A synchronization methodology for 3D offshore wind farm layout optimization with multi-type wind turbines and obstacle-avoiding cable network

Offshore wind farms are increasingly becoming the focus of clean sources market because of the huge energy potential and fast-maturing technology. The existing researches normally optimize the wind turbine layout and two-dimensional cable routing independently. This work focuses on the synchronizati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Renewable energy Ročník 185; s. 302 - 320
Hlavní autoři: Wu, Yan, Xia, Tianqi, Wang, Yufei, Zhang, Haoran, Feng, Xiao, Song, Xuan, Shibasaki, Ryosuke
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.02.2022
Témata:
ISSN:0960-1481, 1879-0682, 1879-0682
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Offshore wind farms are increasingly becoming the focus of clean sources market because of the huge energy potential and fast-maturing technology. The existing researches normally optimize the wind turbine layout and two-dimensional cable routing independently. This work focuses on the synchronization optimization of site selection of the offshore wind farm, three-dimensional wind turbine layout and three-dimensional cable network routing based on meta-heuristic algorithms and geographic information systems. Several practical issues, i.e., restricted areas, power generation, cable network and energy loss, are taken into consideration. A two-layer model is proposed. The outer layer model is for the site selection and the wind turbine layout optimization. The inner layer model is for the obstacle-avoiding cable routing optimization. In this stage, the seabed terrain is considered for the first time. The proposed integrated model is complex and non-convex. Thus, a hybrid method including an improved ant colony optimization combined with genetic algorithm, dual-simplex method and Kruskal algorithm is proposed to search the solution more efficiently. The initialization stage of the hybrid method is improved from random assignment to directional assignment. The directional solution is obtained by the widely used genetic algorithm. A case study based on a real offshore wind farm is established to prove the effectiveness of the proposed methodology. The results show an over one million dollars increase in annual benefit compared with conventional methods.
AbstractList Offshore wind farms are increasingly becoming the focus of clean sources market because of the huge energy potential and fast-maturing technology. The existing researches normally optimize the wind turbine layout and two-dimensional cable routing independently. This work focuses on the synchronization optimization of site selection of the offshore wind farm, three-dimensional wind turbine layout and three-dimensional cable network routing based on meta-heuristic algorithms and geographic information systems. Several practical issues, i.e., restricted areas, power generation, cable network and energy loss, are taken into consideration. A two-layer model is proposed. The outer layer model is for the site selection and the wind turbine layout optimization. The inner layer model is for the obstacle-avoiding cable routing optimization. In this stage, the seabed terrain is considered for the first time. The proposed integrated model is complex and non-convex. Thus, a hybrid method including an improved ant colony optimization combined with genetic algorithm, dual-simplex method and Kruskal algorithm is proposed to search the solution more efficiently. The initialization stage of the hybrid method is improved from random assignment to directional assignment. The directional solution is obtained by the widely used genetic algorithm. A case study based on a real offshore wind farm is established to prove the effectiveness of the proposed methodology. The results show an over one million dollars increase in annual benefit compared with conventional methods.
Author Wang, Yufei
Shibasaki, Ryosuke
Feng, Xiao
Song, Xuan
Zhang, Haoran
Wu, Yan
Xia, Tianqi
Author_xml – sequence: 1
  givenname: Yan
  surname: Wu
  fullname: Wu, Yan
  organization: School of Chemical Engineering and Environment, China University of Petroleum (Beijing), 18 Fuxue Road, Changping, Beijing, 102249, China
– sequence: 2
  givenname: Tianqi
  surname: Xia
  fullname: Xia, Tianqi
  organization: Center for Spatial Information Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8568, Japan
– sequence: 3
  givenname: Yufei
  surname: Wang
  fullname: Wang, Yufei
  email: wangyufei@cup.edu.cn, yufei-wang@outlook.com
  organization: School of Chemical Engineering and Environment, China University of Petroleum (Beijing), 18 Fuxue Road, Changping, Beijing, 102249, China
– sequence: 4
  givenname: Haoran
  surname: Zhang
  fullname: Zhang, Haoran
  organization: Center for Spatial Information Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8568, Japan
– sequence: 5
  givenname: Xiao
  surname: Feng
  fullname: Feng, Xiao
  organization: School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, China
– sequence: 6
  givenname: Xuan
  surname: Song
  fullname: Song, Xuan
  organization: SUSTech-UTokyo Joint Research Center on Super Smart City, Department of Computer Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
– sequence: 7
  givenname: Ryosuke
  surname: Shibasaki
  fullname: Shibasaki, Ryosuke
