A Performance-Driven MPC Algorithm for Underactuated Bridge Cranes
A crane system often works in a complex environment. It is difficult to model or learn its true dynamics by traditional system identification approaches. If a dynamics model is created by minimizing its prediction error, its use tends to introduce inaccuracies and thus lead to suboptimal performance...
Saved in:
| Published in: | Machines (Basel) Vol. 9; no. 8; p. 177 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.08.2021
|
| Subjects: | |
| ISSN: | 2075-1702, 2075-1702 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A crane system often works in a complex environment. It is difficult to model or learn its true dynamics by traditional system identification approaches. If a dynamics model is created by minimizing its prediction error, its use tends to introduce inaccuracies and thus lead to suboptimal performance. Is it possible to learn the dynamics model of a crane that can achieve the best performance, instead of learning its true dynamics? This work answers the question by presenting a performance-driven model predictive control (P-MPC) algorithm for a two-dimensional underactuated bridge crane. In the proposed dual-layer control architecture, an inner-loop controller uses a proportional–integral–derivative controller to achieve anti-sway rapidly. An outer-loop controller uses MPC to ensure accurate trolley positioning under control constraints. Compared with classical MPC, this work proposes a data-driven method for plant modeling and controller parameter updating. By considering the control target at the learning stage, the method can avoid adjusting the controller to deal with uncertainty. We use Bayesian optimization in an active learning framework where a locally linear dynamics model is learned with the intent of maximizing control performance and then used in conjunction with optimal control schemes to efficiently design a controller for a given task. The model is updated directly based on the performance observed in experiments on the physical system in an iterative manner till a desired performance is achieved. The controller parameters and prediction models of the best closed-loop performance can be found through continuous experiments and iterative optimization. Simulation and experiment results show that we can explicitly find the dynamics model that produces the best performance for an actual system, and the method can quickly suppress swing and realize accurate trolley positioning. The results verified its effectiveness, feasibility, and superior performance on comparing it with state-of-the-art methods. |
|---|---|
| AbstractList | A crane system often works in a complex environment. It is difficult to model or learn its true dynamics by traditional system identification approaches. If a dynamics model is created by minimizing its prediction error, its use tends to introduce inaccuracies and thus lead to suboptimal performance. Is it possible to learn the dynamics model of a crane that can achieve the best performance, instead of learning its true dynamics? This work answers the question by presenting a performance-driven model predictive control (P-MPC) algorithm for a two-dimensional underactuated bridge crane. In the proposed dual-layer control architecture, an inner-loop controller uses a proportional–integral–derivative controller to achieve anti-sway rapidly. An outer-loop controller uses MPC to ensure accurate trolley positioning under control constraints. Compared with classical MPC, this work proposes a data-driven method for plant modeling and controller parameter updating. By considering the control target at the learning stage, the method can avoid adjusting the controller to deal