primary_10_3390_machines10080690
crossref_primary_10_1016_j_eswa_2025_128940
Cites_doi 10.1016/j.jsv.2016.05.027
10.1016/j.knosys.2019.105313
10.1038/nature14539
10.1016/j.jfranklin.2020.04.024
10.1109/TKDE.2004.1269664
10.1109/5.58337
10.2478/pomr-2018-0079
10.1016/j.measurement.2020.108815
10.1109/ICASSP.2019.8682194
10.1016/j.measurement.2021.109116
10.1016/j.sigpro.2016.07.028
10.3115/v1/P14-1062
10.1016/j.jcps.2014.09.004
10.1109/MIE.2020.2964814
10.1016/j.jngse.2019.103039
10.3390/robotics8030059
10.2174/1874120701004010123
10.1016/j.arcontrol.2015.03.004
10.1177/17298814211002734
10.1016/j.ymssp.2020.106861
10.23919/ACC45564.2020.9148044
10.1016/j.measurement.2016.07.054
10.1109/TAES.2011.5937287
10.1007/s12325-017-0505-z
10.1155/2021/6672812
10.1109/ACCESS.2021.3063277
10.1007/s10921-017-0420-x
10.1177/09544100211015587
10.1109/ACCESS.2020.2992692
10.1007/s12161-017-0903-5
10.1109/TITS.2019.2897583
10.33969/JIEC.2020.21006
10.1108/ILT-11-2019-0496
10.1016/j.knosys.2021.106796
10.3390/s17020425
10.1109/ChiCC.2015.7260639
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/machines9120360
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database (ProQuest)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-1702
ExternalDocumentID oai_doaj_org_article_57fd1ddf636d4ff7816cfd2cd17bcfcf
10_3390_machines9120360
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c376t-d8fc605d9c99b1b1fac530259fa0880f664e571962b63fdaa174cd13fb759cf3
IEDL.DBID M7S
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000738096500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2075-1702
IngestDate Fri Oct 03 12:24:21 EDT 2025
Fri Jul 25 12:14:07 EDT 2025
Tue Nov 18 22:21:10 EST 2025
Sat Nov 29 07:16:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-d8fc605d9c99b1b1fac530259fa0880f664e571962b63fdaa174cd13fb759cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2283-8835
0000-0002-3653-5619
0000-0002-0694-8287
OpenAccessLink https://www.proquest.com/docview/2612794261?pq-origsite=%requestingapplication%
PQID 2612794261
PQPubID 2032370
ParticipantIDs doaj_primary_oai_doaj_org_article_57fd1ddf636d4ff7816cfd2cd17bcfcf
proquest_journals_2612794261
crossref_citationtrail_10_3390_machines9120360
crossref_primary_10_3390_machines9120360
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Machines (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Polat (ref_16) 2020; 2
Tang (ref_13) 2020; 8
Tao (ref_14) 2020; 357
Guo (ref_40) 2016; 93
Chen (ref_21) 2020; 64
Wang (ref_32) 2021; 2021
ref_12
Che (ref_27) 2020; 72
ref_33
ref_31
Chen (ref_22) 2019; 21
Chen (ref_7) 2021; 176
Ioffe (ref_36) 2015; 37
Guo (ref_30) 2021; 18
LeCun (ref_34) 2015; 521
Tan (ref_44) 2004; 16
Chady (ref_10) 2017; 36
Zhu (ref_4) 2018; 25
Esteki (ref_11) 2017; 10
Azamfar (ref_19) 2020; 144
Xiao (ref_9) 2021; 9
Sibi (ref_35) 2013; 47
ref_25
ref_24
Lu (ref_37) 2017; 130
ref_45
Haupt (ref_3) 2015; 34
Yu (ref_2) 2015; 39
Cheng (ref_28) 2021; 216
Werbos (ref_39) 1990; 78
ref_41
Xiong (ref_17) 2020; 2
Janssens (ref_43) 2016; 377
Avci (ref_42) 2017; 7
Hu (ref_5) 2019; 72
He (ref_20) 2021; 191
Glowacz (ref_15) 2021; 171
ref_29
Liu (ref_6) 2011; 31
Huang (ref_23) 2021; 70
ref_26
Chen (ref_8) 2015; 25
Heys (ref_38) 2010; 4
Hu (ref_18) 2020; 14
Bateman (ref_1) 2011; 47
References_xml – volume: 377
  start-page: 331
  year: 2016
  ident: ref_43