  organization: Center for Spatial Information Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8568, Japan
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-56875$$DView record from Swedish Publication Index (Mälardalens högskola)
BookMark eNqFkc9u1DAQhy1UJLaFN-DgIwcS7PyxsxyQVm0pSJW4AFfLdiYbL4kn2E5Xyzvwzk1Je-EAsjTWSN83Gs3vnJx59EDIa85yzrh4d8gD-OXlBSt4zouc1fIZ2fBGbjMmmuKMbNhWsIxXDX9BzmM8MMbrRlYb8ntH48nbPqB3v3Ry6OkIqccWB9yfaIeBllcUuy72GIAenW9pp8NIB33COVGckhufzKNLPR3nIbksnaZHOs3BOA-R6qVBE5O2A2T6Dl3r_J5abQagHtIRw4-X5HmnhwivHv8L8u3j9dfLT9ntl5vPl7vbzJZSpKU2UIDmdVmUYgum7ipTN9qaWkomu4q1tta2MtJwkDVnlW61MK0pQHButrq8IG_XufEI02zUFNyow0mhdurKfd8pDHs1tr2qRSPrBX-z4lPAnzPEpEYXLQyD9oBzVIUoRcUlL_mCvl9RGzDGAJ2yLv25TgraDYoz9RCZOqg1MvUQmeKFWiJb5Oov-Wmx_2gfVg2Wk905CCpaB95C6wLYpFp0_x5wD63luZ0
CitedBy_id crossref_primary_10_1016_j_energy_2024_132443
crossref_primary_10_1063_5_0273125
crossref_primary_10_1016_j_oceaneng_2024_117244
crossref_primary_10_1016_j_renene_2025_123775
crossref_primary_10_1016_j_apenergy_2024_125105
crossref_primary_10_3390_en17010151
crossref_primary_10_1016_j_segan_2024_101447
crossref_primary_10_1016_j_compchemeng_2025_109346
crossref_primary_10_3389_fmars_2022_1028732
crossref_primary_10_1016_j_apenergy_2023_121546
crossref_primary_10_1088_1742_6596_2767_8_082021
crossref_primary_10_3390_jmse11061171
crossref_primary_10_1002_we_2960
Cites_doi 10.1016/j.enconman.2019.04.059
10.1016/S0376-0421(03)00078-2
10.1109/TPWRS.2016.2521700
10.1016/j.renene.2016.12.022
10.1175/JTECH-D-14-00199.1
10.1016/j.apenergy.2020.114716
10.1260/0309-524X.33.3.287
10.1016/j.renene.2012.12.007
10.1007/s40565-019-0550-5
10.1016/0167-6105(95)00033-X
10.1016/j.apenergy.2018.07.051
10.1016/j.apenergy.2019.114189
10.1016/j.jweia.2015.01.018
10.1016/j.apenergy.2016.08.094
10.1016/j.rser.2015.12.229
10.1016/j.oceaneng.2019.106616
10.1016/j.renene.2017.01.064
10.1016/j.renene.2011.12.013
10.1080/0305215X.2014.992892
10.1016/j.apenergy.2016.11.083
10.1016/j.renene.2014.01.002
10.1016/j.apenergy.2018.06.150
10.1016/j.cie.2018.04.051
10.1109/TSTE.2015.2429912
10.1016/j.energy.2016.11.027
10.1016/j.marpol.2019.103803
10.1016/j.renene.2019.09.100
10.1109/TSTE.2012.2185817
10.1007/s10479-017-2581-5
10.1016/j.renene.2019.07.002
10.1016/j.apenergy.2019.113719
10.1016/j.enconman.2020.112593
10.1016/j.rser.2012.06.014
10.1016/j.apenergy.2017.05.071
10.1016/j.renene.2015.07.100
10.1016/j.energy.2019.07.019
10.1002/we.2077
10.1016/j.renene.2016.10.038
10.1016/j.renene.2012.12.005
10.1016/j.renene.2009.08.019
10.1162/106454699568728
10.1016/j.enconman.2013.02.007
10.1260/030952407780811401
10.1002/we.189
10.1016/j.ejor.2017.07.061
10.1016/j.renene.2013.09.004
10.1002/we.1792
10.1016/j.enconman.2015.11.002
10.1016/j.renene.2018.03.052
10.1016/j.apenergy.2018.05.085
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
ADTPV
AOWAS
DF7
DOI 10.1016/j.renene.2021.12.057
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Mälardalens högskola
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
EndPage 320
ExternalDocumentID oai_DiVA_org_mdh_56875
10_1016_j_renene_2021_12_057
S096014812101778X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ADTPV
AOWAS
DF7
ID FETCH-LOGICAL-c376t-c38e2ea1532369eb5f4b58acb57707f40dc5ac4b7b1e75104ada6bdb2e611b9a3
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778545900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-1481
1879-0682
IngestDate Tue Nov 04 16:17:58 EST 2025
Sun Sep 28 04:23:33 EDT 2025
Sat Nov 29 07:05:53 EST 2025
Tue Nov 18 20:35:48 EST 2025
Fri Feb 23 02:44:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cable network
Meta-heuristic algorithms
Offshore wind farm
Seabed terrain
Multi-type wind turbine
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-c38e2ea1532369eb5f4b58acb57707f40dc5ac4b7b1e75104ada6bdb2e611b9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636417131
PQPubID 24069
PageCount 19
ParticipantIDs swepub_primary_oai_DiVA_org_mdh_56875
proquest_miscellaneous_2636417131
crossref_citationtrail_10_1016_j_renene_2021_12_057
crossref_primary_10_1016_j_renene_2021_12_057
elsevier_sciencedirect_doi_10_1016_j_renene_2021_12_057
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Frandsen, Thøgersen (bib14) 2000
Hou (bib23) 2017; 189
Wu (bib26) 2020; 146
Jiang (bib29) 2019; 193
Hou (bib30) 2019; 7
Kusiak, Song (bib37) 2010; 35
Fischetti, Josef, Borchersen (bib15) 2015
Zhang (bib43) 2017; 119
Archer (bib5) 2018; 226
Klein, Haugland (bib28) 2019; 272
Maienza (bib17) 2020; 266
Srikakulapu, Vinatha (bib38) 2018
Castro-Santos, Lamas-Galdo, Filgueira-Vizoso (bib45) 2020; 113
Dutta, Overbye (bib19) 2012; 3
Bastankhah, Porté-Agel (bib9) 2014; 70
Eroğlu, Seçkiner (bib36) 2012; 44
Rivas (bib39) 2009; 33
Peng, Weihao, Chen (bib20) 2015
Gualtieri (bib53) 2020; 208
Rajper, Amin (bib54) 2012; 16
Dorigo, Maniezzo, Colorni (bib60) 1999
Hou (bib21) 2017; 20
Hou (bib34) 2015; 6
Bansal, Farswan (bib47) 2017; 107
Wang (bib57) 2020; 147
Crespo, Hernández (bib13) 1996; 61
Katic, Højstrup, Jensen (bib46) 1986
Ayodele (bib44) 2018; 228
Li, Özcan, John (bib58) 2017; 105
Pillai (bib22) 2015; 47
Larsen (bib7) 1988
Shakoor (bib31) 2016; 58
Wędzik, Siewierski, Szypowski (bib25) 2016; 182
Fischetti, Pisinger (bib27) 2018; 270
Song (bib16) 2018; 120
Lackner, Elkinton (bib2) 2007; 31
Mittal, Kulkarni, Mitra (bib42) 2016; 86
Jensen (bib6) 1983
Cerveira (bib24) 2016; 31
Jin (bib55) 2019; 254
ABB. XLPE Land Cable Systems User's Guide.
Gao (bib33) 2015; 139
Serrano Gonzalez (bib18) 2017; 200
Rehman, Ali, Khan (bib41) 2016; 30
Pookpunt, Ongsakul (bib48) 2013; 55
Yang (bib49) 2019; 183
Pookpunt, Ongsakul (bib35) 2016; 108
Abdulrahman, Wood (bib50) 2017; 102
Chen, Wang, Stelson (bib52) 2018; 228
Chen (bib32) 2013; 70
Salcedo-Sanz (bib40) 2014; 63
Gualtieri (bib51) 2019; 193
Wilson (bib59) 2018; 126
bib62
Dorigo, Di Caro, Gambardella (bib61) 1999; 5
Pérez, Mínguez, Guanche (bib3) 2013; 53
Vermeer, Sørensen, Crespo (bib12) 2003; 39
bib63
Ghaisas, Archer (bib11) 2016; 33
bib64
Brogna (bib4) 2020; 259
Frandsen (bib8) 2006; 9
Joyce, Feng (bib1) 2020
Xie, Archer (bib10) 2015; 18
Srikakulapu (10.1016/j.renene.2021.12.057_bib38) 2018
Hou (10.1016/j.renene.2021.12.057_bib34) 2015; 6
Hou (10.1016/j.renene.2021.12.057_bib23) 2017; 189
Kusiak (10.1016/j.renene.2021.12.057_bib37) 2010; 35
Larsen (10.1016/j.renene.2021.12.057_bib7) 1988
Mittal (10.1016/j.renene.2021.12.057_bib42) 2016; 86
Fischetti (10.1016/j.renene.2021.12.057_bib27) 2018; 270
Serrano Gonzalez (10.1016/j.renene.2021.12.057_bib18) 2017; 200
Xie (10.1016/j.renene.2021.12.057_bib10) 2015; 18
Peng (10.1016/j.renene.2021.12.057_bib20) 2015
Frandsen (10.1016/j.renene.2021.12.057_bib14) 2000
Crespo (10.1016/j.renene.2021.12.057_bib13) 1996; 61
Vermeer (10.1016/j.renene.2021.12.057_bib12) 2003; 39
Eroğlu (10.1016/j.renene.2021.12.057_bib36) 2012; 44
Jin (10.1016/j.renene.2021.12.057_bib55) 2019; 254
Cerveira (10.1016/j.renene.2021.12.057_bib24) 2016; 31
Ghaisas (10.1016/j.renene.2021.12.057_bib11) 2016; 33
Song (10.1016/j.renene.2021.12.057_bib16) 2018; 120
Gao (10.1016/j.renene.2021.12.057_bib33) 2015; 139
Bastankhah (10.1016/j.renene.2021.12.057_bib9) 2014; 70
Zhang (10.1016/j.renene.2021.12.057_bib43) 2017; 119
Dorigo (10.1016/j.renene.2021.12.057_bib61) 1999; 5
Dutta (10.1016/j.renene.2021.12.057_bib19) 2012; 3
Brogna (10.1016/j.renene.2021.12.057_bib4) 2020; 259
Bansal (10.1016/j.renene.2021.12.057_bib47) 2017; 107
Frandsen (10.1016/j.renene.2021.12.057_bib8) 2006; 9
Hou (10.1016/j.renene.2021.12.057_bib30) 2019; 7
Abdulrahman (10.1016/j.renene.2021.12.057_bib50) 2017; 102
Gualtieri (10.1016/j.renene.2021.12.057_bib51) 2019; 193
10.1016/j.renene.2021.12.057_bib56
Li (10.1016/j.renene.2021.12.057_bib58) 2017; 105
Hou (10.1016/j.renene.2021.12.057_bib21) 2017; 20
Jensen (10.1016/j.renene.2021.12.057_bib6) 1983
Gualtieri (10.1016/j.renene.2021.12.057_bib53) 2020; 208
Pillai (10.1016/j.renene.2021.12.057_bib22) 2015; 47
Shakoor (10.1016/j.renene.2021.12.057_bib31) 2016; 58
Chen (10.1016/j.renene.2021.12.057_bib52) 2018; 228
Rivas (10.1016/j.renene.2021.12.057_bib39) 2009; 33
Pérez (10.1016/j.renene.2021.12.057_bib3) 2013; 53
Wu (10.1016/j.renene.2021.12.057_bib26) 2020; 146
Rajper (10.1016/j.renene.2021.12.057_bib54) 2012; 16
Pookpunt (10.1016/j.renene.2021.12.057_bib35) 2016; 108
Katic (10.1016/j.renene.2021.12.057_bib46) 1986
Pookpunt (10.1016/j.renene.2021.12.057_bib48) 2013; 55
Jiang (10.1016/j.renene.2021.12.057_bib29) 2019; 193
Joyce (10.1016/j.renene.2021.12.057_bib1) 2020
Salcedo-Sanz (10.1016/j.renene.2021.12.057_bib40) 2014; 63
Archer (10.1016/j.renene.2021.12.057_bib5) 2018; 226
Maienza (10.1016/j.renene.2021.12.057_bib17) 2020; 266
Wędzik (10.1016/j.renene.2021.12.057_bib25) 2016; 182
Lackner (10.1016/j.renene.2021.12.057_bib2) 2007; 31
Rehman (10.1016/j.renene.2021.12.057_bib41) 2016; 30
Chen (10.1016/j.renene.2021.12.057_bib32) 2013; 70
Ayodele (10.1016/j.renene.2021.12.057_bib44) 2018; 228
Klein (10.1016/j.renene.2021.12.057_bib28) 2019; 272
Wang (10.1016/j.renene.2021.12.057_bib57) 2020; 147
Fischetti (10.1016/j.renene.2021.12.057_bib15) 2015
Castro-Santos (10.1016/j.renene.2021.12.057_bib45) 2020; 113
Dorigo (10.1016/j.renene.2021.12.057_bib60) 1999
Wilson (10.1016/j.renene.2021.12.057_bib59) 2018; 126
Yang (10.1016/j.renene.2021.12.057_bib49) 2019; 183
References_xml – volume: 39
  start-page: 467
  year: 2003
  end-page: 510
  ident: bib12
  article-title: Wind turbine wake aerodynamics
  publication-title: Prog. Aero. Sci.
– volume: 31
  start-page: 17
  year: 2007
  end-page: 31
  ident: bib2
  article-title: An analytical framework for offshore wind farm layout optimization
  publication-title: Wind Eng.
– volume: 147
  start-page: 1340
  year: 2020
  end-page: 1351
  ident: bib57
  article-title: An optimization method based on random fork tree coding for the electrical networks of offshore wind farms
  publication-title: Renew. Energy
– volume: 126
  start-page: 681
  year: 2018
  end-page: 691
  ident: bib59
  article-title: Evolutionary computation for wind farm layout optimization
  publication-title: Renew. Energy
– volume: 31
  start-page: 4319
  year: 2016
  end-page: 4329
  ident: bib24
  article-title: Optimal cable design of wind farms: the infrastructure and losses cost minimization case
  publication-title: IEEE Trans. Power Syst.
– volume: 58
  start-page: 1048
  year: 2016
  end-page: 1059
  ident: bib31
  article-title: Wake effect modeling: a review of wind farm layout optimization using Jensen׳s model
  publication-title: Renew. Sustain. Energy Rev.
– volume: 108
  start-page: 160
  year: 2016
  end-page: 180
  ident: bib35
  article-title: Design of optimal wind farm configuration using a binary particle swarm optimization at Huasai district, Southern Thailand
  publication-title: Energy Convers. Manag.
– volume: 30
  start-page: 899
  year: 2016
  end-page: 922
  ident: bib41
  article-title: Wind farm layout design using cuckoo search algorithms
  publication-title: Appl. Artif. Intell.
– volume: 47
  start-page: 1689
  year: 2015
  end-page: 1708
  ident: bib22
  article-title: Offshore wind farm electrical cable layout optimization
  publication-title: Eng. Optim.
– year: 2015
  ident: bib20
  article-title: Offshore substation locating in wind farms based on prim algorithm
  publication-title: 2015 IEEE Power & Energy Society General Meeting
– volume: 105
  start-page: 473
  year: 2017
  end-page: 482
  ident: bib58
  article-title: Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation
  publication-title: Renew. Energy
– year: 2000
  ident: bib14
  article-title: Integrated fatigue loading for wind turbines in wind farms
  publication-title: European Seminar Offshore Wind Energy in Mediterranean and Other European Seas
– volume: 120
  start-page: 288
  year: 2018
  end-page: 297
  ident: bib16
  article-title: Integrated optimization of offshore wind farm layout design and turbine opportunistic condition-based maintenance
  publication-title: Comput. Ind. Eng.
– volume: 266
  start-page: 114716
  year: 2020
  ident: bib17
  article-title: A life cycle cost model for floating offshore wind farms
  publication-title: Appl. Energy
– volume: 3
  start-page: 339
  year: 2012
  end-page: 348
  ident: bib19
  article-title: Optimal wind farm collector system topology design considering total trenching length
  publication-title: IEEE Trans. Sustain. Energy
– reference: ABB. XLPE Land Cable Systems User's Guide.
– volume: 44
  start-page: 53
  year: 2012
  end-page: 62
  ident: bib36
  article-title: Design of wind farm layout using ant colony algorithm
  publication-title: Renew. Energy
– year: 1999
  ident: bib60
  article-title: Positive feedback as a search strategy
  publication-title: Tech rep., 91-016, Dip Elettronica, Politecnico di Milano, Italy
– volume: 70
  start-page: 56
  year: 2013
  end-page: 65
  ident: bib32
  article-title: Wind farm layout optimization using genetic algorithm with different hub height wind turbines
  publication-title: Energy Convers. Manag.
– volume: 254
  start-page: 113719
  year: 2019
  ident: bib55
  article-title: Cable routing optimization for offshore wind power plants via wind scenarios considering power loss cost model
  publication-title: Appl. Energy
– volume: 193
  start-page: 106
  year: 2019
  end-page: 123
  ident: bib51
  article-title: A novel method for wind farm layout optimization based on wind turbine selection
  publication-title: Energy Convers. Manag.
– ident: bib62
– year: 2020
  ident: bib1
  publication-title: Global Wind Report 2019
– volume: 7
  start-page: 975
  year: 2019
  end-page: 986
  ident: bib30
  article-title: A review of offshore wind farm layout optimization and electrical system design methods
  publication-title: J. Mod. Power Syst. Clean Energy
– volume: 16
  start-page: 5485
  year: 2012
  end-page: 5492
  ident: bib54
  article-title: Optimization of wind turbine micrositing: a comparative study
  publication-title: Renew. Sustain. Energy Rev.
– volume: 55
  start-page: 266
  year: 2013
  end-page: 276
  ident: bib48
  article-title: Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients
  publication-title: Renew. Energy
– volume: 5
  start-page: 137
  year: 1999
  end-page: 172
  ident: bib61
  article-title: Ant algorithms for discrete optimization
  publication-title: Artif. Life
– volume: 86
  start-page: 133
  year: 2016
  end-page: 147
  ident: bib42
  article-title: A novel hybrid optimization methodology to optimize the total number and placement of wind turbines
  publication-title: Renew. Energy
– volume: 139
  start-page: 89
  year: 2015
  end-page: 99
  ident: bib33
  article-title: Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 208
  start-page: 112593
  year: 2020
  ident: bib53
  article-title: Comparative analysis and improvement of grid-based wind farm layout optimization
  publication-title: Energy Convers. Manag.
– volume: 33
  start-page: 287
  year: 2009
  end-page: 297
  ident: bib39
  article-title: Solving the turbine positioning problem for large offshore wind farms by simulated annealing
  publication-title: Wind Eng.
– volume: 193
  start-page: 106616
  year: 2019
  ident: bib29
  article-title: A fuzzy evidential reasoning based approach for submarine power cable routing selection for offshore wind farms
  publication-title: Ocean Eng.
– volume: 63
  start-page: 109
  year: 2014
  end-page: 115
  ident: bib40
  article-title: Offshore wind farm design with the Coral Reefs Optimization algorithm
  publication-title: Renew. Energy
– volume: 200
  start-page: 28
  year: 2017
  end-page: 38
  ident: bib18
  article-title: Optimal wind-turbine micro-siting of offshore wind farms: a grid-like layout approach
  publication-title: Appl. Energy
– volume: 9
  start-page: 39
  year: 2006
  end-page: 53
  ident: bib8
  article-title: Analytical modelling of wind speed deficit in large offshore wind farms
  publication-title: Wind Energy
– volume: 228
  start-page: 1853
  year: 2018
  end-page: 1869
  ident: bib44
  article-title: A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: the case study of Nigeria
  publication-title: Appl. Energy
– volume: 107
  start-page: 386
  year: 2017
  end-page: 402
  ident: bib47
  article-title: Wind farm layout using biogeography based optimization
  publication-title: Renew. Energy
– volume: 259
  start-page: 114189
  year: 2020
  ident: bib4
  article-title: A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain
  publication-title: Appl. Energy
– volume: 272
  start-page: 373
  year: 2019
  end-page: 388
  ident: bib28
  article-title: Obstacle-aware optimization of offshore wind farm cable layouts
  publication-title: Ann. Oper. Res.
– volume: 35
  start-page: 685
  year: 2010
  end-page: 694
  ident: bib37
  article-title: Design of wind farm layout for maximum wind energy capture
  publication-title: Renew. Energy
– ident: bib63
– volume: 6
  start-page: 1272
  year: 2015
  end-page: 1282
  ident: bib34
  article-title: Optimized placement of wind turbines in large-scale offshore wind farm using particle swarm optimization algorithm
  publication-title: IEEE Trans. Sustain. Energy
– year: 2015
  ident: bib15
  article-title: A Mixed-Integer Linear Programming approach to wind farm layout and inter-array cable routing
  publication-title: American Control Conference
– volume: 18
  start-page: 1815
  year: 2015
  end-page: 1838
  ident: bib10
  article-title: Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation
  publication-title: Wind Energy
– volume: 102
  start-page: 267
  year: 2017
  end-page: 278
  ident: bib50
  article-title: Investigating the Power-COE trade-off for wind farm layout optimization considering commercial turbine selection and hub height variation
  publication-title: Renew. Energy
– volume: 146
  start-page: 687
  year: 2020
  end-page: 698
  ident: bib26
  article-title: A design methodology for wind farm layout considering cable routing and economic benefit based on genetic algorithm and GeoSteiner
  publication-title: Renew. Energy
– volume: 182
  start-page: 525
  year: 2016
  end-page: 538
  ident: bib25
  article-title: A new method for simultaneous optimizing of wind farm's network layout and cable cross-sections by MILP optimization
  publication-title: Appl. Energy
– year: 1988
  ident: bib7
  article-title: A Simple Wake Calculation Procedure
– volume: 270
  start-page: 917
  year: 2018
  end-page: 930
  ident: bib27
  article-title: Optimizing wind farm cable routing considering power losses
  publication-title: Eur. J. Oper. Res.
– year: 2018
  ident: bib38
  article-title: Combined approach based on ACO with MTSP for optimal internal electrical system design of large offshore wind farm
  publication-title: 2018 International Conference on Power, Instrumentation, Control and Computing
– volume: 228
  start-page: 1413
  year: 2018
  end-page: 1422
  ident: bib52
  article-title: A mathematical approach to minimizing the cost of energy for large utility wind turbines
  publication-title: Appl. Energy
– year: 1986
  ident: bib46
  article-title: A simple model for cluster efficiency
  publication-title: European Wind Energy Association Conference and Exhibition
– volume: 113
  start-page: 103803
  year: 2020
  ident: bib45
  article-title: Managing the oceans: site selection of a floating offshore wind farm based on GIS spatial analysis
  publication-title: Mar. Pol.
– volume: 226
  start-page: 1187
  year: 2018
  end-page: 1207
  ident: bib5
  article-title: Review and evaluation of wake loss models for wind energy applications
  publication-title: Appl. Energy
– volume: 33
  start-page: 481
  year: 2016
  end-page: 501
  ident: bib11
  article-title: Geometry-based models for studying the effects of wind farm layout
  publication-title: J. Atmos. Ocean. Technol.
– ident: bib64
– volume: 53
  start-page: 389
  year: 2013
  end-page: 399
  ident: bib3
  article-title: Offshore wind farm layout optimization using mathematical programming techniques
  publication-title: Renew. Energy
– volume: 189
  start-page: 271
  year: 2017
  end-page: 282
  ident: bib23
  article-title: Combined optimization for offshore wind turbine micro siting
  publication-title: Appl. Energy
– volume: 183
  start-page: 983
  year: 2019
  end-page: 995
  ident: bib49
  article-title: Wind farm layout optimization for wake effect uniformity
  publication-title: Energy
– volume: 61
  start-page: 71
  year: 1996
  end-page: 85
  ident: bib13
  article-title: Turbulence characteristics in wind-turbine wakes
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 70
  start-page: 116
  year: 2014
  end-page: 123
  ident: bib9
  article-title: A new analytical model for wind-turbine wakes
  publication-title: Renew. Energy
– year: 1983
  ident: bib6
  article-title: A Note on Wind Generator Interaction
– volume: 119
  start-page: 612
  year: 2017
  end-page: 628
  ident: bib43
  article-title: A hybrid computational approach for detailed scheduling of products in a pipeline with multiple pump stations
  publication-title: Energy
– volume: 20
  start-page: 1017
  year: 2017
  end-page: 1032
  ident: bib21
  article-title: Overall optimization for offshore wind farm electrical system
  publication-title: Wind Energy
– volume: 193
  start-page: 106
  year: 2019
  ident: 10.1016/j.renene.2021.12.057_bib51
  article-title: A novel method for wind farm layout optimization based on wind turbine selection
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.04.059
– volume: 39
  start-page: 467
  issue: 6
  year: 2003
  ident: 10.1016/j.renene.2021.12.057_bib12
  article-title: Wind turbine wake aerodynamics
  publication-title: Prog. Aero. Sci.
  doi: 10.1016/S0376-0421(03)00078-2
– volume: 31
  start-page: 4319
  issue: 6
  year: 2016
  ident: 10.1016/j.renene.2021.12.057_bib24
  article-title: Optimal cable design of wind farms: the infrastructure and losses cost minimization case
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2016.2521700
– volume: 105
  start-page: 473
  year: 2017
  ident: 10.1016/j.renene.2021.12.057_bib58
  article-title: Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.12.022
– year: 1999
  ident: 10.1016/j.renene.2021.12.057_bib60
  article-title: Positive feedback as a search strategy
– volume: 33
  start-page: 481
  issue: 3
  year: 2016
  ident: 10.1016/j.renene.2021.12.057_bib11
  article-title: Geometry-based models for studying the effects of wind farm layout
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-14-00199.1
– volume: 266
  start-page: 114716
  year: 2020
  ident: 10.1016/j.renene.2021.12.057_bib17
  article-title: A life cycle cost model for floating offshore wind farms
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114716
– volume: 33
  start-page: 287
  issue: 3
  year: 2009
  ident: 10.1016/j.renene.2021.12.057_bib39
  article-title: Solving the turbine positioning problem for large offshore wind farms by simulated annealing
  publication-title: Wind Eng.
  doi: 10.1260/0309-524X.33.3.287
– volume: 53
  start-page: 389
  year: 2013
  ident: 10.1016/j.renene.2021.12.057_bib3
  article-title: Offshore wind farm layout optimization using mathematical programming techniques
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.12.007
– volume: 7
  start-page: 975
  issue: 5
  year: 2019
  ident: 10.1016/j.renene.2021.12.057_bib30
  article-title: A review of offshore wind farm layout optimization and electrical system design methods
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.1007/s40565-019-0550-5
– volume: 61
  start-page: 71
  issue: 1
  year: 1996
  ident: 10.1016/j.renene.2021.12.057_bib13
  article-title: Turbulence characteristics in wind-turbine wakes
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/0167-6105(95)00033-X
– volume: 228
  start-page: 1853
  year: 2018
  ident: 10.1016/j.renene.2021.12.057_bib44
  article-title: A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: the case study of Nigeria
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.07.051
– volume: 259
  start-page: 114189
  year: 2020
  ident: 10.1016/j.renene.2021.12.057_bib4
  article-title: A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114189
– volume: 139
  start-page: 89
  year: 2015
  ident: 10.1016/j.renene.2021.12.057_bib33
  article-title: Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2015.01.018
– volume: 182
  start-page: 525
  year: 2016
  ident: 10.1016/j.renene.2021.12.057_bib25
  article-title: A new method for simultaneous optimizing of wind farm's network layout and cable cross-sections by MILP optimization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.08.094
– volume: 58
  start-page: 1048
  year: 2016
  ident: 10.1016/j.renene.2021.12.057_bib31
  article-title: Wake effect modeling: a review of wind farm layout optimization using Jensen׳s model
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.229
– volume: 193
  start-page: 106616
  year: 2019
  ident: 10.1016/j.renene.2021.12.057_bib29
  article-title: A fuzzy evidential reasoning based approach for submarine power cable routing selection for offshore wind farms
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.106616
– year: 2018
  ident: 10.1016/j.renene.2021.12.057_bib38
  article-title: Combined approach based on ACO with MTSP for optimal internal electrical system design of large offshore wind farm
– volume: 107
  start-page: 386
  year: 2017
  ident: 10.1016/j.renene.2021.12.057_bib47
  article-title: Wind farm layout using biogeography based optimization
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.01.064
– volume: 44
  start-page: 53
  year: 2012
  ident: 10.1016/j.renene.2021.12.057_bib36
  article-title: Design of wind farm layout using ant colony algorithm
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2011.12.013
– ident: 10.1016/j.renene.2021.12.057_bib56
– volume: 47
  start-page: 1689
  issue: 12
  year: 2015
  ident: 10.1016/j.renene.2021.12.057_bib22
  article-title: Offshore wind farm electrical cable layout optimization
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2014.992892
– volume: 189
  start-page: 271
  year: 2017
  ident: 10.1016/j.renene.2021.12.057_bib23
  article-title: Combined optimization for offshore wind turbine micro siting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.11.083
– volume: 70
  start-page: 116
  year: 2014
  ident: 10.1016/j.renene.2021.12.057_bib9
  article-title: A new analytical model for wind-turbine wakes
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.01.002
– volume: 30
  start-page: 899
  issue: 10
  year: 2016
  ident: 10.1016/j.renene.2021.12.057_bib41
  article-title: Wind farm layout design using cuckoo search algorithms
  publication-title: Appl. Artif. Intell.
– volume: 228
  start-page: 1413
  year: 2018
  ident: 10.1016/j.renene.2021.12.057_bib52
  article-title: A mathematical approach to minimizing the cost of energy for large utility wind turbines
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.06.150
– volume: 120
  start-page: 288
  year: 2018
  ident: 10.1016/j.renene.2021.12.057_bib16
  article-title: Integrated optimization of offshore wind farm layout design and turbine opportunistic condition-based maintenance
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.04.051
– volume: 6
  start-page: 1272
  issue: 4
  year: 2015
  ident: 10.1016/j.renene.2021.12.057_bib34
  article-title: Optimized placement of wind turbines in large-scale offshore wind farm using particle swarm optimization algorithm
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2015.2429912
– volume: 119
  start-page: 612
  year: 2017
  ident: 10.1016/j.renene.2021.12.057_bib43
  article-title: A hybrid computational approach for detailed scheduling of products in a pipeline with multiple pump stations
  publication-title: Energy
  doi: 10.1016/j.energy.2016.11.027
– volume: 113
  start-page: 103803
  year: 2020
  ident: 10.1016/j.renene.2021.12.057_bib45
  article-title: Managing the oceans: site selection of a floating offshore wind farm based on GIS spatial analysis
  publication-title: Mar. Pol.
  doi: 10.1016/j.marpol.2019.103803
– volume: 147
  start-page: 1340
  year: 2020
  ident: 10.1016/j.renene.2021.12.057_bib57
  article-title: An optimization method based on random fork tree coding for the electrical networks of offshore wind farms
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.09.100
– volume: 3
  start-page: 339
  issue: 3
  year: 2012
  ident: 10.1016/j.renene.2021.12.057_bib19
  article-title: Optimal wind farm collector system topology design considering total trenching length
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2012.2185817
– volume: 272
  start-page: 373
  issue: 1
  year: 2019
  ident: 10.1016/j.renene.2021.12.057_bib28
  article-title: Obstacle-aware optimization of offshore wind farm cable layouts
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-017-2581-5
– year: 1988
  ident: 10.1016/j.renene.2021.12.057_bib7
– volume: 146
  start-page: 687
  year: 2020
  ident: 10.1016/j.renene.2021.12.057_bib26
  article-title: A design methodology for wind farm layout considering cable routing and economic benefit based on genetic algorithm and GeoSteiner
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.07.002
– volume: 254
  start-page: 113719
  year: 2019
  ident: 10.1016/j.renene.2021.12.057_bib55
  article-title: Cable routing optimization for offshore wind power plants via wind scenarios considering power loss cost model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113719
– volume: 208
  start-page: 112593
  year: 2020
  ident: 10.1016/j.renene.2021.12.057_bib53
  article-title: Comparative analysis and improvement of grid-based wind farm layout optimization
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.112593
– volume: 16
  start-page: 5485
  issue: 8
  year: 2012
  ident: 10.1016/j.renene.2021.12.057_bib54
  article-title: Optimization of wind turbine micrositing: a comparative study
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.06.014
– volume: 200
  start-page: 28
  year: 2017
  ident: 10.1016/j.renene.2021.12.057_bib18
  article-title: Optimal wind-turbine micro-siting of offshore wind farms: a grid-like layout approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.071
– volume: 86
  start-page: 133
  year: 2016
  ident: 10.1016/j.renene.2021.12.057_bib42
  article-title: A novel hybrid optimization methodology to optimize the total number and placement of wind turbines
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.07.100
– year: 2000
  ident: 10.1016/j.renene.2021.12.057_bib14
  article-title: Integrated fatigue loading for wind turbines in wind farms
– volume: 183
  start-page: 983
  year: 2019
  ident: 10.1016/j.renene.2021.12.057_bib49
  article-title: Wind farm layout optimization for wake effect uniformity
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.019
– volume: 20
  start-page: 1017
  issue: 6
  year: 2017
  ident: 10.1016/j.renene.2021.12.057_bib21
  article-title: Overall optimization for offshore wind farm electrical system
  publication-title: Wind Energy
  doi: 10.1002/we.2077
– volume: 102
  start-page: 267
  year: 2017
  ident: 10.1016/j.renene.2021.12.057_bib50
  article-title: Investigating the Power-COE trade-off for wind farm layout optimization considering commercial turbine selection and hub height variation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.10.038
– volume: 55
  start-page: 266
  year: 2013
  ident: 10.1016/j.renene.2021.12.057_bib48
  article-title: Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration coefficients
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.12.005
– volume: 35
  start-page: 685
  issue: 3
  year: 2010
  ident: 10.1016/j.renene.2021.12.057_bib37
  article-title: Design of wind farm layout for maximum wind energy capture
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2009.08.019
– year: 1986
  ident: 10.1016/j.renene.2021.12.057_bib46
  article-title: A simple model for cluster efficiency
– volume: 5
  start-page: 137
  year: 1999
  ident: 10.1016/j.renene.2021.12.057_bib61
  article-title: Ant algorithms for discrete optimization
  publication-title: Artif. Life
  doi: 10.1162/106454699568728
– year: 2020
  ident: 10.1016/j.renene.2021.12.057_bib1
– volume: 70
  start-page: 56
  year: 2013
  ident: 10.1016/j.renene.2021.12.057_bib32
  article-title: Wind farm layout optimization using genetic algorithm with different hub height wind turbines
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.02.007
– year: 2015
  ident: 10.1016/j.renene.2021.12.057_bib15
  article-title: A Mixed-Integer Linear Programming approach to wind farm layout and inter-array cable routing
– volume: 31
  start-page: 17
  issue: 1
  year: 2007
  ident: 10.1016/j.renene.2021.12.057_bib2
  article-title: An analytical framework for offshore wind farm layout optimization
  publication-title: Wind Eng.
  doi: 10.1260/030952407780811401
– volume: 9
  start-page: 39
  issue: 1-2
  year: 2006
  ident: 10.1016/j.renene.2021.12.057_bib8
  article-title: Analytical modelling of wind speed deficit in large offshore wind farms
  publication-title: Wind Energy
  doi: 10.1002/we.189
– volume: 270
  start-page: 917
  issue: 3
  year: 2018
  ident: 10.1016/j.renene.2021.12.057_bib27
  article-title: Optimizing wind farm cable routing considering power losses
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.07.061
– volume: 63
  start-page: 109
  year: 2014
  ident: 10.1016/j.renene.2021.12.057_bib40
  article-title: Offshore wind farm design with the Coral Reefs Optimization algorithm
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.09.004
– year: 1983
  ident: 10.1016/j.renene.2021.12.057_bib6
– volume: 18
  start-page: 1815
  issue: 10
  year: 2015
  ident: 10.1016/j.renene.2021.12.057_bib10
  article-title: Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation
  publication-title: Wind Energy
  doi: 10.1002/we.1792
– volume: 108
  start-page: 160
  issue: C
  year: 2016
  ident: 10.1016/j.renene.2021.12.057_bib35
  article-title: Design of optimal wind farm configuration using a binary particle swarm optimization at Huasai district, Southern Thailand
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.11.002
– volume: 126
  start-page: 681
  year: 2018
  ident: 10.1016/j.renene.2021.12.057_bib59
  article-title: Evolutionary computation for wind farm layout optimization
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.03.052
– year: 2015
  ident: 10.1016/j.renene.2021.12.057_bib20
  article-title: Offshore substation locating in wind farms based on prim algorithm
– volume: 226
  start-page: 1187
  year: 2018
  ident: 10.1016/j.renene.2021.12.057_bib5
  article-title: Review and evaluation of wake loss models for wind energy applications
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.05.085
SSID ssj0015874
Score 2.4493935
Snippet Offshore wind farms are increasingly becoming the focus of clean sources market because of the huge energy potential and fast-maturing technology. The existing...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 302
SubjectTerms algorithm
algorithms
Ant colony optimization
Cable network
Cable networks
Cable routing
Cables
case studies
Electric utilities
energy
Energy dissipation
Genetic algorithms
Heuristic algorithms
Hybrid method
landscapes
Layer model
Linear programming
markets
Meta-heuristic algorithms
Meta-heuristics algorithms
methodology
Multi-type wind turbine
network analysis
Obstacle-avoiding
Offshore oil well production
Offshore wind farm
Offshore wind farms
optimization
power generation
Seabed terrain
Site selection
spatial data
system optimization
three-dimensional modeling
Turbine layouts
wind
wind farm
Wind farm layout optimizations
wind farms
wind turbine
Wind turbines
Title A synchronization methodology for 3D offshore wind farm layout optimization with multi-type wind turbines and obstacle-avoiding cable network
URI https://dx.doi.org/10.1016/j.renene.2021.12.057
https://www.proquest.com/docview/2636417131
https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-56875
Volume 185
WOSCitedRecordID wos000778545900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdg4wEeEJ9ifMlI8FR5ihPHTh4jOjQQmhAqo2-WnThbpzWZ0nYbfwT_M2c7SQMd2njgxWpdu3V7v57vznc_I_SWhWWsaZASHpYRYWUgiCqYIikvhGKFMaUrjz78LA4Okuk0_dJGlRbuOgFRVcnlZXr2X0UNfSBsWzr7D-Lu3xQ64DEIHVoQO7Q3EnxmWQhyx3nrSyzbW6I92ZLNKozGljlicVw3ZnQBPvmoVM18dKp-2BzlGnTIvJvporQu55C4WK0bDZuUtsny7tyh1mBewgqIOq9nrkAmd8VYlU8vH9q-X0GtXrgXjSs47PeDldsHdrvnU5-_O-k7vrcx7fWQPsy9rwDC1TB0AV5v0KeBtDFIHhDwx-jv6jgeKNTI1WNvKnofczjZtbyflaU7DakL63q26ysotMezw0zWzZGcF8cy5uCm3UbboYhT0Obb2ce96af-8ClOPHl3tzrrsyfCkjUkYVd96VIENz_8b9bN0HsZMtI6K2byAN1v3Q-cedg8RLdM9QjdG5BSPkY_M_wHgPAAQBgAhKMx7gCELSSwBRD2AMJDAGELILwGkB_dAQgDgPAGgLADEG4B9AR9-7A3eb9P2ks7SA571RLaxIRGwUYaRjw1Oi6ZjhOV61iIQJQsKPJY5UwLTY2ADYGpQnFd6NBwSnWqoqdoq6or8wxhqoS9VDcveQA2VCC0SXTOk1JrBl6wpjso6n5smbeM9vZilVPZpS6eSC8iaUUkaShBRDuI9LPOPKPLNeNFJ0fZWqXe2pSAxWtmvunELkFp25M4VZl6tZAhjzijgkbwHd55PPRruRqsz2847gW6u_6nvURby2ZlXqE7-flytmhet0j_Bcg3zy0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+synchronization+methodology+for+3D+offshore+wind+farm+layout+optimization+with+multi-type+wind+turbines+and+obstacle-avoiding+cable+network&rft.jtitle=Renewable+energy&rft.au=Wu%2C+Y.&rft.au=Xia%2C+T.&rft.au=Wang%2C+Y.&rft.au=Zhang%2C+Haoran&rft.date=2022-02-01&rft.issn=0960-1481&rft.volume=185&rft.spage=302&rft_id=info:doi/10.1016%2Fj.renene.2021.12.057&rft.externalDocID=oai_DiVA_org_mdh_56875
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon