A Performance-Driven MPC Algorithm for Underactuated Bridge Cranes

A crane system often works in a complex environment. It is difficult to model or learn its true dynamics by traditional system identification approaches. If a dynamics model is created by minimizing its prediction error, its use tends to introduce inaccuracies and thus lead to suboptimal performance...

Full description

Saved in:
Bibliographic Details
Published in:Machines (Basel) Vol. 9; no. 8; p. 177
Main Authors: Bao, Hanqiu, Kang, Qi, An, Jing, Ma, Xianghua, Zhou, Mengchu
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.08.2021
Subjects:
ISSN:2075-1702, 2075-1702
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A crane system often works in a complex environment. It is difficult to model or learn its true dynamics by traditional system identification approaches. If a dynamics model is created by minimizing its prediction error, its use tends to introduce inaccuracies and thus lead to suboptimal performance. Is it possible to learn the dynamics model of a crane that can achieve the best performance, instead of learning its true dynamics? This work answers the question by presenting a performance-driven model predictive control (P-MPC) algorithm for a two-dimensional underactuated bridge crane. In the proposed dual-layer control architecture, an inner-loop controller uses a proportional–integral–derivative controller to achieve anti-sway rapidly. An outer-loop controller uses MPC to ensure accurate trolley positioning under control constraints. Compared with classical MPC, this work proposes a data-driven method for plant modeling and controller parameter updating. By considering the control target at the learning stage, the method can avoid adjusting the controller to deal with uncertainty. We use Bayesian optimization in an active learning framework where a locally linear dynamics model is learned with the intent of maximizing control performance and then used in conjunction with optimal control schemes to efficiently design a controller for a given task. The model is updated directly based on the performance observed in experiments on the physical system in an iterative manner till a desired performance is achieved. The controller parameters and prediction models of the best closed-loop performance can be found through continuous experiments and iterative optimization. Simulation and experiment results show that we can explicitly find the dynamics model that produces the best performance for an actual system, and the method can quickly suppress swing and realize accurate trolley positioning. The results verified its effectiveness, feasibility, and superior performance on comparing it with state-of-the-art methods.
AbstractList A crane system often works in a complex environment. It is difficult to model or learn its true dynamics by traditional system identification approaches. If a dynamics model is created by minimizing its prediction error, its use tends to introduce inaccuracies and thus lead to suboptimal performance. Is it possible to learn the dynamics model of a crane that can achieve the best performance, instead of learning its true dynamics? This work answers the question by presenting a performance-driven model predictive control (P-MPC) algorithm for a two-dimensional underactuated bridge crane. In the proposed dual-layer control architecture, an inner-loop controller uses a proportional–integral–derivative controller to achieve anti-sway rapidly. An outer-loop controller uses MPC to ensure accurate trolley positioning under control constraints. Compared with classical MPC, this work proposes a data-driven method for plant modeling and controller parameter updating. By considering the control target at the learning stage, the method can avoid adjusting the controller to deal with uncertainty. We use Bayesian optimization in an active learning framework where a locally linear dynamics model is learned with the intent of maximizing control performance and then used in conjunction with optimal control schemes to efficiently design a controller for a given task. The model is updated directly based on the performance observed in experiments on the physical system in an iterative manner till a desired performance is achieved. The controller parameters and prediction models of the best closed-loop performance can be found through continuous experiments and iterative optimization. Simulation and experiment results show that we can explicitly find the dynamics model that produces the best performance for an actual system, and the method can quickly suppress swing and realize accurate trolley positioning. The results verified its effectiveness, feasibility, and superior performance on comparing it with state-of-the-art methods.