  article-title: Convolutional neural network based fault detection for rotating machinery
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.05.027
– volume: 191
  start-page: 105313
  year: 2021
  ident: ref_20
  article-title: Deep transfer multi-wavelet auto-encoder for intelligent fault diagnosis of gearbox with few target training samples
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105313
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_34
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 357
  start-page: 7286
  year: 2020
  ident: ref_14
  article-title: An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2020.04.024
– volume: 16
  start-page: 385
  year: 2004
  ident: ref_44
  article-title: A support vector machine with a hybrid kernel and minimal Vapnik-Chervonenkis dimension
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2004.1269664
– volume: 78
  start-page: 1550
  year: 1990
  ident: ref_39
  article-title: Backpropagation through time: What it does and how to do it
  publication-title: Proc. IEEE
  doi: 10.1109/5.58337
– volume: 25
  start-page: 92
  year: 2018
  ident: ref_4
  article-title: Research on SDG fault diagnosis of ocean shipping boiler system based on fuzzy granular computing under data fusion
  publication-title: Pol. Marit. Res.
  doi: 10.2478/pomr-2018-0079
– volume: 171
  start-page: 108815
  year: 2021
  ident: ref_15
  article-title: Fault diagnosis of electric impact drills using thermal imaging
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108815
– ident: ref_41
  doi: 10.1109/ICASSP.2019.8682194
– volume: 176
  start-page: 109116
  year: 2021
  ident: ref_7
  article-title: Fault diagnosis of rolling bearing using marine predators algorithm-based support vector machine and topology learning and out-of-sample embedding
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109116
– volume: 130
  start-page: 377
  year: 2017
  ident: ref_37
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.07.028
– volume: 37
  start-page: 448
  year: 2015
  ident: ref_36
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Int. Conf. Mach. Learn.
– ident: ref_33
  doi: 10.3115/v1/P14-1062
– volume: 25
  start-page: 326
  year: 2015
  ident: ref_8
  article-title: The effects of affect, processing goals and temporal distance on information processing: Qualifications on temporal construal theory
  publication-title: J. Consum. Psychol.
  doi: 10.1016/j.jcps.2014.09.004
– volume: 14
  start-page: 65
  year: 2020
  ident: ref_18
  article-title: Advanced fault diagnosis for lithium-ion battery systems: A review of fault mechanisms, fault features, and diagnosis procedures
  publication-title: IEEE Ind. Electron. Mag.
  doi: 10.1109/MIE.2020.2964814
– volume: 72
  start-page: 103039
  year: 2019
  ident: ref_5
  article-title: Fuzzy fault tree analysis of hydraulic fracturing flowback water storage failure
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2019.103039
– volume: 7
  start-page: 49
  year: 2017
  ident: ref_42
  article-title: Structural damage detection in real time: Implementation of 1D convolutional neural networks for SHM applications
  publication-title: Struct. Health Monit. Damage Detect.
– ident: ref_24
  doi: 10.3390/robotics8030059
– volume: 4
  start-page: 123
  year: 2010
  ident: ref_38
  article-title: Revisiting the simplified Bernoulli equation
  publication-title: Open Biomed. Eng. J.