with uncertainty. We use Bayesian optimization in an active learning framework where a locally linear dynamics model is learned with the intent of maximizing control performance and then used in conjunction with optimal control schemes to efficiently design a controller for a given task. The model is updated directly based on the performance observed in experiments on the physical system in an iterative manner till a desired performance is achieved. The controller parameters and prediction models of the best closed-loop performance can be found through continuous experiments and iterative optimization. Simulation and experiment results show that we can explicitly find the dynamics model that produces the best performance for an actual system, and the method can quickly suppress swing and realize accurate trolley positioning. The results verified its effectiveness, feasibility, and superior performance on comparing it with state-of-the-art methods. |
| Author | Zhou, Mengchu Kang, Qi Bao, Hanqiu An, Jing Ma, Xianghua |
| Author_xml | – sequence: 1 givenname: Hanqiu orcidid: 0000-0002-7916-3712 surname: Bao fullname: Bao, Hanqiu – sequence: 2 givenname: Qi surname: Kang fullname: Kang, Qi – sequence: 3 givenname: Jing surname: An fullname: An, Jing – sequence: 4 givenname: Xianghua surname: Ma fullname: Ma, Xianghua – sequence: 5 givenname: Mengchu orcidid: 0000-0002-5408-8752 surname: Zhou fullname: Zhou, Mengchu |
| BookMark | eNp1UE1PAjEQbYwmInL2uonnlX7strtHxC8SjBzk3AztFEpgi91i4r93EU2MiXOZycx7b97MBTltQoOEXDF6I0RNh1swK99gW9OKMqVOSI9TVeZMUX76qz4ng7Zd0y5qJqqi6pHbUTbD6ELcQmMwv4v-HZvseTbORptliD6ttlk3zeaNxQgm7SGhzW6jt0vMxhG6nZfkzMGmxcF37pP5w_3r-CmfvjxOxqNpboSSKbcVp8bQuqik5ViUljopJKArAAAZo5YrIwzQEoVypVCLupYcSlYJaxC56JPJUdcGWOtd9FuIHzqA11-NEJcaYvJmg5ryujKcSaacLZzrTrW2kAZFBWAXxUHr-qi1i-Ftj23S67CPTWdf81KWQjDKZIcqjygTQ9tGdNr4BMmHJkXwG82oPnxf__l-xxv-4f24_Y_xCdS_ihI |
| CitedBy_id | crossref_primary_10_1109_TIV_2023_3238023 crossref_primary_10_3390_app14125112 crossref_primary_10_3390_app14083492 crossref_primary_10_1109_TITS_2023_3259003 crossref_primary_10_1016_j_mechatronics_2024_103267 crossref_primary_10_3390_machines10070539 crossref_primary_10_1109_TAC_2024_3389552 crossref_primary_10_1109_TIV_2023_3336964 crossref_primary_10_1177_09596518241244819 crossref_primary_10_3390_electronics13173499 |
| Cites_doi | 10.1109/TASE.2014.2352280 10.1109/TAC.2018.2794885 10.1109/TSMC.2018.2871627 10.1109/ICISCAE48440.2019.221664 10.1109/TMECH.2016.2558202 10.1109/JAS.2018.7511072 10.1063/1.4964671 10.1109/TSMC.2018.2818175 10.1109/TMECH.2019.2946083 10.1109/TNNLS.2017.2770172 10.1109/TMECH.2020.3024637 10.1109/JAS.2020.1003162 10.1109/TII.2017.2771256 10.1109/ChiCC.2014.6895532 10.1109/TNNLS.2017.2768820 10.1109/SPC.2018.8704154 10.1109/TMECH.2017.2721553 10.1109/JAS.2018.7511267 10.1109/ACCESS.2019.2911538 10.1109/ACCESS.2019.2891793 10.1109/JAS.2020.1003042 10.1109/CDC.2017.8264425 10.1109/ACCESS.2018.2888563 10.1109/TCYB.2020.2989213 10.1109/ACCESS.2019.2912460 10.1109/RI2C48728.2019.8999961 10.1109/ACCESS.2018.2869217 10.1109/RAIT.2018.8388978 10.1109/ACCESS.2019.2950703 10.1109/ICARM.2017.8273139 10.1109/TAC.2018.2882479 10.1109/FUZZ-IEEE.2019.8858968 10.1109/TII.2021.3065377 10.1109/JAS.2017.7510721 10.1016/j.automatica.2015.12.026 10.1109/ICEPDS.2018.8571596 10.1109/ICAMechS49982.2020.9310150 10.1109/ICCMA46720.2019.8988758 10.23919/ChiCC.2019.8865222 10.1109/ICoSC.2018.8587775 10.1109/JSEN.2020.3003826 10.1049/iet-cta.2014.1353 10.1109/TIE.2017.2701760 10.3390/app8091463 10.1109/TASE.2016.2542105 10.1109/TIE.2013.2288200 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.3390/machines9080177 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2075-1702 |
| ExternalDocumentID | oai_doaj_org_article_0298c21617fd4ff384dd46ce38aadb42 10_3390_machines9080177 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ACIWK ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS 7TB 8FD ABUWG AZQEC DWQXO FR3 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c376t-d820cc09486d2e45d0f636aef4aaae110d27c3ca05e37f537b9962a5183dcee23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000690509100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2075-1702 |
| IngestDate | Fri Oct 03 12:39:24 EDT 2025 Fri Jul 25 11:57:02 EDT 2025 Sat Nov 29 07:18:49 EST 2025 Tue Nov 18 22:43:08 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c376t-d820cc09486d2e45d0f636aef4aaae110d27c3ca05e37f537b9962a5183dcee23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7916-3712 0000-0002-5408-8752 |
| OpenAccessLink | https://doaj.org/article/0298c21617fd4ff384dd46ce38aadb42 |
| PQID | 2565331016 |
| PQPubID | 2032370 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0298c21617fd4ff384dd46ce38aadb42 proquest_journals_2565331016 crossref_citationtrail_10_3390_machines9080177 crossref_primary_10_3390_machines9080177 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Machines (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | He (ref_8) 2016; 66 Dian (ref_45) 2017; 6 He (ref_19) 2013; 61 Li (ref_7) 2019; 7 He (ref_31) 2017; 22 ref_36 ref_35 ref_12 ref_34 ref_10 ref_32 Sun (ref_44) 2019; 49 Shi (ref_11) 2019; 7 Lu (ref_22) 2018; 63 Ouyang (ref_21) 2018; 7 Deng (ref_46) 2014; 12 Wang (ref_4) 2018; 7 Jin (ref_25) 2020; 7 Ouyang (ref_6) 2019; 7 Zhu (ref_33) 2019; 2019 Zhang (ref_18) 2018; 5 ref_39 Kang (ref_43) 2019; 49 Chen (ref_30) 2016; 21 ref_38 ref_15 ref_37 Yang (ref_5) 2020; 7 Wang (ref_29) 2017; 14 Li (ref_47) 2018; 29 Cao (ref_48) 2017; 29 Ye (ref_3) 2018; 64 Kim (ref_24) 2019; 24 ref_23 Wang (ref_42) 2021; 51 Vaughan (ref_1) 2010; 18 ref_41 ref_40 Wu (ref_14) 2016; 14 ref_2 ref_28 Sun (ref_17) 2018; 6 ref_27 ref_26 ref_9 Zhang (ref_13) 2019; 7 Chwa (ref_20) 2017; 64 Wu (ref_16) 2015; 9 |
| References_xml | – volume: 12 start-page: 565 year: 2014 ident: ref_46 article-title: Model Predictive Control of Central Chiller Plant With Thermal Energy Storage Via Dynamic Programming and Mixed-Integer Linear Programming publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2014.2352280 – volume: 63 start-page: 3471 year: 2018 ident: ref_22 article-title: Continuous Sliding Mode Control Strategy for a Class of Nonlinear Underactuated Systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2018.2794885 – volume: 49 start-page: 1408 year: 2019 ident: ref_44 article-title: Transportation Control of Double-Pendulum Cranes with a Nonlinear Qua-si-PID Scheme: Design and Experiments publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2018.2871627 – ident: ref_27 doi: 10.1109/ICISCAE48440.2019.221664 – volume: 21 start-page: 2543 year: 2016 ident: ref_30 article-title: A Swing Constraint Guaranteed MPC Algorithm for Underactuated Overhead Cranes publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2016.2558202 – volume: 5 start-page: 683 year: 2018 ident: ref_18 article-title: Adaptive Proportional-Derivative Sliding Mode Control Law With Improved Transient Performance for Underactuated Overhead Crane Systems publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2018.7511072 – ident: ref_41 doi: 10.1063/1.4964671 – volume: 49 start-page: 2416 year: 2019 ident: ref_43 article-title: A Collaborative Resource Allocation Strategy for Decomposition-based Multi-objective Evolutionary Algorithms publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2018.2818175 – volume: 24 start-page: 2850 year: 2019 ident: ref_24 article-title: Adaptive Sliding-Mode Control of an Offshore Container Crane With Unknown Disturbances publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2019.2946083 – volume: 29 start-page: 4791 year: 2018 ident: ref_47 article-title: Modified Primal-Dual Neural Networks for Motion Control of Redundant Manip-ulators with Dynamic Rejection of Harmonic Noises publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2770172 – ident: ref_10 doi: 10.1109/TMECH.2020.3024637 – volume: 7 start-page: 892 year: 2020 ident: ref_5 article-title: Swing suppression and accurate positioning control for underactuated offshore crane systems suffering from disturbances publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2020.1003162 – volume: 14 start-page: 2932 year: 2017 ident: ref_29 article-title: Intelligent Optimal Control With Critic Learning for a Nonlinear Overhead Crane System publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2771256 – ident: ref_2 doi: 10.1109/ChiCC.2014.6895532 – volume: 29 start-page: 208 year: 2017 ident: ref_48 article-title: Robust Neuro-Optimal Control of Underactuated Snake Robots With Experience Replay publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2768820 – ident: ref_9 doi: 10.1109/SPC.2018.8704154 – volume: 22 start-page: 1952 year: 2017 ident: ref_31 article-title: Boundary Vibration Control of Variable Length Crane Systems in Two-Dimensional Space With Output Constraints publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2017.2721553 – volume: 18 start-page: 1345 year: 2010 ident: ref_1 article-title: Control of Tower Cranes With Double-Pendulum Payload Dynamics publication-title: IEEE Trans. Control Syst. Technol. – volume: 7 start-page: 822 year: 2018 ident: ref_4 article-title: Optimal PID control of spatial inverted pendulum with big bang–big crunch optimization publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2018.7511267 – volume: 7 start-page: 55974 year: 2019 ident: ref_13 article-title: Finite-Time Trajectory Tracking Control for Overhead Crane Systems Subject to Unknown Disturbances publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2911538 – volume: 7 start-page: 10353 year: 2019 ident: ref_6 article-title: Novel Adaptive Hierarchical Sliding Mode Control for Trajectory Tracking and Load Sway Rejection in Double-Pendulum Overhead Cranes publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891793 – volume: 7 start-page: 442 year: 2020 ident: ref_25 article-title: Operator-based robust nonlinear free vibration control of a flexible plate with unknown input nonline-arity publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2020.1003042 – ident: ref_36 doi: 10.1109/CDC.2017.8264425 – volume: 7 start-page: 4371 year: 2018 ident: ref_21 article-title: Sliding-Mode-Based Trajectory Tracking and Load Sway Suppression Control for Double-Pendulum Overhead Cranes publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2888563 – volume: 51 start-page: 3483 year: 2021 ident: ref_42 article-title: Multiscale Drift Detection Test to Enable Fast Learning in Nonsta-tionary Environments publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2989213 – volume: 7 start-page: 54586 year: 2019 ident: ref_7 article-title: A Minimum-Time Motion Online Planning Method for Underactuated Overhead Crane Systems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912460 – ident: ref_15 doi: 10.1109/RI2C48728.2019.8999961 – volume: 6 start-page: 51931 year: 2018 ident: ref_17 article-title: Type-2 Fuzzy Sliding Mode Anti-Swing Controller Design and Optimization for Overhead Crane publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2869217 – ident: ref_28 doi: 10.1109/RAIT.2018.8388978 – volume: 7 start-page: 159960 year: 2019 ident: ref_11 article-title: Active-Passive Combined Control System in Crane Type for