Author Zhou, Mengchu
Kang, Qi
Bao, Hanqiu
An, Jing
Ma, Xianghua
Author_xml – sequence: 1
  givenname: Hanqiu
  orcidid: 0000-0002-7916-3712
  surname: Bao
  fullname: Bao, Hanqiu
– sequence: 2
  givenname: Qi
  surname: Kang
  fullname: Kang, Qi
– sequence: 3
  givenname: Jing
  surname: An
  fullname: An, Jing
– sequence: 4
  givenname: Xianghua
  surname: Ma
  fullname: Ma, Xianghua
– sequence: 5
  givenname: Mengchu
  orcidid: 0000-0002-5408-8752
  surname: Zhou
  fullname: Zhou, Mengchu
BookMark eNp1UE1PAjEQbYwmInL2uonnlX7strtHxC8SjBzk3AztFEpgi91i4r93EU2MiXOZycx7b97MBTltQoOEXDF6I0RNh1swK99gW9OKMqVOSI9TVeZMUX76qz4ng7Zd0y5qJqqi6pHbUTbD6ELcQmMwv4v-HZvseTbORptliD6ttlk3zeaNxQgm7SGhzW6jt0vMxhG6nZfkzMGmxcF37pP5w_3r-CmfvjxOxqNpboSSKbcVp8bQuqik5ViUljopJKArAAAZo5YrIwzQEoVypVCLupYcSlYJaxC56JPJUdcGWOtd9FuIHzqA11-NEJcaYvJmg5ryujKcSaacLZzrTrW2kAZFBWAXxUHr-qi1i-Ftj23S67CPTWdf81KWQjDKZIcqjygTQ9tGdNr4BMmHJkXwG82oPnxf__l-xxv-4f24_Y_xCdS_ihI
CitedBy_id crossref_primary_10_1109_TIV_2023_3238023
crossref_primary_10_3390_app14125112
crossref_primary_10_3390_app14083492
crossref_primary_10_1109_TITS_2023_3259003
crossref_primary_10_1016_j_mechatronics_2024_103267
crossref_primary_10_3390_machines10070539
crossref_primary_10_1109_TAC_2024_3389552
crossref_primary_10_1109_TIV_2023_3336964
crossref_primary_10_1177_09596518241244819
crossref_primary_10_3390_electronics13173499
Cites_doi 10.1109/TASE.2014.2352280
10.1109/TAC.2018.2794885
10.1109/TSMC.2018.2871627
10.1109/ICISCAE48440.2019.221664
10.1109/TMECH.2016.2558202
10.1109/JAS.2018.7511072
10.1063/1.4964671
10.1109/TSMC.2018.2818175
10.1109/TMECH.2019.2946083
10.1109/TNNLS.2017.2770172
10.1109/TMECH.2020.3024637
10.1109/JAS.2020.1003162
10.1109/TII.2017.2771256
10.1109/ChiCC.2014.6895532
10.1109/TNNLS.2017.2768820
10.1109/SPC.2018.8704154
10.1109/TMECH.2017.2721553
10.1109/JAS.2018.7511267
10.1109/ACCESS.2019.2911538
10.1109/ACCESS.2019.2891793
10.1109/JAS.2020.1003042
10.1109/CDC.2017.8264425
10.1109/ACCESS.2018.2888563
10.1109/TCYB.2020.2989213
10.1109/ACCESS.2019.2912460
10.1109/RI2C48728.2019.8999961
10.1109/ACCESS.2018.2869217
10.1109/RAIT.2018.8388978
10.1109/ACCESS.2019.2950703
10.1109/ICARM.2017.8273139
10.1109/TAC.2018.2882479
10.1109/FUZZ-IEEE.2019.8858968
10.1109/TII.2021.3065377
10.1109/JAS.2017.7510721
10.1016/j.automatica.2015.12.026
10.1109/ICEPDS.2018.8571596
10.1109/ICAMechS49982.2020.9310150
10.1109/ICCMA46720.2019.8988758
10.23919/ChiCC.2019.8865222
10.1109/ICoSC.2018.8587775
10.1109/JSEN.2020.3003826
10.1049/iet-cta.2014.1353
10.1109/TIE.2017.2701760
10.3390/app8091463
10.1109/TASE.2016.2542105
10.1109/TIE.2013.2288200
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/machines9080177
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-1702
ExternalDocumentID oai_doaj_org_article_0298c21617fd4ff384dd46ce38aadb42
10_3390_machines9080177
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c376t-d820cc09486d2e45d0f636aef4aaae110d27c3ca05e37f537b9962a5183dcee23
IEDL.DBID DOA
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000690509100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2075-1702
IngestDate Fri Oct 03 12:39:24 EDT 2025
Fri Jul 25 11:57:02 EDT 2025
Sat Nov 29 07:18:49 EST 2025
Tue Nov 18 22:43:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-d820cc09486d2e45d0f636aef4aaae110d27c3ca05e37f537b9962a5183dcee23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7916-3712
0000-0002-5408-8752
OpenAccessLink https://doaj.org/article/0298c21617fd4ff384dd46ce38aadb42
PQID 2565331016
PQPubID 2032370
ParticipantIDs doaj_primary_oai_doaj_org_article_0298c21617fd4ff384dd46ce38aadb42
proquest_journals_2565331016
crossref_citationtrail_10_3390_machines9080177
crossref_primary_10_3390_machines9080177
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Machines (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References He (ref_8) 2016; 66