  doi: 10.2174/1874120701004010123
– volume: 2
  start-page: 72
  year: 2020
  ident: ref_17
  article-title: Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles
  publication-title: Appl. Energy
– volume: 39
  start-page: 46
  year: 2015
  ident: ref_2
  article-title: A survey of fault-tolerant controllers based on safety-related issues
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2015.03.004
– volume: 18
  start-page: 17298814211002734
  year: 2021
  ident: ref_30
  article-title: Robust fault diagnosis and fault-tolerant control for nonlinear quadrotor unmanned aerial vehicle system with unknown actuator faults
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.1177/17298814211002734
– volume: 144
  start-page: 106861
  year: 2020
  ident: ref_19
  article-title: Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural network and motor current signature analysis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.106861
– ident: ref_25
  doi: 10.23919/ACC45564.2020.9148044
– volume: 93
  start-page: 490
  year: 2016
  ident: ref_40
  article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.07.054
– volume: 47
  start-page: 2119
  year: 2011
  ident: ref_1
  article-title: Fault diagnosis and fault-tolerant control strategy for the aerosonde UAV
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2011.5937287
– volume: 34
  start-page: 986
  year: 2015
  ident: ref_3
  article-title: Expert system for bone scan interpretation improves progression assessment in bone metastatic prostate cancer
  publication-title: Adv. Ther.
  doi: 10.1007/s12325-017-0505-z
– volume: 31
  start-page: 85
  year: 2011
  ident: ref_6
  article-title: A complete analytic model for fault diagnosis of power systems
  publication-title: Proc. Chin. Soc. Electr. Eng.
– ident: ref_29
– volume: 2021
  start-page: 6672812
  year: 2021
  ident: ref_32
  article-title: A Robust Fault-Tolerant Control for Quadrotor Helicopters against Sensor Faults and External Disturbances
  publication-title: Complexity
  doi: 10.1155/2021/6672812
– volume: 47
  start-page: 1264
  year: 2013
  ident: ref_35
  article-title: Analysis of different activation functions using back propagation neural networks
  publication-title: J. Theor. Appl. Inf. Technol.
– volume: 9
  start-page: 39839
  year: 2021
  ident: ref_9
  article-title: A multidimensional information fusion-based matching decision method for manufacturing service resource
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3063277
– volume: 36
  start-page: 40
  year: 2017
  ident: ref_10
  article-title: The application of rough sets theory to design of weld defect classifiers
  publication-title: J. Nondestruct. Eval.
  doi: 10.1007/s10921-017-0420-x
– volume: 64
  start-page: 1
  year: 2020
  ident: ref_21
  article-title: Data-driven fault diagnosis for traction systems in high-speed trains: A survey, challenges, and perspectives
  publication-title: IEEE Trans. Intell. Transp. Syst.
– ident: ref_31
  doi: 10.1177/09544100211015587
– volume: 8
  start-page: 86510
  year: 2020
  ident: ref_13
  article-title: Convolutional neural network in intelligent fault diagnosis toward rotatory machinery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992692
– volume: 10
  start-page: 3312
  year: 2017
  ident: ref_11
  article-title: Chromatographic fingerprinting with multivariate data analysis for detection and quantification of apricot kernel in almond powder
  publication-title: Food Anal. Methods
  doi: 10.1007/s12161-017-0903-5
– volume: 70
  start-page: 1
  year: 2021
  ident: ref_23
  article-title: Fault diagnosis of high-speed train bogie based on the improved-CEEMDAN and 1-D CNN algorithms
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 21
  start-page: 450
  year: 2019
  ident: ref_22
  article-title: A review of fault detection and diagnosis for the traction system in high-speed trains
  publication-title: Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2897583
– volume: 2
  start-page: 72
  year: 2020
  ident: ref_16
  article-title: The fault diagnosis based on deep long short-term memory model from the vibration signals in the computer numerical control machines
  publication-title: J. Inst. Electron. Comput.
  doi: 10.33969/JIEC.2020.21006
– volume: 72
  start-page: 947
  year: 2020
  ident: ref_27
  article-title: Intelligent fault diagnosis method of rolling bearing based on stacked denoising autoencoder and convolutional neural network
  publication-title: Ind. Lubr. Tribol.
  doi: 10.1108/ILT-11-2019-0496
– volume: 216
  start-page: 106796
  year: 2021
  ident: ref_28
  article-title: Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106796
– ident: ref_45
– ident: ref_26
  doi: 10.3390/s17020425
– ident: ref_12
  doi: 10.1109/ChiCC.2015.7260639
SSID ssj0000913848
Score 2.3274395
Snippet This paper introduces a new intelligent fault diagnosis method based on stack pruning sparse denoising autoencoder and convolutional neural network...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 360
SubjectTerms Accuracy
anti-noise
Artificial neural networks
convolutional neural network
Damage
Drones
Fault diagnosis
Feature extraction
Image enhancement
intelligent fault diagnosis
Kalman filters
Mathematical models
Neural networks
Noise
Noise reduction
Pruning
Sensors
Signal processing
Signal to noise ratio
stacked pruning sparse denoising autoencoder
Training
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQ4kAPVYFW3RaqOfTAJe06n_ZxF7qiUouA0opbZHsy0kpLgnYTfk1_LGMnrLZUqJceIkuRnVie8cw8Z_JGiI-pNrydsyRSaeqilB1ApFRmI4lsCM0YpcXwo_C34vxc3dzoi41SXz4nrKcH7heOATuhRKQ8yTElKpTMHWHsUBbWkSNvfTnq2QBTwQZrmahU9Vw-CeP6z7chN7Faaek_vY3_cEOBrf8vYxw8zOyVeDmEhjDpp7Qntqp6X7zYIAw8EL-_rhk0W5iZbtHCaZ8rN1_B91AMGjgKhenCYAWn5patBTQEl53B6KphfA0_J79gyq4LoamBQ03exQgXy86fj8CPO8a5PLCqm7k_RIBJ1zae6hKrJZga4aSp7wdl5al6Zo_QhFTy1-J69uX65Cwa6itEjs1KG6Eix2gGtdPaSivJC41jIE2Gbc-Y8jytsoK3aGzzhNAYRi-87gnZItOOkjdiu27q6q0AG-sszkjzZVOD1hp2vaQ8Xxo_Ly5G4tPjapdu4B73JTAWJWMQL57yiXhG4ng94K6n3Xi-69SLb93N82WHG6xF5aBF5b-0aCQOH4VfDpt4VXp2NTZX3Lz7H-94L3ZjnxATcmEOxXa77KojsePu2_lq-SHo7wN6hvxo
  priority: 102
  providerName: Directory of Open Access Journals
Title Intelligent Fault Diagnosis Method for Blade Damage of Quad-Rotor UAV Based on Stacked Pruning Sparse Denoising Autoencoder and Convolutional Neural Network
URI https://www.proquest.com/docview/2612794261
https://doaj.org/article/57fd1ddf636d4ff7816cfd2cd17bcfcf
Volume 9
WOSCitedRecordID wos000738096500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (ProQuest)
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BywEOvBGBEs2BAxfT-O09oaRNRCUahbagcrJ2d7woUmoHP3rkl_Bjmdk44SW4cLAtedfWWjP7zc7s-BshXkZS0XSOQy-LIuNFZAC8LIu15yMBoRqhr9H9KPwunc-zy0u56ANuTZ9WucVEB9RYGY6RHzLVFekOXd6sv3hcNYp3V_sSGjfFPrMkBC5173wXY2HOyyzKNow-IXn3h1cuQ7FopM8bcKNfjJHj7P8Dkp2dmd373xHeF3f7FSaMNyrxQNwoyofizk-8g4_Et5MdEWcLM9WtWjjepNwtGzh1NaWBFrMwWSks4FhdEehAZeF9p9A7q8hNhw_jjzAhC4hQlUArVgIDhEXdcZgFztfkLtODRVktORYB466tmDETixpUiXBUlde9ztNQmSDEXVxG-mNxMZteHL31-jINniF0aj3MrCGnCKWRUvvatyx7WkpJqwjCRjZJoiJOaaYHOgktKkVOkEE_tDqNpbHhE7FXVmXxVIAOZBzEVtKhI4VaK7LgNmPaNXpfkA7E6624ctNTmHMljVVOrgzLN_9NvgPxavfAesPe8feuE5b_rhvTbrsbVf0572dxHqcWfUSbhAlG1qaZnxiLAX1Nqo01diAOtqqR91jQ5D_04tm_m5-L2wFnzLhkmQOx19Zd8ULcMtftsqmHYn8ynS_Ohi5qMHSKzuevU2pZnJwuPn0HZeINjQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VggQceKMGCuwBJC6m8dt7QChpiBo1jQoNqDdrd8eLIqV26kcR_4W_wH9kZmOHl-DWAwfLkl9a2998Mzsef8PY80BINOfQd5Ig0E6ADsBJklA5LiARyj64CuyPwtN4NktOT8XxFvvW_QtDZZUdJ1qihkJTjnyPpK4QO7h6szp3qGsUfV3tWmisYXGYffmMU7bq9WSE7_eF543fzvcPnLargKPRmGoHEqMxhgehhVCucg0NFT2_MBItrm-iKMjCGIHpqcg3ICXG7Bpc36g4FNr4eNkr7GpA5G8rBU82KR2S2EyCZC0g5Puiv3dmCyKzSrj0va__i--zLQL-8ADWrY1v_2cP5A671cbPfLAG_F22leX32M2fVBXvs6-TjcxozceyWdZ8tC4oXFT8yHbM5hiq8-FSQsZH8gwplReGv2skOO-LGnd9GHzkQ_TvwIucYzyOVAf8uGwoicRPVrKs8MQsLxaUaeGDpi5IDxSykssc-H6RX7QWjUMl-RO7svX2D9j8Mp7OQ7adF3m2w7jyROiFRuCiAglKSYxPTEKicng9L-6xVx06Ut0KtFOfkGWKEzWCU_obnHrs5eaE1Vqb5O-HDglum8NIVNxuKMpPactRaRgbcAFM5EcQGBMnbqQNeHg3sdJGmx7b7ZCYtkxXpT9g-Ojfu5-x6wfzo2k6ncwOH7MbHtUG2bKgXbZdl032hF3TF_WiKp9aq-IsvWTQfgdzm2TZ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXYTgwBtRWMAHkLiENonz8AGhdktFtbtVgAUtp8iPGFXqJiWPRfwX_gj_jrGTlJfgtgcOUaTYiRLnm5kv9uQbgMeUcTTnwHdiSqVDMQA4cRwIx1XoCPlYuULZH4UPo-UyPjlhyQ586_-FMWmVvU-0jloV0syRj4zUFWIHdyPdpUUks_mLzSfHVJAyK619OY0WIgfZl8_4-VY9X8zwXT_xvPnL4_1XTldhwJFoWLWjYi2RzysmGROucLW5bWQBTHO0vrEOQ5oFEYLUE6GvFefI36VyfS2igEnt42UvwC4yckoHsJssjpIP2wkeI7gZ07iVE_J9Nh6d2vTIrGKuWf0b_xIJbcGAP-KBDXLza__x8FyHqx2zJpPWFG7ATpbfhCs_6S3egq-LrQBpTea8Wddk1qYaripyZGtpEyTxZLrmKiMzforOlhSavG64ct4UNTa9m7wnU4z8ihQ5QaaOTlCRpGzM9BJ5u-FlhSdmebEyczBk0tSFUQpVWUl4rsh-kZ91to63aoRR7M5m4t-G4_MYnTswyIs8uwtEeCzwAs1wE5QrITgyFx0buTm8nhcN4VmPlFR20u2mgsg6xU84A630N2gN4en2hE2rWvL3rlMDvW03IzduDxTlx7TzXmkQaeUqpUM_VFTrKHZDqZWHTxMJqaUewl6PyrTzgVX6A5L3_t38CC4hVtPDxfLgPlz2TNKQzRfag0FdNtkDuCjP6lVVPuxMjEB6zqj9Di06bxk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Fault+Diagnosis+Method+for+Blade+Damage+of+Quad-Rotor+UAV+Based+on+Stacked+Pruning+Sparse+Denoising+Autoencoder+and+Convolutional+Neural+Network&rft.jtitle=Machines+%28Basel%29&rft.au=Yang%2C+Pu&rft.au=Wen%2C+Chenwan&rft.au=Geng%2C+Huilin&rft.au=Liu%2C+Peng&rft.date=2021-12-01&rft.pub=MDPI+AG&rft.eissn=2075-1702&rft.volume=9&rft.issue=12&rft.spage=360&rft_id=info:doi/10.3390%2Fmachines9120360&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1702&client=summon