A synchronization methodology for 3D offshore wind farm layout optimization with multi-type wind turbines and obstacle-avoiding cable network
Offshore wind farms are increasingly becoming the focus of clean sources market because of the huge energy potential and fast-maturing technology. The existing researches normally optimize the wind turbine layout and two-dimensional cable routing independently. This work focuses on the synchronizati...
Uloženo v:
| Vydáno v: | Renewable energy Ročník 185; s. 302 - 320 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.02.2022
|
| Témata: | |
| ISSN: | 0960-1481, 1879-0682, 1879-0682 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Offshore wind farms are increasingly becoming the focus of clean sources market because of the huge energy potential and fast-maturing technology. The existing researches normally optimize the wind turbine layout and two-dimensional cable routing independently. This work focuses on the synchronization optimization of site selection of the offshore wind farm, three-dimensional wind turbine layout and three-dimensional cable network routing based on meta-heuristic algorithms and geographic information systems. Several practical issues, i.e., restricted areas, power generation, cable network and energy loss, are taken into consideration. A two-layer model is proposed. The outer layer model is for the site selection and the wind turbine layout optimization. The inner layer model is for the obstacle-avoiding cable routing optimization. In this stage, the seabed terrain is considered for the first time. The proposed integrated model is complex and non-convex. Thus, a hybrid method including an improved ant colony optimization combined with genetic algorithm, dual-simplex method and Kruskal algorithm is proposed to search the solution more efficiently. The initialization stage of the hybrid method is improved from random assignment to directional assignment. The directional solution is obtained by the widely used genetic algorithm. A case study based on a real offshore wind farm is established to prove the effectiveness of the proposed methodology. The results show an over one million dollars increase in annual benefit compared with conventional methods. |
|---|---|
| AbstractList | Offshore wind farms are increasingly becoming the focus of clean sources market because of the huge energy potential and fast-maturing technology. The existing researches normally optimize the wind turbine layout and two-dimensional cable routing independently. This work focuses on the synchronization optimization of site selection of the offshore wind farm, three-dimensional wind turbine layout and three-dimensional cable network routing based on meta-heuristic algorithms and geographic information systems. Several practical issues, i.e., restricted areas, power generation, cable network and energy loss, are taken into consideration. A two-layer model is proposed. The outer layer model is for the site selection and the wind turbine layout optimization. The inner layer model is for the obstacle-avoiding cable routing optimization. In this stage, the seabed terrain is considered for the first time. The proposed integrated model is complex and non-convex. Thus, a hybrid method including an improved ant colony optimization combined with genetic algorithm, dual-simplex method and Kruskal algorithm is proposed to search the solution more efficiently. The initialization stage of the hybrid method is improved from random assignment to directional assignment. The directional solution is obtained by the widely used genetic algorithm. A case study based on a real offshore wind farm is established to prove the effectiveness of the proposed methodology. The results show an over one million dollars increase in annual benefit compared with conventional methods. |
| Author | Wang, Yufei Shibasaki, Ryosuke Feng, Xiao Song, Xuan Zhang, Haoran Wu, Yan Xia, Tianqi |
| Author_xml | – sequence: 1 givenname: Yan surname: Wu fullname: Wu, Yan organization: School of Chemical Engineering and Environment, China University of Petroleum (Beijing), 18 Fuxue Road, Changping, Beijing, 102249, China – sequence: 2 givenname: Tianqi surname: Xia fullname: Xia, Tianqi organization: Center for Spatial Information Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8568, Japan – sequence: 3 givenname: Yufei surname: Wang fullname: Wang, Yufei email: wangyufei@cup.edu.cn, yufei-wang@outlook.com organization: School of Chemical Engineering and Environment, China University of Petroleum (Beijing), 18 Fuxue Road, Changping, Beijing, 102249, China – sequence: 4 givenname: Haoran surname: Zhang fullname: Zhang, Haoran organization: Center for Spatial Information Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8568, Japan – sequence: 5 givenname: Xiao surname: Feng fullname: Feng, Xiao organization: School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, China – sequence: 6 givenname: Xuan surname: Song fullname: Song, Xuan organization: SUSTech-UTokyo Joint Research Center on Super Smart City, Department of Computer Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China – sequence: 7 givenname: Ryosuke surname: Shibasaki fullname: Shibasaki, Ryosuke organization: Center for Spatial Information Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8568, Japan |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-56875$$DView record from Swedish Publication Index (Mälardalens högskola) |
| BookMark | eNqFkc9u1DAQhy1UJLaFN-DgIwcS7PyxsxyQVm0pSJW4AFfLdiYbL4kn2E5Xyzvwzk1Je-EAsjTWSN83Gs3vnJx59EDIa85yzrh4d8gD-OXlBSt4zouc1fIZ2fBGbjMmmuKMbNhWsIxXDX9BzmM8MMbrRlYb8ntH48nbPqB3v3Ry6OkIqccWB9yfaIeBllcUuy72GIAenW9pp8NIB33COVGckhufzKNLPR3nIbksnaZHOs3BOA-R6qVBE5O2A2T6Dl3r_J5abQagHtIRw4-X5HmnhwivHv8L8u3j9dfLT9ntl5vPl7vbzJZSpKU2UIDmdVmUYgum7ipTN9qaWkomu4q1tta2MtJwkDVnlW61MK0pQHButrq8IG_XufEI02zUFNyow0mhdurKfd8pDHs1tr2qRSPrBX-z4lPAnzPEpEYXLQyD9oBzVIUoRcUlL_mCvl9RGzDGAJ2yLv25TgraDYoz9RCZOqg1MvUQmeKFWiJb5Oov-Wmx_2gfVg2Wk905CCpaB95C6wLYpFp0_x5wD63luZ0 |
| CitedBy_id | crossref_primary_10_1016_j_energy_2024_132443 crossref_primary_10_1063_5_0273125 crossref_primary_10_1016_j_oceaneng_2024_117244 crossref_primary_10_1016_j_renene_2025_123775 crossref_primary_10_1016_j_apenergy_2024_125105 crossref_primary_10_3390_en17010151 crossref_primary_10_1016_j_segan_2024_101447 crossref_primary_10_1016_j_compchemeng_2025_109346 crossref_primary_10_3389_fmars_2022_1028732 crossref_primary_10_1016_j_apenergy_2023_121546 crossref_primary_10_1088_1742_6596_2767_8_082021 crossref_primary_10_3390_jmse11061171 crossref_primary_10_1002_we_2960 |
| Cites_doi | 10.1016/j.enconman.2019.04.059 10.1016/S0376-0421(03)00078-2 10.1109/TPWRS.2016.2521700 10.1016/j.renene.2016.12.022 10.1175/JTECH-D-14-00199.1 10.1016/j.apenergy.2020.114716 10.1260/0309-524X.33.3.287 10.1016/j.renene.2012.12.007 10.1007/s40565-019-0550-5 10.1016/0167-6105(95)00033-X 10.1016/j.apenergy.2018.07.051 10.1016/j.apenergy.2019.114189 10.1016/j.jweia.2015.01.018 10.1016/j.apenergy.2016.08.094 10.1016/j.rser.2015.12.229 10.1016/j.oceaneng.2019.106616 10.1016/j.renene.2017.01.064 10.1016/j.renene.2011.12.013 10.1080/0305215X.2014.992892 10.1016/j.apenergy.2016.11.083 10.1016/j.renene.2014.01.002 10.1016/j.apenergy.2018.06.150 10.1016/j.cie.2018.04.051 10.1109/TSTE.2015.2429912 10.1016/j.energy.2016.11.027 10.1016/j.marpol.2019.103803 10.1016/j.renene.2019.09.100 10.1109/TSTE.2012.2185817 10.1007/s10479-017-2581-5 10.1016/j.renene.2019.07.002 10.1016/j.apenergy.2019.113719 10.1016/j.enconman.2020.112593 10.1016/j.rser.2012.06.014 10.1016/j.apenergy.2017.05.071 10.1016/j.renene.2015.07.100 10.1016/j.energy.2019.07.019 10.1002/we.2077 10.1016/j.renene.2016.10.038 10.1016/j.renene.2012.12.005 10.1016/j.renene.2009.08.019 10.1162/106454699568728 10.1016/j.enconman.2013.02.007 10.1260/030952407780811401 10.1002/we.189 10.1016/j.ejor.2017.07.061 10.1016/j.renene.2013.09.004 10.1002/we.1792 10.1016/j.enconman.2015.11.002 10.1016/j.renene.2018.03.052 10.1016/j.apenergy.2018.05.085 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 ADTPV AOWAS DF7 |
| DOI | 10.1016/j.renene.2021.12.057 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Mälardalens högskola |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0682 |
| EndPage | 320 |
| ExternalDocumentID | oai_DiVA_org_mdh_56875 10_1016_j_renene_2021_12_057 S096014812101778X |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 ADTPV AOWAS DF7 |
| ID | FETCH-LOGICAL-c376t-c38e2ea1532369eb5f4b58acb57707f40dc5ac4b7b1e75104ada6bdb2e611b9a3 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778545900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-1481 1879-0682 |
| IngestDate | Tue Nov 04 16:17:58 EST 2025 Sun Sep 28 04:23:33 EDT 2025 Sat Nov 29 07:05:53 EST 2025 Tue Nov 18 20:35:48 EST 2025 Fri Feb 23 02:44:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cable network Meta-heuristic algorithms Offshore wind farm Seabed terrain Multi-type wind turbine |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c376t-c38e2ea1532369eb5f4b58acb57707f40dc5ac4b7b1e75104ada6bdb2e611b9a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2636417131 |
| PQPubID | 24069 |
| PageCount | 19 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_mdh_56875 proquest_miscellaneous_2636417131 crossref_citationtrail_10_1016_j_renene_2021_12_057 crossref_primary_10_1016_j_renene_2021_12_057 elsevier_sciencedirect_doi_10_1016_j_renene_2021_12_057 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Renewable energy |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Frandsen, Thøgersen (bib14) 2000 Hou (bib23) 2017; 189 Wu (bib26) 2020; 146 Jiang (bib29) 2019; 193 Hou (bib30) 2019; 7 Kusiak, Song (bib37) 2010; 35 Fischetti, Josef, Borchersen (bib15) 2015 Zhang (bib43) 2017; 119 Archer (bib5) 2018; 226 Klein, Haugland (bib28) 2019; 272 Maienza (bib17) 2020; 266 Srikakulapu, Vinatha (bib38) 2018 Castro-Santos, Lamas-Galdo, Filgueira-Vizoso (bib45) 2020; 113 Dutta, Overbye (bib19) 2012; 3 Bastankhah, Porté-Agel (bib9) 2014; 70 Eroğlu, Seçkiner (bib36) 2012; 44 Rivas (bib39) 2009; 33 Peng, Weihao, Chen (bib20) 2015 Gualtieri (bib53) 2020; 208 Rajper, Amin (bib54) 2012; 16 Dorigo, Maniezzo, Colorni (bib60) 1999 Hou (bib21) 2017; 20 Hou (bib34) 2015; 6 Bansal, Farswan (bib47) 2017; 107 Wang (bib57) 2020; 147 Crespo, Hernández (bib13) 1996; 61 Katic, Højstrup, Jensen (bib46) 1986 Ayodele (bib44) 2018; 228 Li, Özcan, John (bib58) 2017; 105 Pillai (bib22) 2015; 47 Larsen (bib7) 1988 Shakoor (bib31) 