Dian (ref_45) 2017; 6
He (ref_19) 2013; 61
Li (ref_7) 2019; 7
He (ref_31) 2017; 22
ref_36
ref_35
ref_12
ref_34
ref_10
ref_32
Sun (ref_44) 2019; 49
Shi (ref_11) 2019; 7
Lu (ref_22) 2018; 63
Ouyang (ref_21) 2018; 7
Deng (ref_46) 2014; 12
Wang (ref_4) 2018; 7
Jin (ref_25) 2020; 7
Ouyang (ref_6) 2019; 7
Zhu (ref_33) 2019; 2019
Zhang (ref_18) 2018; 5
ref_39
Kang (ref_43) 2019; 49
Chen (ref_30) 2016; 21
ref_38
ref_15
ref_37
Yang (ref_5) 2020; 7
Wang (ref_29) 2017; 14
Li (ref_47) 2018; 29
Cao (ref_48) 2017; 29
Ye (ref_3) 2018; 64
Kim (ref_24) 2019; 24
ref_23
Wang (ref_42) 2021; 51
Vaughan (ref_1) 2010; 18
ref_41
ref_40
Wu (ref_14) 2016; 14
ref_2
ref_28
Sun (ref_17) 2018; 6
ref_27
ref_26
ref_9
Zhang (ref_13) 2019; 7
Chwa (ref_20) 2017; 64
Wu (ref_16) 2015; 9
References_xml – volume: 12
  start-page: 565
  year: 2014
  ident: ref_46
  article-title: Model Predictive Control of Central Chiller Plant With Thermal Energy Storage Via Dynamic Programming and Mixed-Integer Linear Programming
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2014.2352280
– volume: 63
  start-page: 3471
  year: 2018
  ident: ref_22
  article-title: Continuous Sliding Mode Control Strategy for a Class of Nonlinear Underactuated Systems
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2018.2794885
– volume: 49
  start-page: 1408
  year: 2019
  ident: ref_44
  article-title: Transportation Control of Double-Pendulum Cranes with a Nonlinear Qua-si-PID Scheme: Design and Experiments
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2018.2871627
– ident: ref_27
  doi: 10.1109/ICISCAE48440.2019.221664
– volume: 21
  start-page: 2543
  year: 2016
  ident: ref_30
  article-title: A Swing Constraint Guaranteed MPC Algorithm for Underactuated Overhead Cranes
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2016.2558202
– volume: 5
  start-page: 683
  year: 2018
  ident: ref_18
  article-title: Adaptive Proportional-Derivative Sliding Mode Control Law With Improved Transient Performance for Underactuated Overhead Crane Systems
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2018.7511072
– ident: ref_41
  doi: 10.1063/1.4964671
– volume: 49
  start-page: 2416
  year: 2019
  ident: ref_43
  article-title: A Collaborative Resource Allocation Strategy for Decomposition-based Multi-objective Evolutionary Algorithms
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2018.2818175
– volume: 24
  start-page: 2850
  year: 2019
  ident: ref_24
  article-title: Adaptive Sliding-Mode Control of an Offshore Container Crane With Unknown Disturbances
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2019.2946083
– volume: 29
  start-page: 4791
  year: 2018
  ident: ref_47
  article-title: Modified Primal-Dual Neural Networks for Motion Control of Redundant Manip-ulators with Dynamic Rejection of Harmonic Noises
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2770172
– ident: ref_10
  doi: 10.1109/TMECH.2020.3024637
– volume: 7
  start-page: 892
  year: 2020
  ident: ref_5
  article-title: Swing suppression and accurate positioning control for underactuated offshore crane systems suffering from disturbances
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2020.1003162
– volume: 14
  start-page: 2932
  year: 2017
  ident: ref_29
  article-title: Intelligent Optimal Control With Critic Learning for a Nonlinear Overhead Crane System
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2771256
– ident: ref_2
  doi: 10.1109/ChiCC.2014.6895532
– volume: 29
  start-page: 208
  year: 2017
  ident: ref_48
  article-title: Robust Neuro-Optimal Control of Underactuated Snake Robots With Experience Replay
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2768820
– ident: ref_9
  doi: 10.1109/SPC.2018.8704154
– volume: 22
  start-page: 1952
  year: 2017
  ident: ref_31
  article-title: Boundary Vibration Control of Variable Length Crane Systems in Two-Dimensional Space With Output Constraints
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2017.2721553
– volume: 18
  start-page: 1345
  year: 2010
  ident: ref_1
  article-title: Control of Tower Cranes With Double-Pendulum Payload Dynamics
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 7
  start-page: 822
  year: 2018
  ident: ref_4
  article-title: Optimal PID control of spatial inverted pendulum with big bang–big crunch optimization
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2018.7511267
– volume: 7
  start-page: 55974
  year: 2019
  ident: ref_13
  article-title: Finite-Time Trajectory Tracking Control for Overhead Crane Systems Subject to Unknown Disturbances
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2911538
– volume: 7
  start-page: 10353
  year: 2019
  ident: ref_6
  article-title: Novel Adaptive Hierarchical Sliding Mode Control for Trajectory Tracking and Load Sway Rejection in Double-Pendulum Overhead Cranes
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891793
– volume: 7
  start-page: 442
  year: 2020
  ident: ref_25
  article-title: Operator-based robust nonlinear free vibration control of a flexible plate with unknown input nonline-arity
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2020.1003042
– ident: ref_36
  doi: 10.1109/CDC.2017.8264425
– volume: 7
  start-page: 4371
  year: 2018
  ident: ref_21
  article-title: Sliding-Mode-Based Trajectory Tracking and Load Sway Suppression Control for Double-Pendulum Overhead Cranes
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2888563
– volume: 51
  start-page: 3483
  year: 2021
  ident: ref_42
  article-title: Multiscale Drift Detection Test to Enable Fast Learning in Nonsta-tionary Environments
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2989213
– volume: 7
  start-page: 54586
  year: 2019
  ident: ref_7
  article-title: A Minimum-Time Motion Online Planning Method for Underactuated Overhead Crane Systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912460
– ident: ref_15
  doi: 10.1109/RI2C48728.2019.8999961
– volume: 6
  start-page: 51931
  year: 2018
  ident: ref_17
  article-title: Type-2 Fuzzy Sliding Mode Anti-Swing Controller Design and Optimization for Overhead Crane
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2869217
– ident: ref_28
  doi: 10.1109/RAIT.2018.8388978
– volume: 7
  start-page: 159960
  year: 2019
  ident: ref_11
  article-title: Active-Passive Combined Control System in Crane Type for Heave Compensation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2950703
– ident: ref_38
  doi: 10.1109/ICARM.2017.8273139
– volume: 64
  start-page: 3484
  year: 2018
  ident: ref_3
  article-title: Stabilization of Uncertain Feedforward Nonlinear Systems With Application to Underactuated Systems
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2018.2882479
– ident: ref_26
  doi: 10.1109/FUZZ-IEEE.2019.8858968
– ident: ref_40
  doi: 10.1109/TII.2021.3065377
– volume: 6
  start-page: 198
  year: 2017
  ident: ref_45
  article-title: Dynamic balance control based on an adaptive gain-scheduled backstepping scheme for power-line inspection robots
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2017.7510721
– volume: 66
  start-page: 146
  year: 2016
  ident: ref_8
  article-title: Cooperative control of a nonuniform gantry crane with constrained tension
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.12.026
– ident: ref_12
  doi: 10.1109/ICEPDS.2018.8571596
– ident: ref_37
  doi: 10.1109/ICAMechS49982.2020.9310150
– ident: ref_34
  doi: 10.1109/ICCMA46720.2019.8988758
– volume: 2019
  start-page: 8370
  year: 2019
  ident: ref_33
  article-title: Anti-shake positioning algorithm of bridge crane based on phase plane analysis
  publication-title: J. Eng.
– ident: ref_23
  doi: 10.23919/ChiCC.2019.8865222
– ident: ref_32
  doi: 10.1109/ICoSC.2018.8587775
– ident: ref_39
  doi: 10.1109/JSEN.2020.3003826
– volume: 9
  start-page: 1893
  year: 2015
  ident: ref_16
  article-title: Enhanced damping-based anti-swing control method for underactuated overhead cranes
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2014.1353
– volume: 64
  start-page: 6775
  year: 2017
  ident: ref_20
  article-title: Sliding-Mode-Control-Based Robust Finite-Time Antisway Tracking Control of 3-D Overhead Cranes
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2701760
– ident: ref_35
  doi: 10.3390/app8091463
– volume: 14
  start-page: 1297
  year: 2016
  ident: ref_14
  article-title: Nonlinear Energy-Based Regulation Control of Three-Dimensional Overhead Cranes
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2016.2542105
– volume: 61
  start-page: 4126
  year: 2013
  ident: ref_19
  article-title: Adaptive Control of a Flexible Crane System With the Boundary Output Constraint
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2288200
SSID ssj0000913848
Score 2.265211
Snippet A crane system often works in a complex environment. It is difficult to model or learn its true dynamics by traditional system identification approaches. If a...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 177
SubjectTerms Algorithms
anti-sway
Artificial intelligence
Bridges
Control algorithms
Control systems design
Controllers
Cranes
Cranes & hoists
data-driven approach
Dynamics
Iterative methods
Machine learning
Mathematical models
Methods
Optimal control
Optimization
Ordinary differential equations
Parameters
Performance prediction
performance-driven model predictive control
Prediction models
Predictive control
Proportional integral derivative
Robots
Robust control
System identification
Systems stability
Two dimensional models
underactuated bridge crane
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMMDAG1EoyAMDSyCNnTiZUFuoGKCqxEPdIsd2ClJfJIHfz52btjwEC1KGKHaiKGff3Xe5-46QUzdQacr8OsASljqcK99JEo05YjIITeBKbWO6T7ei0wl7vahbBtzyMq1yphOtotZjhTHyCzDN4Jkg1rycvDrYNQr_rpYtNJbJCrIk1G3q3v08xoKclyEPp4w-DND9xdBmKJo8AkepLsQXY2Q5-3-oZGtn2pv_fcMtslF6mLQxXRLbZMmMdsj6J97BXdJs0O6iYMC5ylDl0btuizYGfXhk8TykMEptUySJJSbgl9Kmre2iLbBuJt8jj-3rh9aNUzZTcBTokMLRYOqVAjAXBtoz3NduGrBAmpRLKQ04AdoTiinp-oaJ1GciASTkSR-2vAZD6rF9UhmNR-aAUNBLqahHXMIBwg0iFirjwwnS2wnhVsn57KvGqmQax4YXgxgQB4oh_iaGKjmb3zCZkmz8PrWJYppPQ3Zse2Gc9eNys8VIK688RG6p5rAUQ641D5RhoZQ64V6V1GYSjMstm8cL8R3-PXxE1jxMbLFZgDVSKbI3c0xW1XvxkmcndgV-ADt65Sg
  priority: 102
  providerName: ProQuest
Title A Performance-Driven MPC Algorithm for Underactuated Bridge Cranes
URI https://www.proquest.com/docview/2565331016
https://doaj.org/article/0298c21617fd4ff384dd46ce38aadb42
Volume 9
WOSCitedRecordID wos000690509100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2075-1702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913848
  issn: 2075-1702
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPehB_MTpHDl48FLXNWnSHte5oeBG8Yt5KmmSqrAPWadH_3Zf0m5ORbwIpZQmTct7zXvvF15-D6ETl8ksI34TYAnJHEql76SpMjliggWauULZNd37K97vB4NBGC-V-jI5YQU9cCG4hqEIl56JwjNFYdiAKkWZ1CQQQqXUWl-Xh0tgytrgsAk9g4LLhwCub4xsbqLOQwiRmpx_cUOWrf-HMbYepruFNsvQELeKT9pGK3q8gzaWCAN3UdTC8Wemv3M-NbYK9-I2bg0fJ4Dzn0YYWrGtZiTM3hAIKHFkN2XhNrglne-hu27ntn3hlFUQHAmTf-Yo8NFSAgoLmPI09ZWbMcKEzqgQQoP3Vh6XRArX14RnPuEpQBhP-DBXFXhAj-yjyngy1gcIg0HJeDOkAg7QCgtJILUPF4aXjnO3is7mQklkSRFuKlUME4AKRorJNylW0enigZeCHeP3rpGR8qKbobW2N0DZSans5C9lV1FtrqOknGt5AkEbxKxmFeLwP95xhNY9k7dik_xqqDKbvupjtCbfZs_5tI5Wo04_vq7b361uMkVvzPm9Ay3xZS9--AC6g90g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hqFR6KIWCugWKD1TqJSVrO3FyqNDuUgRiWa1UqLilXtsBJPbBZqHqn-pvZMabLKWI3jhUyiGKnYMzn-fhzHwDsB3GJs9FVMewROSBlCYKej1LOWI6TlwcauvPdL-3VaeTnJ2l3Tn4XdXCUFplpRO9orZDQ2fkO2ia0TOhWHN3dB1Q1yj6u1q10JjC4sj9-okhW_HlcA_l-5Hz_a8nrYOg7CoQGNxMk8CizTMGo5okttzJyIZ5LGLtcqm1dmgNLVdGGB1GTqg8EqqHIQHXEWLfokUhogNU-QvoRvDUpwp-m53pEMdmIpMpg5AQabjT9xmRrkjRMasr9cD4-R4Bj0yAt2v7S__bF3kDr0sPmjWmkF-GOTdYgVd_8Cq-hWaDde8LIoK9Mal0dtxtscbVOS5hctFnOMp80ydNJTTod7Omr11jLbTerliF02dZxBrMD4YD9w4Y6t1c1VOp8ULwxqlIjIvwhuj7lApr8LmSYmZKJnVq6HGVYURFYs_-EnsNPs1eGE1JRJ6e2iRYzKYR-7d_MByfZ6UyyYg233CKTHMrcasl0loZGycSrW1P8hpsVIjJSpVUZPdwef_v4S14eXBy3M7ah52jdVjklMTjMx43YH4yvnGb8MLcTi6L8QePfgY_nhtcdwwcQtw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VaYXgABSoGiiwhyJxMXV21177gFAejYjaRj4AKiez2UeL1CYlDlT9a_w6ZjZ2ykNw6wHJB8u7Pqz3m9d65huA3Tg13oukg2GJ8JGUJokmE0s5YjrNXBprG850Pxyq8Tg7Ps6LNfje1MJQWmWjE4OitjNDZ-R7aJrRMwm5Wb5OiygGwzcXXyLqIEV_Wpt2GkuIHLirSwzfqtejAe71C86H--_6b6O6w0BkULAWkUX7ZwxGOFlquZOJjX0qUu281Fo7tIyWKyOMjhMnlE-EmmB4wHWCcmDRuhDpAar_dXTJJW_BejE6Kj6uTniIcTOT2ZJPSIg83jsP-ZGuytFN6yj1iykMHQP-MAjByg3v_c_f5z7crX1r1l0KwyasuekDuPMT4-JD6HVZcV0qEQ3mpOzZUdFn3bMTXMLi9JzhKAvtoDQV16BHznqhqo310a676hG8v5FFbEFrOpu6bWCokb3q5FLjhbBOc5EZl-ANEfspFbfhVbOjpak51qnVx1mJsRZBoPwNAm14uXrhYkkv8vepPYLIahrxgocHs_lJWauZkgj1DaeY1VuJQphJa2VqnMi0thPJ27DToKeslVVVXkPn8b-Hn8MtxFR5OBofPIHbnLJ7QirkDrQW86_uKWyYb4vP1fxZLQoMPt00un4ALJlNEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Performance-Driven+MPC+Algorithm+for+Underactuated+Bridge+Cranes&rft.jtitle=Machines+%28Basel%29&rft.au=Hanqiu+Bao&rft.au=Qi+Kang&rft.au=Jing+An&rft.au=Xianghua+Ma&rft.date=2021-08-01&rft.pub=MDPI+AG&rft.eissn=2075-1702&rft.volume=9&rft.issue=8&rft.spage=177&rft_id=info:doi/10.3390%2Fmachines9080177&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0298c21617fd4ff384dd46ce38aadb42
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-1702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-1702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-1702&client=summon