Heave Compensation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2950703 – ident: ref_38 doi: 10.1109/ICARM.2017.8273139 – volume: 64 start-page: 3484 year: 2018 ident: ref_3 article-title: Stabilization of Uncertain Feedforward Nonlinear Systems With Application to Underactuated Systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2018.2882479 – ident: ref_26 doi: 10.1109/FUZZ-IEEE.2019.8858968 – ident: ref_40 doi: 10.1109/TII.2021.3065377 – volume: 6 start-page: 198 year: 2017 ident: ref_45 article-title: Dynamic balance control based on an adaptive gain-scheduled backstepping scheme for power-line inspection robots publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2017.7510721 – volume: 66 start-page: 146 year: 2016 ident: ref_8 article-title: Cooperative control of a nonuniform gantry crane with constrained tension publication-title: Automatica doi: 10.1016/j.automatica.2015.12.026 – ident: ref_12 doi: 10.1109/ICEPDS.2018.8571596 – ident: ref_37 doi: 10.1109/ICAMechS49982.2020.9310150 – ident: ref_34 doi: 10.1109/ICCMA46720.2019.8988758 – volume: 2019 start-page: 8370 year: 2019 ident: ref_33 article-title: Anti-shake positioning algorithm of bridge crane based on phase plane analysis publication-title: J. Eng. – ident: ref_23 doi: 10.23919/ChiCC.2019.8865222 – ident: ref_32 doi: 10.1109/ICoSC.2018.8587775 – ident: ref_39 doi: 10.1109/JSEN.2020.3003826 – volume: 9 start-page: 1893 year: 2015 ident: ref_16 article-title: Enhanced damping-based anti-swing control method for underactuated overhead cranes publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2014.1353 – volume: 64 start-page: 6775 year: 2017 ident: ref_20 article-title: Sliding-Mode-Control-Based Robust Finite-Time Antisway Tracking Control of 3-D Overhead Cranes publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2701760 – ident: ref_35 doi: 10.3390/app8091463 – volume: 14 start-page: 1297 year: 2016 ident: ref_14 article-title: Nonlinear Energy-Based Regulation Control of Three-Dimensional Overhead Cranes publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2016.2542105 – volume: 61 start-page: 4126 year: 2013 ident: ref_19 article-title: Adaptive Control of a Flexible Crane System With the Boundary Output Constraint publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2013.2288200 |
| SSID | ssj0000913848 |
| Score | 2.265211 |
| Snippet | A crane system often works in a complex environment. It is difficult to model or learn its true dynamics by traditional system identification approaches. If a... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 177 |
| SubjectTerms | Algorithms anti-sway Artificial intelligence Bridges Control algorithms Control systems design Controllers Cranes Cranes & hoists data-driven approach Dynamics Iterative methods Machine learning Mathematical models Methods Optimal control Optimization Ordinary differential equations Parameters Performance prediction performance-driven model predictive control Prediction models Predictive control Proportional integral derivative Robots Robust control System identification Systems stability Two dimensional models underactuated bridge crane |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMMDAG1EoyAMDSyCNnTiZUFuoGKCqxEPdIsd2ClJfJIHfz52btjwEC1KGKHaiKGff3Xe5-46QUzdQacr8OsASljqcK99JEo05YjIITeBKbWO6T7ei0wl7vahbBtzyMq1yphOtotZjhTHyCzDN4Jkg1rycvDrYNQr_rpYtNJbJCrIk1G3q3v08xoKclyEPp4w-DND9xdBmKJo8AkepLsQXY2Q5-3-oZGtn2pv_fcMtslF6mLQxXRLbZMmMdsj6J97BXdJs0O6iYMC5ylDl0btuizYGfXhk8TykMEptUySJJSbgl9Kmre2iLbBuJt8jj-3rh9aNUzZTcBTokMLRYOqVAjAXBtoz3NduGrBAmpRLKQ04AdoTiinp-oaJ1GciASTkSR-2vAZD6rF9UhmNR-aAUNBLqahHXMIBwg0iFirjwwnS2wnhVsn57KvGqmQax4YXgxgQB4oh_iaGKjmb3zCZkmz8PrWJYppPQ3Zse2Gc9eNys8VIK688RG6p5rAUQ641D5RhoZQ64V6V1GYSjMstm8cL8R3-PXxE1jxMbLFZgDVSKbI3c0xW1XvxkmcndgV-ADt65Sg priority: 102 providerName: ProQuest |
| Title | A Performance-Driven MPC Algorithm for Underactuated Bridge Cranes |
| URI | https://www.proquest.com/docview/2565331016 https://doaj.org/article/0298c21617fd4ff384dd46ce38aadb42 |
| Volume | 9 |
| WOSCitedRecordID | wos000690509100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-1702 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913848 issn: 2075-1702 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-1702 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913848 issn: 2075-1702 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2075-1702 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913848 issn: 2075-1702 databaseCode: M7S dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2075-1702 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913848 issn: 2075-1702 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2075-1702 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913848 issn: 2075-1702 databaseCode: PIMPY dateStart: 20130301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPehB_MTpHDl48FLXNWnSHte5oeBG8Yt5KmmSqrAPWadH_3Zf0m5ORbwIpZQmTct7zXvvF15-D6ETl8ksI34TYAnJHEql76SpMjliggWauULZNd37K97vB4NBGC-V-jI5YQU9cCG4hqEIl56JwjNFYdiAKkWZ1CQQQqXUWl-Xh0tgytrgsAk9g4LLhwCub4xsbqLOQwiRmpx_cUOWrf-HMbYepruFNsvQELeKT9pGK3q8gzaWCAN3UdTC8Wemv3M-NbYK9-I2bg0fJ4Dzn0YYWrGtZiTM3hAIKHFkN2XhNrglne-hu27ntn3hlFUQHAmTf-Yo8NFSAgoLmPI09ZWbMcKEzqgQQoP3Vh6XRArX14RnPuEpQBhP-DBXFXhAj-yjyngy1gcIg0HJeDOkAg7QCgtJILUPF4aXjnO3is7mQklkSRFuKlUME4AKRorJNylW0enigZeCHeP3rpGR8qKbobW2N0DZSans5C9lV1FtrqOknGt5AkEbxKxmFeLwP95xhNY9k7dik_xqqDKbvupjtCbfZs_5tI5Wo04_vq7b361uMkVvzPm9Ay3xZS9--AC6g90g |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hqFR6KIWCugWKD1TqJSVrO3FyqNDuUgRiWa1UqLilXtsBJPbBZqHqn-pvZMabLKWI3jhUyiGKnYMzn-fhzHwDsB3GJs9FVMewROSBlCYKej1LOWI6TlwcauvPdL-3VaeTnJ2l3Tn4XdXCUFplpRO9orZDQ2fkO2ia0TOhWHN3dB1Q1yj6u1q10JjC4sj9-okhW_HlcA_l-5Hz_a8nrYOg7CoQGNxMk8CizTMGo5okttzJyIZ5LGLtcqm1dmgNLVdGGB1GTqg8EqqHIQHXEWLfokUhogNU-QvoRvDUpwp-m53pEMdmIpMpg5AQabjT9xmRrkjRMasr9cD4-R4Bj0yAt2v7S__bF3kDr0sPmjWmkF-GOTdYgVd_8Cq-hWaDde8LIoK9Mal0dtxtscbVOS5hctFnOMp80ydNJTTod7Omr11jLbTerliF02dZxBrMD4YD9w4Y6t1c1VOp8ULwxqlIjIvwhuj7lApr8LmSYmZKJnVq6HGVYURFYs_-EnsNPs1eGE1JRJ6e2iRYzKYR-7d_MByfZ6UyyYg233CKTHMrcasl0loZGycSrW1P8hpsVIjJSpVUZPdwef_v4S14eXBy3M7ah52jdVjklMTjMx43YH4yvnGb8MLcTi6L8QePfgY_nhtcdwwcQtw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VaYXgABSoGiiwhyJxMXV21177gFAejYjaRj4AKiez2UeL1CYlDlT9a_w6ZjZ2ykNw6wHJB8u7Pqz3m9d65huA3Tg13oukg2GJ8JGUJokmE0s5YjrNXBprG850Pxyq8Tg7Ps6LNfje1MJQWmWjE4OitjNDZ-R7aJrRMwm5Wb5OiygGwzcXXyLqIEV_Wpt2GkuIHLirSwzfqtejAe71C86H--_6b6O6w0BkULAWkUX7ZwxGOFlquZOJjX0qUu281Fo7tIyWKyOMjhMnlE-EmmB4wHWCcmDRuhDpAar_dXTJJW_BejE6Kj6uTniIcTOT2ZJPSIg83jsP-ZGuytFN6yj1iykMHQP-MAjByg3v_c_f5z7crX1r1l0KwyasuekDuPMT4-JD6HVZcV0qEQ3mpOzZUdFn3bMTXMLi9JzhKAvtoDQV16BHznqhqo310a676hG8v5FFbEFrOpu6bWCokb3q5FLjhbBOc5EZl-ANEfspFbfhVbOjpak51qnVx1mJsRZBoPwNAm14uXrhYkkv8vepPYLIahrxgocHs_lJWauZkgj1DaeY1VuJQphJa2VqnMi0thPJ27DToKeslVVVXkPn8b-Hn8MtxFR5OBofPIHbnLJ7QirkDrQW86_uKWyYb4vP1fxZLQoMPt00un4ALJlNEg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Performance-Driven+MPC+Algorithm+for+Underactuated+Bridge+Cranes&rft.jtitle=Machines+%28Basel%29&rft.au=Hanqiu+Bao&rft.au=Qi+Kang&rft.au=Jing+An&rft.au=Xianghua+Ma&rft.date=2021-08-01&rft.pub=MDPI+AG&rft.eissn=2075-1702&rft.volume=9&rft.issue=8&rft.spage=177&rft_id=info:doi/10.3390%2Fmachines9080177&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0298c21617fd4ff384dd46ce38aadb42 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1702&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1702&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1702&client=summon |