2016; 58 Wędzik, Siewierski, Szypowski (bib25) 2016; 182 Fischetti, Pisinger (bib27) 2018; 270 Song (bib16) 2018; 120 Lackner, Elkinton (bib2) 2007; 31 Mittal, Kulkarni, Mitra (bib42) 2016; 86 Jensen (bib6) 1983 Cerveira (bib24) 2016; 31 Jin (bib55) 2019; 254 ABB. XLPE Land Cable Systems User's Guide. Gao (bib33) 2015; 139 Serrano Gonzalez (bib18) 2017; 200 Rehman, Ali, Khan (bib41) 2016; 30 Pookpunt, Ongsakul (bib48) 2013; 55 Yang (bib49) 2019; 183 Pookpunt, Ongsakul (bib35) 2016; 108 Abdulrahman, Wood (bib50) 2017; 102 Chen, Wang, Stelson (bib52) 2018; 228 Chen (bib32) 2013; 70 Salcedo-Sanz (bib40) 2014; 63 Gualtieri (bib51) 2019; 193 Wilson (bib59) 2018; 126 bib62 Dorigo, Di Caro, Gambardella (bib61) 1999; 5 Pérez, Mínguez, Guanche (bib3) 2013; 53 Vermeer, Sørensen, Crespo (bib12) 2003; 39 bib63 Ghaisas, Archer (bib11) 2016; 33 bib64 Brogna (bib4) 2020; 259 Frandsen (bib8) 2006; 9 Joyce, Feng (bib1) 2020 Xie, Archer (bib10) 2015; 18 Srikakulapu (10.1016/j.renene.2021.12.057_bib38) 2018 Hou (10.1016/j.renene.2021.12.057_bib34) 2015; 6 Hou (10.1016/j.renene.2021.12.057_bib23) 2017; 189 Kusiak (10.1016/j.renene.2021.12.057_bib37) 2010; 35 Larsen (10.1016/j.renene.2021.12.057_bib7) 1988 Mittal (10.1016/j.renene.2021.12.057_bib42) 2016; 86 Fischetti (10.1016/j.renene.2021.12.057_bib27) 2018; 270 Serrano Gonzalez (10.1016/j.renene.2021.12.057_bib18) 2017; 200 Xie (10.1016/j.renene.2021.12.057_bib10) 2015; 18 Peng (10.1016/j.renene.2021.12.057_bib20) 2015 Frandsen (10.1016/j.renene.2021.12.057_bib14) 2000 Crespo (10.1016/j.renene.2021.12.057_bib13) 1996; 61 Vermeer (10.1016/j.renene.2021.12.057_bib12) 2003; 39 Eroğlu (10.1016/j.renene.2021.12.057_bib36) 2012; 44 Jin (10.1016/j.renene.2021.12.057_bib55) 2019; 254 Cerveira (10.1016/j.renene.2021.12.057_bib24) 2016; 31 Ghaisas (10.1016/j.renene.2021.12.057_bib11) 2016; 33 Song (10.1016/j.renene.2021.12.057_bib16) 2018; 120 Gao (10.1016/j.renene.2021.12.057_bib33) 2015; 139 Bastankhah (10.1016/j.renene.2021.12.057_bib9) 2014; 70 Zhang (10.1016/j.renene.2021.12.057_bib43) 2017; 119 Dorigo (10.1016/j.renene.2021.12.057_bib61) 1999; 5 Dutta (10.1016/j.renene.2021.12.057_bib19) 2012; 3 Brogna (10.1016/j.renene.2021.12.057_bib4) 2020; 259 Bansal (10.1016/j.renene.2021.12.057_bib47) 2017; 107 Frandsen (10.1016/j.renene.2021.12.057_bib8) 2006; 9 Hou (10.1016/j.renene.2021.12.057_bib30) 2019; 7 Abdulrahman (10.1016/j.renene.2021.12.057_bib50) 2017; 102 Gualtieri (10.1016/j.renene.2021.12.057_bib51) 2019; 193 10.1016/j.renene.2021.12.057_bib56 Li (10.1016/j.renene.2021.12.057_bib58) 2017; 105 Hou (10.1016/j.renene.2021.12.057_bib21) 2017; 20 Jensen (10.1016/j.renene.2021.12.057_bib6) 1983 Gualtieri (10.1016/j.renene.2021.12.057_bib53) 2020; 208 Pillai (10.1016/j.renene.2021.12.057_bib22) 2015; 47 Shakoor (10.1016/j.renene.2021.12.057_bib31) 2016; 58 Chen (10.1016/j.renene.2021.12.057_bib52) 2018; 228 Rivas (10.1016/j.renene.2021.12.057_bib39) 2009; 33 Pérez (10.1016/j.renene.2021.12.057_bib3) 2013; 53 Wu (10.1016/j.renene.2021.12.057_bib26) 2020; 146 Rajper (10.1016/j.renene.2021.12.057_bib54) 2012; 16 Pookpunt (10.1016/j.renene.2021.12.057_bib35) 2016; 108 Katic (10.1016/j.renene.2021.12.057_bib46) 1986 Pookpunt (10.1016/j.renene.2021.12.057_bib48) 2013; 55 Jiang (10.1016/j.renene.2021.12.057_bib29) 2019; 193 Joyce (10.1016/j.renene.2021.12.057_bib1) 2020 Salcedo-Sanz (10.1016/j.renene.2021.12.057_bib40) 2014; 63 Archer (10.1016/j.renene.2021.12.057_bib5) 2018; 226 Maienza (10.1016/j.renene.2021.12.057_bib17) 2020; 266 Wędzik (10.1016/j.renene.2021.12.057_bib25) 2016; 182 Lackner (10.1016/j.renene.2021.12.057_bib2) 2007; 31 Rehman (10.1016/j.renene.2021.12.057_bib41) 2016; 30 Chen (10.1016/j.renene.2021.12.057_bib32) 2013; 70 Ayodele (10.1016/j.renene.2021.12.057_bib44) 2018; 228 Klein (10.1016/j.renene.2021.12.057_bib28) 2019; 272 Wang (10.1016/j.renene.2021.12.057_bib57) 2020; 147 Fischetti (10.1016/j.renene.2021.12.057_bib15) 2015 Castro-Santos (10.1016/j.renene.2021.12.057_bib45) 2020; 113 Dorigo (10.1016/j.renene.2021.12.057_bib60) 1999 Wilson (10.1016/j.renene.2021.12.057_bib59) 2018; 126 Yang (10.1016/j.renene.2021.12.057_bib49) 2019; 183 |
| References_xml | – volume: 39 start-page: 467 year: 2003 end-page: 510 ident: bib12 article-title: Wind turbine wake aerodynamics publication-title: Prog. Aero. Sci. – volume: 31 start-page: 17 year: 2007 end-page: 31 ident: bib2 article-title: An analytical framework for offshore wind farm layout optimization publication-title: Wind Eng. – volume: 147 start-page: 1340 year: 2020 end-page: 1351 ident: bib57 article-title: An optimization method based on random fork tree coding for the electrical networks of offshore wind farms publication-title: Renew. Energy – volume: 126 start-page: 681 year: 2018 end-page: 691 ident: bib59 article-title: Evolutionary computation for wind farm layout optimization publication-title: Renew. Energy – volume: 31 start-page: 4319 year: 2016 end-page: 4329 ident: bib24 article-title: Optimal cable design of wind farms: the infrastructure and losses cost minimization case publication-title: IEEE Trans. Power Syst. – volume: 58 start-page: 1048 year: 2016 end-page: 1059 ident: bib31 article-title: Wake effect modeling: a review of wind farm layout optimization using Jensen׳s model publication-title: Renew. Sustain. Energy Rev. – volume: 108 start-page: 160 year: 2016 end-page: 180 ident: bib35 article-title: Design of optimal wind farm configuration using a binary particle swarm optimization at Huasai district, Southern Thailand publication-title: Energy Convers. Manag. – volume: 30 start-page: 899 year: 2016 end-page: 922 ident: bib41 article-title: Wind farm layout design using cuckoo search algorithms publication-title: Appl. Artif. Intell. – volume: 47 start-page: 1689 year: 2015 end-page: 1708 ident: bib22 article-title: Offshore wind farm electrical cable layout optimization publication-title: Eng. Optim. – year: 2015 ident: bib20 article-title: Offshore substation locating in wind farms based on prim algorithm publication-title: 2015 IEEE Power & Energy Society General Meeting – volume: 105 start-page: 473 year: 2017 end-page: 482 ident: bib58 article-title: Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation publication-title: Renew. Energy – year: 2000 ident: bib14 article-title: Integrated fatigue loading for wind turbines in wind farms publication-title: European Seminar Offshore Wind Energy in Mediterranean and Other European Seas – volume: 120 start-page: 288 year: 2018 end-page: 297 ident: bib16 article-title: Integrated optimization of offshore wind farm layout design and turbine opportunistic condition-based maintenance publication-title: Comput. Ind. Eng. – volume: 266 start-page: 114716 year: 2020 ident: bib17 article-title: A life cycle cost model for floating offshore wind farms publication-title: Appl. Energy – volume: 3 start-page: 339 year: 2012 end-page: 348 ident: bib19 article-title: Optimal wind farm collector system topology design considering total trenching length publication-title: IEEE Trans. Sustain. Energy – reference: ABB. XLPE Land Cable Systems User's Guide. – volume: 44 start-page: 53 year: 2012 end-page: 62 ident: bib36 article-title: Design of wind farm layout using ant colony algorithm publication-title: Renew. Energy – year: 1999 ident: bib60 article-title: Positive feedback as a search strategy publication-title: Tech rep., 91-016, Dip Elettronica, Politecnico di Milano, Italy – volume: 70 start-page: 56 year: 2013 end-page: 65 ident: bib32 article-title: Wind farm layout optimization using genetic algorithm with different hub height wind turbines publication-title: Energy Convers. Manag. – volume: 254 start-page: 113719 year: 2019 ident: bib55 article-title: Cable routing optimization for offshore wind power plants via wind scenarios considering power loss cost model publication-title: Appl. Energy – volume: 193 start-page: 106 year: 2019 end-page: 123 ident: bib51 article-title: A novel method for wind farm layout optimization based on wind turbine selection publication-title: Energy Convers. Manag. – ident: bib62 – year: 2020 ident: bib1 publication-title: Global Wind Report 2019 – volume: 7 start-page: 975 year: 2019 end-page: 986 ident: bib30 article-title: A review of offshore wind farm layout optimization and electrical system design methods publication-title: J. Mod. Power Syst. Clean Energy – volume: 16 start-page: 5485 year: 2012 end-page: 5492 ident: bib54 article-title: Optimization of wind turbine micrositing: a comparative study publication-title: Renew. Sustain. Energy Rev. – volume: 55 start-page: 266 year: 2013 end-page: 276 ident: bib48 article-title: Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients publication-title: Renew. Energy – volume: 5 start-page: 137 year: 1999 end-page: 172 ident: bib61 article-title: Ant algorithms for discrete optimization publication-title: Artif. Life – volume: 86 start-page: 133 year: 2016 end-page: 147 ident: bib42 article-title: A novel hybrid optimization methodology to optimize the total number and placement of wind turbines publication-title: Renew. Energy – volume: 139 start-page: 89 year: 2015 end-page: 99 ident: bib33 article-title: Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore publication-title: J. Wind Eng. Ind. Aerod. – volume: 208 start-page: 112593 year: 2020 ident: bib53 article-title: Comparative analysis and improvement of grid-based wind farm layout optimization publication-title: Energy Convers. Manag. – volume: 33 start-page: 287 year: 2009 end-page: 297 ident: bib39 article-title: Solving the turbine positioning problem for large offshore wind farms by simulated annealing publication-title: Wind Eng. – volume: 193 start-page: 106616 year: 2019 ident: bib29 article-title: A fuzzy evidential reasoning based approach for submarine power cable routing selection for offshore wind farms publication-title: Ocean Eng. – volume: 63 start-page: 109 year: 2014 end-page: 115 ident: bib40 article-title: Offshore wind farm design with the Coral Reefs Optimization algorithm publication-title: Renew. Energy – volume: 200 start-page: 28 year: 2017 end-page: 38 ident: bib18 article-title: Optimal wind-turbine micro-siting of offshore wind farms: a grid-like layout approach publication-title: Appl. Energy – volume: 9 start-page: 39 year: 2006 end-page: 53 ident: bib8 article-title: Analytical modelling of wind speed deficit in large offshore wind farms publication-title: Wind Energy – volume: 228 start-page: 1853 year: 2018 end-page: 1869 ident: bib44 article-title: A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: the case study of Nigeria publication-title: Appl. Energy – volume: 107 start-page: 386 year: 2017 end-page: 402 ident: bib47 article-title: Wind farm layout using biogeography based optimization publication-title: Renew. Energy – volume: 259 start-page: 114189 year: 2020 ident: bib4 article-title: A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain publication-title: Appl. Energy – volume: 272 start-page: 373 year: 2019 end-page: 388 ident: bib28 article-title: Obstacle-aware optimization of offshore wind farm cable layouts publication-title: Ann. Oper. Res. – volume: 35 start-page: 685 year: 2010 end-page: 694 ident: bib37 article-title: Design of wind farm layout for maximum wind energy capture publication-title: Renew. Energy – ident: bib63 – volume: 6 start-page: 1272 year: 2015 end-page: 1282 ident: bib34 article-title: Optimized placement of wind turbines in large-scale offshore wind farm using particle swarm optimization algorithm publication-title: IEEE Trans. Sustain. Energy – year: 2015 ident: bib15 article-title: A Mixed-Integer Linear Programming approach to wind farm layout and inter-array cable routing publication-title: American Control Conference – volume: 18 start-page: 1815 year: 2015 end-page: 1838 ident: bib10 article-title: Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation publication-title: Wind Energy – volume: 102 start-page: 267 year: 2017 end-page: 278 ident: bib50 article-title: Investigating the Power-COE trade-off for wind farm layout optimization considering commercial turbine selection and hub height variation publication-title: Renew. Energy – volume: 146 start-page: 687 year: 2020 end-page: 698 ident: bib26 article-title: A design methodology for wind farm layout considering cable routing and economic benefit based on genetic algorithm and GeoSteiner publication-title: Renew. Energy – volume: 182 start-page: 525 year: 2016 end-page: 538 ident: bib25 article-title: A new method for simultaneous optimizing of wind farm's network layout and cable cross-sections by MILP optimization publication-title: Appl. Energy – year: 1988 ident: bib7 article-title: A Simple Wake Calculation Procedure – volume: 270 start-page: 917 year: 2018 end-page: 930 ident: bib27 article-title: Optimizing wind farm cable routing considering power losses publication-title: Eur. J. Oper. Res. – year: 2018 ident: bib38 article-title: Combined approach based on ACO with MTSP for optimal internal electrical system design of large offshore wind farm publication-title: 2018 International Conference on Power, Instrumentation, Control and Computing – volume: 228 start-page: 1413 year: 2018 end-page: 1422 ident: bib52 article-title: A mathematical approach to minimizing the cost of energy for large utility wind turbines publication-title: Appl. Energy – year: 1986 ident: bib46 article-title: A simple model for cluster efficiency publication-title: European Wind Energy Association Conference and Exhibition – volume: 113 start-page: 103803 year: 2020 ident: bib45 article-title: Managing the oceans: site selection of a floating offshore wind farm based on GIS spatial analysis publication-title: Mar. Pol. – volume: 226 start-page: 1187 year: 2018 end-page: 1207 ident: bib5 article-title: Review and evaluation of wake loss models for wind energy applications publication-title: Appl. Energy – volume: 33 start-page: 481 year: 2016 end-page: 501 ident: bib11 article-title: Geometry-based models for studying the effects of wind farm layout publication-title: J. Atmos. Ocean. Technol. – ident: bib64 – volume: 53 start-page: 389 year: 2013 end-page: 399 ident: bib3 article-title: Offshore wind farm layout optimization using mathematical programming techniques publication-title: Renew. Energy – volume: 189 start-page: 271 year: 2017 end-page: 282 ident: bib23 article-title: Combined optimization for offshore wind turbine micro siting publication-title: Appl. Energy – volume: 183 start-page: 983 year: 2019 end-page: 995 ident: bib49 article-title: Wind farm layout optimization for wake effect uniformity publication-title: Energy – volume: 61 start-page: 71 year: 1996 end-page: 85 ident: bib13 article-title: Turbulence characteristics in wind-turbine wakes publication-title: J. Wind Eng. Ind. Aerod. – volume: 70 start-page: 116 year: 2014 end-page: 123 ident: bib9 article-title: A new analytical model for wind-turbine wakes publication-title: Renew. Energy – year: 1983 ident: bib6 article-title: A Note on Wind Generator Interaction – volume: 119 start-page: 612 year: 2017 end-page: 628 ident: bib43 article-title: A hybrid computational approach for detailed scheduling of products in a pipeline with multiple pump stations publication-title: Energy – volume: 20 start-page: 1017 year: 2017 end-page: 1032 ident: bib21 article-title: Overall optimization for offshore wind farm electrical system publication-title: Wind Energy – volume: 193 start-page: 106 year: 2019 ident: 10.1016/j.renene.2021.12.057_bib51 article-title: A novel method for wind farm layout optimization based on wind turbine selection publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.04.059 – volume: 39 start-page: 467 issue: 6 year: 2003 ident: 10.1016/j.renene.2021.12.057_bib12 article-title: Wind turbine wake aerodynamics publication-title: Prog. Aero. Sci. doi: 10.1016/S0376-0421(03)00078-2 – volume: 31 start-page: 4319 issue: 6 year: 2016 ident: 10.1016/j.renene.2021.12.057_bib24 article-title: Optimal cable design of wind farms: the infrastructure and losses cost minimization case publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2016.2521700 – volume: 105 start-page: 473 year: 2017 ident: 10.1016/j.renene.2021.12.057_bib58 article-title: Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation publication-title: Renew. Energy doi: 10.1016/j.renene.2016.12.022 – year: 1999 ident: 10.1016/j.renene.2021.12.057_bib60 article-title: Positive feedback as a search strategy – volume: 33 start-page: 481 issue: 3 year: 2016 ident: 10.1016/j.renene.2021.12.057_bib11 article-title: Geometry-based models for studying the effects of wind farm layout publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-14-00199.1 – volume: 266 start-page: 114716 year: 2020 ident: 10.1016/j.renene.2021.12.057_bib17 article-title: A life cycle cost model for floating offshore wind farms publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114716 – volume: 33 start-page: 287 issue: 3 year: 2009 ident: 10.1016/j.renene.2021.12.057_bib39 article-title: Solving the turbine positioning problem for large offshore wind farms by simulated annealing publication-title: Wind Eng. doi: 10.1260/0309-524X.33.3.287 – volume: 53 start-page: 389 year: 2013 ident: 10.1016/j.renene.2021.12.057_bib3 article-title: Offshore wind farm layout optimization using mathematical programming techniques publication-title: Renew. Energy doi: 10.1016/j.renene.2012.12.007 – volume: 7 start-page: 975 issue: 5 year: 2019 ident: 10.1016/j.renene.2021.12.057_bib30 article-title: A review of offshore wind farm layout optimization and electrical system design methods publication-title: J. Mod. Power Syst. Clean Energy doi: 10.1007/s40565-019-0550-5 – volume: 61 start-page: 71 issue: 1 year: 1996 ident: 10.1016/j.renene.2021.12.057_bib13 article-title: Turbulence characteristics in wind-turbine wakes publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/0167-6105(95)00033-X – volume: 228 start-page: 1853 year: 2018 ident: 10.1016/j.renene.2021.12.057_bib44 article-title: A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: the case study of Nigeria publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.07.051 – volume: 259 start-page: 114189 year: 2020 ident: 10.1016/j.renene.2021.12.057_bib4 article-title: A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114189 – volume: 139 start-page: 89 year: 2015 ident: 10.1016/j.renene.2021.12.057_bib33 article-title: Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2015.01.018 – volume: 182 start-page: 525 year: 2016 ident: 10.1016/j.renene.2021.12.057_bib25 article-title: A new method for simultaneous optimizing of wind farm's network layout and cable cross-sections by MILP optimization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.08.094 – volume: 58 start-page: 1048 year: 2016 ident: 10.1016/j.renene.2021.12.057_bib31 article-title: Wake effect modeling: a review of wind farm layout optimization using Jensen׳s model publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.229 – volume: 193 start-page: 106616 year: 2019 ident: 10.1016/j.renene.2021.12.057_bib29 article-title: A fuzzy evidential reasoning based approach for submarine power cable routing selection for offshore wind farms publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106616 – year: 2018 ident: 10.1016/j.renene.2021.12.057_bib38 article-title: Combined approach based on ACO with MTSP for optimal internal electrical system design of large offshore wind farm – volume: 107 start-page: 386 year: 2017 ident: 10.1016/j.renene.2021.12.057_bib47 article-title: Wind farm layout using biogeography based optimization publication-title: Renew. Energy doi: 10.1016/j.renene.2017.01.064 – volume: 44 start-page: 53 year: 2012 ident: 10.1016/j.renene.2021.12.057_bib36 article-title: Design of wind farm layout using ant colony algorithm publication-title: Renew. Energy doi: 10.1016/j.renene.2011.12.013 – ident: 10.1016/j.renene.2021.12.057_bib56 – volume: 47 start-page: 1689 issue: 12 year: 2015 ident: 10.1016/j.renene.2021.12.057_bib22 article-title: Offshore wind farm electrical cable layout optimization publication-title: Eng. Optim. doi: 10.1080/0305215X.2014.992892 – volume: 189 start-page: 271 year: 2017 ident: 10.1016/j.renene.2021.12.057_bib23 article-title: Combined optimization for offshore wind turbine micro siting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.11.083 – volume: 70 start-page: 116 year: 2014 ident: 10.1016/j.renene.2021.12.057_bib9 article-title: A new analytical model for wind-turbine wakes publication-title: Renew. Energy doi: 10.1016/j.renene.2014.01.002 – volume: 30 start-page: 899 issue: 10 year: 2016 ident: 10.1016/j.renene.2021.12.057_bib41 article-title: Wind farm layout design using cuckoo search algorithms publication-title: Appl. Artif. Intell. – volume: 228 start-page: 1413 year: 2018 ident: 10.1016/j.renene.2021.12.057_bib52 article-title: A mathematical approach to minimizing the cost of energy for large utility wind turbines publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.06.150 – volume: 120 start-page: 288 year: 2018 ident: 10.1016/j.renene.2021.12.057_bib16 article-title: Integrated optimization of offshore wind farm layout design and turbine opportunistic condition-based maintenance publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.04.051 – volume: 6 start-page: 1272 issue: 4 year: 2015 ident: 10.1016/j.renene.2021.12.057_bib34 article-title: Optimized placement of wind turbines in large-scale offshore wind farm using particle swarm optimization algorithm publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2015.2429912 – volume: 119 start-page: 612 year: 2017 ident: 10.1016/j.renene.2021.12.057_bib43 article-title: A hybrid computational approach for detailed scheduling of products in a pipeline with multiple pump stations publication-title: Energy doi: 10.1016/j.energy.2016.11.027 – volume: 113 start-page: 103803 year: 2020 ident: 10.1016/j.renene.2021.12.057_bib45 article-title: Managing the oceans: site selection of a floating offshore wind farm based on GIS spatial analysis publication-title: Mar. Pol. doi: 10.1016/j.marpol.2019.103803 – volume: 147 start-page: 1340 year: 2020 ident: 10.1016/j.renene.2021.12.057_bib57 article-title: An optimization method based on random fork tree coding for the electrical networks of offshore wind farms publication-title: Renew. Energy doi: 10.1016/j.renene.2019.09.100 – volume: 3 start-page: 339 issue: 3 year: 2012 ident: 10.1016/j.renene.2021.12.057_bib19 article-title: Optimal wind farm collector system topology design considering total trenching length publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2012.2185817 – volume: 272 start-page: 373 issue: 1 year: 2019 ident: 10.1016/j.renene.2021.12.057_bib28 article-title: Obstacle-aware optimization of offshore wind farm cable layouts publication-title: Ann. Oper. Res. doi: 10.1007/s10479-017-2581-5 – year: 1988 ident: 10.1016/j.renene.2021.12.057_bib7 – volume: 146 start-page: 687 year: 2020 ident: 10.1016/j.renene.2021.12.057_bib26 article-title: A design methodology for wind farm layout considering cable routing and economic benefit based on genetic algorithm and GeoSteiner publication-title: Renew. Energy doi: 10.1016/j.renene.2019.07.002 – volume: 254 start-page: 113719 year: 2019 ident: 10.1016/j.renene.2021.12.057_bib55 article-title: Cable routing optimization for offshore wind power plants via wind scenarios considering power loss cost model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113719 – volume: 208 start-page: 112593 year: 2020 ident: 10.1016/j.renene.2021.12.057_bib53 article-title: Comparative analysis and improvement of grid-based wind farm layout optimization publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.112593 – volume: 16 start-page: 5485 issue: 8 year: 2012 ident: 10.1016/j.renene.2021.12.057_bib54 article-title: Optimization of wind turbine micrositing: a comparative study publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.06.014 – volume: 200 start-page: 28 year: 2017 ident: 10.1016/j.renene.2021.12.057_bib18 article-title: Optimal wind-turbine micro-siting of offshore wind farms: a grid-like layout approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.071 – volume: 86 start-page: 133 year: 2016 ident: 10.1016/j.renene.2021.12.057_bib42 article-title: A novel hybrid optimization methodology to optimize the total number and placement of wind turbines publication-title: Renew. Energy doi: 10.1016/j.renene.2015.07.100 – year: 2000 ident: 10.1016/j.renene.2021.12.057_bib14 article-title: Integrated fatigue loading for wind turbines in wind farms – volume: 183 start-page: 983 year: 2019 ident: 10.1016/j.renene.2021.12.057_bib49 article-title: Wind farm layout optimization for wake effect uniformity publication-title: Energy doi: 10.1016/j.energy.2019.07.019 – volume: 20 start-page: 1017 issue: 6 year: 2017 ident: 10.1016/j.renene.2021.12.057_bib21 article-title: Overall optimization for offshore wind farm electrical system publication-title: Wind Energy doi: 10.1002/we.2077 – volume: 102 start-page: 267 year: 2017 ident: 10.1016/j.renene.2021.12.057_bib50 article-title: Investigating the Power-COE trade-off for wind farm layout optimization considering commercial turbine selection and hub height variation publication-title: Renew. Energy doi: 10.1016/j.renene.2016.10.038 – volume: 55 start-page: 266 year: 2013 ident: 10.1016/j.renene.2021.12.057_bib48 article-title: Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients publication-title: Renew. Energy doi: 10.1016/j.renene.2012.12.005 – volume: 35 start-page: 685 issue: 3 year: 2010 ident: 10.1016/j.renene.2021.12.057_bib37 article-title: Design of wind farm layout for maximum wind energy capture publication-title: Renew. Energy doi: 10.1016/j.renene.2009.08.019 – year: 1986 ident: 10.1016/j.renene.2021.12.057_bib46 article-title: A simple model for cluster efficiency – volume: 5 start-page: 137 year: 1999 ident: 10.1016/j.renene.2021.12.057_bib61 article-title: Ant algorithms for discrete optimization publication-title: Artif. Life doi: 10.1162/106454699568728 – year: 2020 ident: 10.1016/j.renene.2021.12.057_bib1 – volume: 70 start-page: 56 year: 2013 ident: 10.1016/j.renene.2021.12.057_bib32 article-title: Wind farm layout optimization using genetic algorithm with different hub height wind turbines publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.02.007 – year: 2015 ident: 10.1016/j.renene.2021.12.057_bib15 article-title: A Mixed-Integer Linear Programming approach to wind farm layout and inter-array cable routing – volume: 31 start-page: 17 issue: 1 year: 2007 ident: 10.1016/j.renene.2021.12.057_bib2 article-title: An analytical framework for offshore wind farm layout optimization publication-title: Wind Eng. doi: 10.1260/030952407780811401 – volume: 9 start-page: 39 issue: 1-2 year: 2006 ident: 10.1016/j.renene.2021.12.057_bib8 article-title: Analytical modelling of wind speed deficit in large offshore wind farms publication-title: Wind Energy doi: 10.1002/we.189 – volume: 270 start-page: 917 issue: 3 year: 2018 ident: 10.1016/j.renene.2021.12.057_bib27 article-title: Optimizing wind farm cable routing considering power losses publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2017.07.061 – volume: 63 start-page: 109 year: 2014 ident: 10.1016/j.renene.2021.12.057_bib40 article-title: Offshore wind farm design with the Coral Reefs Optimization algorithm publication-title: Renew. Energy doi: 10.1016/j.renene.2013.09.004 – year: 1983 ident: 10.1016/j.renene.2021.12.057_bib6 – volume: 18 start-page: 1815 issue: 10 year: 2015 ident: 10.1016/j.renene.2021.12.057_bib10 article-title: Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation publication-title: Wind Energy doi: 10.1002/we.1792 – volume: 108 start-page: 160 issue: C year: 2016 ident: 10.1016/j.renene.2021.12.057_bib35 article-title: Design of optimal wind farm configuration using a binary particle swarm optimization at Huasai district, Southern Thailand publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.11.002 – volume: 126 start-page: 681 year: 2018 ident: 10.1016/j.renene.2021.12.057_bib59 article-title: Evolutionary computation for wind farm layout optimization publication-title: Renew. Energy doi: 10.1016/j.renene.2018.03.052 – year: 2015 ident: 10.1016/j.renene.2021.12.057_bib20 article-title: Offshore substation locating in wind farms based on prim algorithm – volume: 226 start-page: 1187 year: 2018 ident: 10.1016/j.renene.2021.12.057_bib5 article-title: Review and evaluation of wake loss models for wind energy applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.05.085 |
| SSID | ssj0015874 |
| Score | 2.4493935 |
| Snippet | Offshore wind farms are increasingly becoming the focus of clean sources market because of the huge energy potential and fast-maturing technology. The existing... |
| SourceID | swepub proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 302 |
| SubjectTerms | algorithm algorithms Ant colony optimization Cable network Cable networks Cable routing Cables case studies Electric utilities energy Energy dissipation Genetic algorithms Heuristic algorithms Hybrid method landscapes Layer model Linear programming markets Meta-heuristic algorithms Meta-heuristics algorithms methodology Multi-type wind turbine network analysis Obstacle-avoiding Offshore oil well production Offshore wind farm Offshore wind farms optimization power generation Seabed terrain Site selection spatial data system optimization three-dimensional modeling Turbine layouts wind wind farm Wind farm layout optimizations wind farms wind turbine Wind turbines |
| Title | A synchronization methodology for 3D offshore wind farm layout optimization with multi-type wind turbines and obstacle-avoiding cable network |
| URI | https://dx.doi.org/10.1016/j.renene.2021.12.057 https://www.proquest.com/docview/2636417131 https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-56875 |
| Volume | 185 |
| WOSCitedRecordID | wos000778545900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdg4wEeEJ9ifMlI8FR5ihPHTh4jOjQQmhAqo2-WnThbpzWZ0nYbfwT_M2c7SQMd2njgxWpdu3V7v57vznc_I_SWhWWsaZASHpYRYWUgiCqYIikvhGKFMaUrjz78LA4Okuk0_dJGlRbuOgFRVcnlZXr2X0UNfSBsWzr7D-Lu3xQ64DEIHVoQO7Q3EnxmWQhyx3nrSyzbW6I92ZLNKozGljlicVw3ZnQBPvmoVM18dKp-2BzlGnTIvJvporQu55C4WK0bDZuUtsny7tyh1mBewgqIOq9nrkAmd8VYlU8vH9q-X0GtXrgXjSs47PeDldsHdrvnU5-_O-k7vrcx7fWQPsy9rwDC1TB0AV5v0KeBtDFIHhDwx-jv6jgeKNTI1WNvKnofczjZtbyflaU7DakL63q26ysotMezw0zWzZGcF8cy5uCm3UbboYhT0Obb2ce96af-8ClOPHl3tzrrsyfCkjUkYVd96VIENz_8b9bN0HsZMtI6K2byAN1v3Q-cedg8RLdM9QjdG5BSPkY_M_wHgPAAQBgAhKMx7gCELSSwBRD2AMJDAGELILwGkB_dAQgDgPAGgLADEG4B9AR9-7A3eb9P2ks7SA571RLaxIRGwUYaRjw1Oi6ZjhOV61iIQJQsKPJY5UwLTY2ADYGpQnFd6NBwSnWqoqdoq6or8wxhqoS9VDcveQA2VCC0SXTOk1JrBl6wpjso6n5smbeM9vZilVPZpS6eSC8iaUUkaShBRDuI9LPOPKPLNeNFJ0fZWqXe2pSAxWtmvunELkFp25M4VZl6tZAhjzijgkbwHd55PPRruRqsz2847gW6u_6nvURby2ZlXqE7-flytmhet0j_Bcg3zy0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+synchronization+methodology+for+3D+offshore+wind+farm+layout+optimization+with+multi-type+wind+turbines+and+obstacle-avoiding+cable+network&rft.jtitle=Renewable+energy&rft.au=Wu%2C+Y.&rft.au=Xia%2C+T.&rft.au=Wang%2C+Y.&rft.au=Zhang%2C+Haoran&rft.date=2022-02-01&rft.issn=0960-1481&rft.volume=185&rft.spage=302&rft_id=info:doi/10.1016%2Fj.renene.2021.12.057&rft.externalDocID=oai_DiVA_org_mdh_56875 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |