Diagnosis of Alzheimer’s Disease with Extreme Learning Machine on Whole-Brain Functional Connectivity
The analysis of human brain fMRI subjects can research neuro-related diseases and explore the related rules of human brain activity. In this paper, we proposed an algorithm framework to analyze the functional connectivity network of the whole brain and to distinguish Alzheimer’s disease (AD), mild c...
Saved in:
| Published in: | Concepts in magnetic resonance. Part B, Magnetic resonance engineering Vol. 2022; pp. 1 - 14 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hindawi
19.05.2022
John Wiley & Sons, Inc |
| Subjects: | |
| ISSN: | 1552-5031, 1552-504X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The analysis of human brain fMRI subjects can research neuro-related diseases and explore the related rules of human brain activity. In this paper, we proposed an algorithm framework to analyze the functional connectivity network of the whole brain and to distinguish Alzheimer’s disease (AD), mild cognitive impairment (MCI), and cognitively normal (CN). In other studies, they use algorithms to select features or extract abstract features, or even manually select features based on prior information. Then, a classifier is constructed to classify the selected features. We designed a concise algorithm framework that uses whole-brain functional connectivity for classification without feature selection. The algorithm framework is a two-hidden-layer neural network based on extreme learning machine (ELM), which overcomes the instability of classical ELM in high-dimensional data scenarios. We use this method to conduct experiments for AD, MCI, and CN data and perform 10-fold cross-validation. We found that it has several advantages: (1) the proposed method has excellent classification accuracy with high speed. The classification accuracy of AD vs. CN is 96.85%, and the accuracy of MCI vs. CN is 95.05%. Their AUC (area under curve) of ROC (receiver operating characteristic curve) reached 0.9891 and 0.9888, respectively. Their sensitivities are 97.1% and 94.7%, and specificities are 96.3% and 95.3%, respectively. (2) Compared with other studies, the proposed method is concise. Construction of a two-hidden-layer neural network is to learn features of the whole brain for the diagnosis of AD and MCI, without the feature screening. It avoids the negative effects of feature screening by algorithm or prior information. (3) The proposed method is suitable for small sample and high-dimensional data. It meets the requirements of medical image analysis. In other studies, its classifiers usually deal with several to dozens of feature dimensions. The proposed method deals with 4005 feature dimensions. |
|---|---|
| AbstractList | The analysis of human brain fMRI subjects can research neuro-related diseases and explore the related rules of human brain activity. In this paper, we proposed an algorithm framework to analyze the functional connectivity network of the whole brain and to distinguish Alzheimer’s disease (AD), mild cognitive impairment (MCI), and cognitively normal (CN). In other studies, they use algorithms to select features or extract abstract features, or even manually select features based on prior information. Then, a classifier is constructed to classify the selected features. We designed a concise algorithm framework that uses whole-brain functional connectivity for classification without feature selection. The algorithm framework is a two-hidden-layer neural network based on extreme learning machine (ELM), which overcomes the instability of classical ELM in high-dimensional data scenarios. We use this method to conduct experiments for AD, MCI, and CN data and perform 10-fold cross-validation. We found that it has several advantages: (1) the proposed method has excellent classification accuracy with high speed. The classification accuracy of AD vs. CN is 96.85%, and the accuracy of MCI vs. CN is 95.05%. Their AUC (area under curve) of ROC (receiver operating characteristic curve) reached 0.9891 and 0.9888, respectively. Their sensitivities are 97.1% and 94.7%, and specificities are 96.3% and 95.3%, respectively. (2) Compared with other studies, the proposed method is concise. Construction of a two-hidden-layer neural network is to learn features of the whole brain for the diagnosis of AD and MCI, without the feature screening. It avoids the negative effects of feature screening by algorithm or prior information. (3) The proposed method is suitable for small sample and high-dimensional data. It meets the requirements of medical image analysis. In other studies, its classifiers usually deal with several to dozens of feature dimensions. The proposed method deals with 4005 feature dimensions. |
| Audience | Academic |
| Author | Lu, Jia Zeng, Weiming Zhang, Lu Shi, Yuhu |
| Author_xml | – sequence: 1 givenname: Jia orcidid: 0000-0002-2461-8935 surname: Lu fullname: Lu, Jia organization: Laboratory of Digital Image and Intelligent ComputationShanghai Maritime University1550 Harbor AvenuePudongShanghai 201306Chinashmtu.edu.cn – sequence: 2 givenname: Weiming orcidid: 0000-0002-9035-8078 surname: Zeng fullname: Zeng, Weiming organization: Laboratory of Digital Image and Intelligent ComputationShanghai Maritime University1550 Harbor AvenuePudongShanghai 201306Chinashmtu.edu.cn – sequence: 3 givenname: Lu orcidid: 0000-0003-4573-9530 surname: Zhang fullname: Zhang, Lu organization: Basic Experiment and Training CenterShanghai Maritime University1550 Harbor AvenuePudongShanghai 201306Chinashmtu.edu.cn – sequence: 4 givenname: Yuhu orcidid: 0000-0002-4009-2849 surname: Shi fullname: Shi, Yuhu organization: College of Information EngineeringShanghai Maritime University1550 Harbor AvenuePudongShanghai 201306Chinashmtu.edu.cn |
| BookMark | eNp9kctKxDAUhoMoeN35AAGXWk3StJ0uxxlvMOJG0V1J05OZI20iSb2ufA1fzycxw4igqGSR5PB9B87518mydRYI2eZsn_MsOxBMiAPOZJHzfImsxZJIMiZvlr_eKV8l6yHcMiYGZc7WyHSMampdwECdocP2ZQbYgX9_fQt0jAFUAPqI_YwePfUeOqATUN6indJzpWdogTpLr2euheTQK7T0-N7qHp1VLR05ayF-HrB_3iQrRrUBtj7vDXJ1fHQ5Ok0mFydno-Ek0WmR90mTCaibWqdpmQ4yNmBSgWhMUee15lLUAy5NmQrTgFIpK1ijpQHBRS0ZF5I36QbZWfSdqhYqtMb1XukOg66GBZdc8FKWkdr_hYqngQ51XKrBWP8miIWgvQvBg6k09mo-ZxSxrTir5glU8wSqzwSitPdDuvPYKf_8F767wONaG_WI_9MfEnOV5A |
| CitedBy_id | crossref_primary_10_1016_j_ijleo_2022_170212 crossref_primary_10_3389_fmed_2024_1412592 crossref_primary_10_7717_peerj_cs_2302 crossref_primary_10_1016_j_eswa_2024_124780 |
| Cites_doi | 10.1002/hbm.22156 10.1002/hbm.22353 10.1109/IJCNN.2004.1380068 10.1109/TCYB.2015.2512852 10.1006/nimg.2001.0978 10.1016/j.neucom.2007.10.008 10.1007/s13042-011-0019-y 10.1155/2020/8813738 10.1109/tsmcb.2011.2168604 10.1371/journal.pone.0212582 10.1016/j.neucom.2007.02.009 10.1016/j.neuroimage.2009.10.003 10.1109/tgrs.2014.2335751 10.1159/000354370 10.1016/j.neunet.2012.04.002 10.1016/j.clinph.2015.02.060 10.1109/72.655045 10.1016/j.neucom.2005.12.126 10.3389/fninf.2018.00060 10.1016/j.jalz.2018.02.001 10.1109/TCYB.2016.2533424 10.1001/archneur.58.3.397 10.3389/fnins.2021.605115 10.1007/s12559-019-09688-2 10.1016/j.neunet.2016.12.002 10.1016/j.neunet.2015.04.002 10.1001/archneurol.2009.266 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Jia Lu et al. COPYRIGHT 2022 John Wiley & Sons, Inc. |
| Copyright_xml | – notice: Copyright © 2022 Jia Lu et al. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. |
| DBID | RHU RHW RHX AAYXX CITATION |
| DOI | 10.1155/2022/1047616 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1552-504X |
| Editor | Leupold, Jochen |
| Editor_xml | – sequence: 1 givenname: Jochen surname: Leupold fullname: Leupold, Jochen |
| EndPage | 14 |
| ExternalDocumentID | A714121949 10_1155_2022_1047616 |
| GrantInformation_xml | – fundername: Shanghai Sailing Program grantid: 19YF1419000 – fundername: National Natural Science Foundation of China grantid: 31870979; 61906117 |
| GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OC 33P 4.4 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 5GY 5VS 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAJEY AAONW AAZKR ABCQN ABEML ABIJN ACGFS ACIWK ACMXC ACSCC ADBBV ADEOM ADIZJ AEIMD AEUQT AFBPY AFPWT AFZJQ ALMA_UNASSIGNED_HOLDINGS AMBMR ATUGU AZBYB AZVAB BAFTC BHBCM BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 EBS F00 F01 F04 F5P G-S GNP GODZA GROUPED_DOAJ H.X HBH HHZ HZ~ IAO ICD IX1 J0M KQQ LAW LC2 LC3 LITHE LOXES LP6 LP7 LUTES MK4 MSFUL MSMAN MSSTM N04 N05 NF~ O66 O9- OK1 P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 RHU RHW RHX RWI RYL SUPJJ UB1 W8V W99 WBKPD WHWMO WIH WIJ WJL WOHZO WQJ WRC WVDHM WXI XG1 XHW XV2 ~WT 24P AAYXX ACCMX CITATION ITC O8X |
| ID | FETCH-LOGICAL-c376t-d52ebdbc3393850804ae2df7b6bc142b814f932fdeaa3070dc4fe212b401241d3 |
| IEDL.DBID | RHX |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805121800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1552-5031 |
| IngestDate | Sat Nov 29 13:53:24 EST 2025 Sat Nov 29 10:32:52 EST 2025 Sat Nov 29 03:43:46 EST 2025 Tue Nov 18 21:51:55 EST 2025 Sun Jun 02 19:21:13 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c376t-d52ebdbc3393850804ae2df7b6bc142b814f932fdeaa3070dc4fe212b401241d3 |
| ORCID | 0000-0002-4009-2849 0000-0002-2461-8935 0000-0002-9035-8078 0000-0003-4573-9530 |
| OpenAccessLink | https://dx.doi.org/10.1155/2022/1047616 |
| PageCount | 14 |
| ParticipantIDs | gale_infotracmisc_A714121949 gale_infotracacademiconefile_A714121949 crossref_citationtrail_10_1155_2022_1047616 crossref_primary_10_1155_2022_1047616 hindawi_primary_10_1155_2022_1047616 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-19 |
| PublicationDateYYYYMMDD | 2022-05-19 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | Concepts in magnetic resonance. Part B, Magnetic resonance engineering |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | 22 23 24 25 26 27 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
| References_xml | – ident: 14 doi: 10.1002/hbm.22156 – ident: 15 doi: 10.1002/hbm.22353 – ident: 5 doi: 10.1109/IJCNN.2004.1380068 – ident: 8 doi: 10.1109/TCYB.2015.2512852 – ident: 22 doi: 10.1006/nimg.2001.0978 – ident: 25 doi: 10.1016/j.neucom.2007.10.008 – ident: 24 doi: 10.1007/s13042-011-0019-y – ident: 19 doi: 10.1155/2020/8813738 – ident: 10 doi: 10.1109/tsmcb.2011.2168604 – ident: 17 doi: 10.1371/journal.pone.0212582 – ident: 9 doi: 10.1016/j.neucom.2007.02.009 – ident: 21 doi: 10.1016/j.neuroimage.2009.10.003 – ident: 13 doi: 10.1109/tgrs.2014.2335751 – ident: 4 doi: 10.1159/000354370 – ident: 11 doi: 10.1016/j.neunet.2012.04.002 – ident: 16 doi: 10.1016/j.clinph.2015.02.060 – ident: 23 doi: 10.1109/72.655045 – ident: 26 doi: 10.1016/j.neucom.2005.12.126 – ident: 27 doi: 10.3389/fninf.2018.00060 – ident: 1 doi: 10.1016/j.jalz.2018.02.001 – ident: 7 doi: 10.1109/TCYB.2016.2533424 – ident: 2 doi: 10.1001/archneur.58.3.397 – ident: 20 doi: 10.3389/fnins.2021.605115 – ident: 18 doi: 10.1007/s12559-019-09688-2 – ident: 12 doi: 10.1016/j.neunet.2016.12.002 – ident: 6 doi: 10.1016/j.neunet.2015.04.002 – ident: 3 doi: 10.1001/archneurol.2009.266 |
| SSID | ssj0028960 |
| Score | 2.2807055 |
| Snippet | The analysis of human brain fMRI subjects can research neuro-related diseases and explore the related rules of human brain activity. In this paper, we proposed... |
| SourceID | gale crossref hindawi |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Advertising executives Algorithms Alzheimer's disease Brain Medical imaging equipment Medical research Medicine, Experimental Neural networks |
| Title | Diagnosis of Alzheimer’s Disease with Extreme Learning Machine on Whole-Brain Functional Connectivity |
| URI | https://dx.doi.org/10.1155/2022/1047616 |
| Volume | 2022 |
| WOSCitedRecordID | wos000805121800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1552-504X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028960 issn: 1552-5031 databaseCode: 24P dateStart: 20190101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5sUfAiPrFaSw4VD7LYbJPt7rHall6UIoq9Ldk8tFBb6dYHnvwb_j1_iZndtFhF8bjs7IPJJF--ZPINQFVwJB2Ke8rCnccaCfNCwYVXC4zh2q8jJGfFJhoXF2G_H_WcSFL6cwvfoh3Sc_8EFQUCGhSgEHIM3stuf86rwig_DMy55VU2SGf57d-eXUAeN_6u3CHzfR58wZTOOqy5ySBp5q23AUt6tAkrWVKmTLfgtpXnwQ1SMjakOXy904N7Pfl4e09JK99YIbiOStovU1zmI04s9ZacZymSmoxH5AYL4HqnWAmCdCyI5Wt_JEtwkXnpiG247rSvzrqeK4zgSTseTD3FfZ2oRFpP1kM7w6oxoX1lGkmQSMr8JKTM2HmZUVoI7NNKMqMtRiWWTFnEVvUdKI7GI70LpMYVKgIGkTKKyYAKKrRJQiGpZFSoWgmOZ06LpVMNx-IVwzhjD5zH6OLYubgEh3Prh1wt4xe7I_R_jJ3Ivk0KdxbA_hPKUcXNBmXUjqUsKkF5wdIGv1y4XXUt-Of39v5ntg-reInJATQqQ3E6edQHsCyfpoN0UoGCz3qVLPQ-Adf3z7A |
| linkProvider | Hindawi Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+Alzheimer%E2%80%99s+Disease+with+Extreme+Learning+Machine+on+Whole-Brain+Functional+Connectivity&rft.jtitle=Concepts+in+magnetic+resonance.+Part+B%2C+Magnetic+resonance+engineering&rft.au=Lu%2C+Jia&rft.au=Zeng%2C+Weiming&rft.au=Zhang%2C+Lu&rft.au=Shi%2C+Yuhu&rft.date=2022-05-19&rft.pub=Hindawi&rft.issn=1552-5031&rft.eissn=1552-504X&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F1047616&rft.externalDocID=10_1155_2022_1047616 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5031&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5031&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5031&client=summon |