Fast greedy optimization of sensor selection in measurement with correlated noise
•A sub-optimal sensor selection method was introduced for sensing high-dimensional, low-ranked phenomena.•Maximization on the determinant of the Fisher Information matrix was conducted.•Data-driven modeling of the correlated measurement noise was developed.•Mode information was utilized for efficien...
Saved in:
| Published in: | Mechanical systems and signal processing Vol. 158; p. 107619 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin
Elsevier Ltd
01.09.2021
Elsevier BV |
| Subjects: | |
| ISSN: | 0888-3270, 1096-1216 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A sub-optimal sensor selection method was introduced for sensing high-dimensional, low-ranked phenomena.•Maximization on the determinant of the Fisher Information matrix was conducted.•Data-driven modeling of the correlated measurement noise was developed.•Mode information was utilized for efficient algorithm computation.
A greedy algorithm is proposed for sparse-sensor selection in reduced-order sensing that contains correlated noise in measurement. The sensor selection is carried out by maximizing the determinant of the Fisher information matrix in a Bayesian estimation operator. The Bayesian estimation with a covariance matrix of the measurement noise and a prior probability distribution of estimating parameters, which are given by the modal decomposition of high dimensional data, robustly works even in the presence of the correlated noise. After computational efficiency of the algorithm is improved by a low-rank approximation of the noise covariance matrix, the proposed algorithms are applied to various problems. The proposed method yields more accurate reconstruction than the previously presented method with the determinant-based greedy algorithm, with reasonable increase in computational time. |
|---|---|
| AbstractList | •A sub-optimal sensor selection method was introduced for sensing high-dimensional, low-ranked phenomena.•Maximization on the determinant of the Fisher Information matrix was conducted.•Data-driven modeling of the correlated measurement noise was developed.•Mode information was utilized for efficient algorithm computation.
A greedy algorithm is proposed for sparse-sensor selection in reduced-order sensing that contains correlated noise in measurement. The sensor selection is carried out by maximizing the determinant of the Fisher information matrix in a Bayesian estimation operator. The Bayesian estimation with a covariance matrix of the measurement noise and a prior probability distribution of estimating parameters, which are given by the modal decomposition of high dimensional data, robustly works even in the presence of the correlated noise. After computational efficiency of the algorithm is improved by a low-rank approximation of the noise covariance matrix, the proposed algorithms are applied to various problems. The proposed method yields more accurate reconstruction than the previously presented method with the determinant-based greedy algorithm, with reasonable increase in computational time. A greedy algorithm is proposed for sparse-sensor selection in reduced-order sensing that contains correlated noise in measurement. The sensor selection is carried out by maximizing the determinant of the Fisher information matrix in a Bayesian estimation operator. The Bayesian estimation with a covariance matrix of the measurement noise and a prior probability distribution of estimating parameters, which are given by the modal decomposition of high dimensional data, robustly works even in the presence of the correlated noise. After computational efficiency of the algorithm is improved by a low-rank approximation of the noise covariance matrix, the proposed algorithms are applied to various problems. The proposed method yields more accurate reconstruction than the previously presented method with the determinant-based greedy algorithm, with reasonable increase in computational time. |
| ArticleNumber | 107619 |
| Author | Tsubakino, Daisuke Yamada, Keigo Asai, Keisuke Nankai, Koki Nonomura, Taku Saito, Yuji |
| Author_xml | – sequence: 1 givenname: Keigo surname: Yamada fullname: Yamada, Keigo email: keigo.yamada.t5@dc.tohoku.ac.jp organization: Department of Aerospace Engineering, Tohoku University, Sendai, Japan – sequence: 2 givenname: Yuji surname: Saito fullname: Saito, Yuji organization: Department of Aerospace Engineering, Tohoku University, Sendai, Japan – sequence: 3 givenname: Koki surname: Nankai fullname: Nankai, Koki organization: Department of Aerospace Engineering, Tohoku University, Sendai, Japan – sequence: 4 givenname: Taku surname: Nonomura fullname: Nonomura, Taku organization: Department of Aerospace Engineering, Tohoku University, Sendai, Japan – sequence: 5 givenname: Keisuke surname: Asai fullname: Asai, Keisuke organization: Department of Aerospace Engineering, Tohoku University, Sendai, Japan – sequence: 6 givenname: Daisuke surname: Tsubakino fullname: Tsubakino, Daisuke organization: Department of Aerospace Engineering, Nagoya University, Nagoya, Japan |
| BookMark | eNqFkE1LwzAYx4NMcJt-Ai8Bz51J2qXtwYMM32Agwu4hS55qSpvUJFPmpzdbPXnQ0wN_nt_z8puhiXUWELqkZEEJ5dftYt-HMCwYYTQlJaf1CZpSUvOMMsonaEqqqspyVpIzNAuhJYTUBeFT9HIvQ8SvHkDvsRui6c2XjMZZ7BocwAbnU-lAHTNjcQ8y7Dz0YCP-NPENK-c9dDKCxtaZAOfotJFdgIufOkeb-7vN6jFbPz88rW7XmcpLHjNFJd2mrVXFClXQLYVKFgx4TpdAlg2UuS62kkClSa2BpcvLUrGSE61K1jT5HF2NYwfv3ncQomjdztu0UTBOC8p4XbHUlY9dyrsQPDRi8KaXfi8oEQd1ohVHdeKgTozqElX_opSJRyvRS9P9w96MLKTfPwx4EZQBq0AbnywK7cyf_Dc07Y7y |
| CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2023_124699 crossref_primary_10_3390_app11094216 crossref_primary_10_1109_JSEN_2024_3388849 crossref_primary_10_2514_1_G008324 crossref_primary_10_3389_fmars_2024_1467519 crossref_primary_10_1016_j_measurement_2024_115830 crossref_primary_10_1007_s00348_024_03778_0 crossref_primary_10_1007_s10483_025_3295_6 crossref_primary_10_1016_j_jweia_2022_105043 crossref_primary_10_1109_JSEN_2023_3328005 crossref_primary_10_1109_TSP_2022_3212150 crossref_primary_10_1109_LSENS_2025_3591066 crossref_primary_10_1109_ACCESS_2021_3067712 crossref_primary_10_1016_j_applthermaleng_2024_124476 crossref_primary_10_1016_j_expthermflusci_2024_111210 crossref_primary_10_1007_s42979_023_02505_6 crossref_primary_10_1109_LSP_2021_3050708 crossref_primary_10_1109_JSEN_2025_3537702 crossref_primary_10_1186_s13634_024_01127_1 crossref_primary_10_1109_JSEN_2024_3450898 crossref_primary_10_1007_s00348_022_03471_0 crossref_primary_10_1109_TIM_2024_3461788 crossref_primary_10_1109_TSP_2022_3224643 crossref_primary_10_1109_ACCESS_2021_3076186 crossref_primary_10_1007_s00162_022_00616_z crossref_primary_10_1016_j_icheatmasstransfer_2025_109517 crossref_primary_10_1109_ACCESS_2023_3291415 crossref_primary_10_2514_1_J063263 crossref_primary_10_1109_ACCESS_2022_3194250 crossref_primary_10_1109_JSEN_2023_3258223 crossref_primary_10_1115_1_4068570 crossref_primary_10_3390_s23135961 crossref_primary_10_1016_j_ress_2025_110877 crossref_primary_10_3390_s21227492 crossref_primary_10_1016_j_measurement_2025_117794 crossref_primary_10_32604_cmes_2021_016603 crossref_primary_10_1016_j_probengmech_2024_103727 crossref_primary_10_1063_5_0049071 crossref_primary_10_1007_s00348_025_04039_4 crossref_primary_10_1016_j_jprocont_2023_103035 crossref_primary_10_1177_00405175221084277 crossref_primary_10_1109_JSEN_2021_3073978 |
| Cites_doi | 10.2322/tjsass.62.227 10.1073/pnas.1517384113 10.1109/MCS.2018.2810460 10.1137/130949282 10.1109/TSP.2016.2550005 10.1109/JSEN.2021.3073978 10.1016/j.paerosci.2007.06.001 10.1137/090766498 10.1146/annurev.fl.25.010193.002543 10.1109/LSENS.2020.2999186 10.1109/TSP.2008.2007095 10.1016/j.measurement.2020.107873 10.1016/j.ymssp.2013.06.022 10.1111/j.2517-6161.1996.tb02068.x 10.1016/j.compfluid.2017.10.002 10.1016/S0305-0548(01)00048-X 10.1109/ACCESS.2021.3067712 10.1109/LSP.2021.3050708 10.1109/TCNS.2015.2453711 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Sep 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Sep 2021 |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ymssp.2021.107619 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1096-1216 |
| ExternalDocumentID | 10_1016_j_ymssp_2021_107619 S0888327021000145 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSV SSZ T5K WUQ XPP ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c376t-c1a1beed8824c41b1e8a42e6315e05fe73d4ba0e8d09de227077c2760dc72ff3 |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000636423500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0888-3270 |
| IngestDate | Mon Jul 14 08:23:18 EDT 2025 Sat Nov 29 07:13:01 EST 2025 Tue Nov 18 21:46:58 EST 2025 Fri Feb 23 02:46:08 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sensor placement optimization 37M05 Greedy algorithm Data processing 90C27 62F15 Bayesian state estimation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c376t-c1a1beed8824c41b1e8a42e6315e05fe73d4ba0e8d09de227077c2760dc72ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doi.org/10.1016/j.ymssp.2021.107619 |
| PQID | 2614126982 |
| PQPubID | 2045429 |
| ParticipantIDs | proquest_journals_2614126982 crossref_primary_10_1016_j_ymssp_2021_107619 crossref_citationtrail_10_1016_j_ymssp_2021_107619 elsevier_sciencedirect_doi_10_1016_j_ymssp_2021_107619 |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 2021-09-00 20210901 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin |
| PublicationPlace_xml | – name: Berlin |
| PublicationTitle | Mechanical systems and signal processing |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Uciński (b0110) 2020; 164 Brunton, Tu, Bright, Kutz (b0020) 2014; 13 Saito, Nonomura, Nankai, Yamada, Asai, Sasaki, Tsubakino (b0120) 2020; 4 K. Nakai, K. Yamada, T. Nagata, Y. Saito, T. Nonomura, Effect of objective function on data-driven sparsesensor optimization (2020). arXiv:2007.05377. Ye, Roy, Sundaram (b0060) 2018 Udwadia (b0025) 1994; 120 NOAA/OAR/ESRL, Noaa optimal interpolation (oi) sea surface temperature (sst) v2 (July 2019). Chaturantabut, Sorensen (b0035) 2010; 32 Joshi, Boyd (b0065) 2009; 57 Nankai, Ozawa, Nonomura, Asai (b0115) 2019; 62 Semaan (b0040) 2017; 159 Liu, Chepuri, Fardad, Maşazade, Leus, Varshney (b0105) 2016; 64 Corke, Post, Orlov (b0010) 2007; 43 Brunton, Proctor, Kutz (b0030) 2016; 113 T. Nagata, T. Nonomura, K. Nakai, K. Yamada, Y. Saito, S. Ono, Data-driven sparse sensor placement based on a-optimal design of experiment with admm (2020). arXiv:2010.09329. Dhingra, Jovanović, Luo (b0085) 2014 Bates, Buck, Riccomagno, Wynn (b0015) 1996; 58 Y. Saito, T. Nonomura, K. Yamada, K. Asai, Y. Sasaki, D. Tsubakino, Determinant-based fast greedy sensor selection algorithm (2019). arXiv:1911.08757. Manohar, Brunton, Kutz, Brunton (b0075) 2018; 38 Kincaid, Padula (b0005) 2002; 29 O’Connor, Kleijn, Abhayapala (b0095) 2016 Castro-Triguero, Murugan, Gallego, Friswell (b0100) 2013; 41 . Berkooz, Holmes, Lumley (b0045) 1993; 25 B. Peherstorfer, Z. Drmac, S. Gugercin, Stability of discrete empirical interpolation and gappy proper orthogonal decomposition with randomized and deterministic sampling points (2018). arXiv:1808.10473. Summers, Cortesi, Lygeros (b0130) 2015; 3 Nonomura, Ono, Nakai, Saito (b0070) 2021; 28 Joshi (10.1016/j.ymssp.2021.107619_b0065) 2009; 57 Nonomura (10.1016/j.ymssp.2021.107619_b0070) 2021; 28 Nankai (10.1016/j.ymssp.2021.107619_b0115) 2019; 62 Brunton (10.1016/j.ymssp.2021.107619_b0020) 2014; 13 Brunton (10.1016/j.ymssp.2021.107619_b0030) 2016; 113 10.1016/j.ymssp.2021.107619_b0050 Liu (10.1016/j.ymssp.2021.107619_b0105) 2016; 64 Saito (10.1016/j.ymssp.2021.107619_b0120) 2020; 4 Ye (10.1016/j.ymssp.2021.107619_b0060) 2018 Chaturantabut (10.1016/j.ymssp.2021.107619_b0035) 2010; 32 Castro-Triguero (10.1016/j.ymssp.2021.107619_b0100) 2013; 41 Summers (10.1016/j.ymssp.2021.107619_b0130) 2015; 3 10.1016/j.ymssp.2021.107619_b0055 Kincaid (10.1016/j.ymssp.2021.107619_b0005) 2002; 29 Berkooz (10.1016/j.ymssp.2021.107619_b0045) 1993; 25 10.1016/j.ymssp.2021.107619_b0090 Semaan (10.1016/j.ymssp.2021.107619_b0040) 2017; 159 Uciński (10.1016/j.ymssp.2021.107619_b0110) 2020; 164 Corke (10.1016/j.ymssp.2021.107619_b0010) 2007; 43 O’Connor (10.1016/j.ymssp.2021.107619_b0095) 2016 Manohar (10.1016/j.ymssp.2021.107619_b0075) 2018; 38 Udwadia (10.1016/j.ymssp.2021.107619_b0025) 1994; 120 10.1016/j.ymssp.2021.107619_b0080 Bates (10.1016/j.ymssp.2021.107619_b0015) 1996; 58 Dhingra (10.1016/j.ymssp.2021.107619_b0085) 2014 10.1016/j.ymssp.2021.107619_b0125 |
| References_xml | – volume: 4 year: 2020 ident: b0120 article-title: Data-driven vector-measurement-sensor selection based on greedy algorithm publication-title: IEEE Sens. Lett. – start-page: 5049 year: 2018 end-page: 5054 ident: b0060 article-title: On the complexity and approximability of optimal sensor selection for kalman filtering publication-title: 2018 Annual American Control Conference (ACC) – volume: 29 start-page: 701 year: 2002 end-page: 713 ident: b0005 article-title: D-optimal designs for sensor and actuator locations publication-title: Comput. Oper. Res. – volume: 43 start-page: 193 year: 2007 end-page: 217 ident: b0010 article-title: Sdbd plasma enhanced aerodynamics: concepts, optimization and applications publication-title: Prog. Aerosp. Sci. – volume: 28 start-page: 284 year: 2021 end-page: 288 ident: b0070 article-title: Randomized subspace newton convex method applied to data-driven sensor selection problem publication-title: IEEE Signal Process. Lett. – volume: 41 start-page: 268 year: 2013 end-page: 287 ident: b0100 article-title: Robustness of optimal sensor placement under parametric uncertainty publication-title: Mech. Syst. Signal Process. – volume: 13 start-page: 1716 year: 2014 end-page: 1732 ident: b0020 article-title: Compressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systems publication-title: SIAM J. Appl. Dyn. Syst. – volume: 58 start-page: 77 year: 1996 end-page: 94 ident: b0015 article-title: Experimental design and observation for large systems publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.) – reference: T. Nagata, T. Nonomura, K. Nakai, K. Yamada, Y. Saito, S. Ono, Data-driven sparse sensor placement based on a-optimal design of experiment with admm (2020). arXiv:2010.09329. – volume: 25 start-page: 539 year: 1993 end-page: 575 ident: b0045 article-title: The proper orthogonal decomposition in the analysis of turbulent flows publication-title: Ann. Rev. Fluid Mech. – reference: K. Nakai, K. Yamada, T. Nagata, Y. Saito, T. Nonomura, Effect of objective function on data-driven sparsesensor optimization (2020). arXiv:2007.05377. – volume: 32 start-page: 2737 year: 2010 end-page: 2764 ident: b0035 article-title: Nonlinear model reduction via discrete empirical interpolation publication-title: SIAM J. Sci. Comput. – reference: B. Peherstorfer, Z. Drmac, S. Gugercin, Stability of discrete empirical interpolation and gappy proper orthogonal decomposition with randomized and deterministic sampling points (2018). arXiv:1808.10473. – start-page: 4039 year: 2014 end-page: 4044 ident: b0085 article-title: An admm algorithm for optimal sensor and actuator selection, in publication-title: 53rd IEEE Conference on Decision and Control – volume: 57 start-page: 451 year: 2009 end-page: 462 ident: b0065 article-title: Sensor selection via convex optimization publication-title: IEEE Trans. Signal Process. – volume: 38 start-page: 63 year: 2018 end-page: 86 ident: b0075 article-title: Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns publication-title: IEEE Control Syst. Mag. – reference: Y. Saito, T. Nonomura, K. Yamada, K. Asai, Y. Sasaki, D. Tsubakino, Determinant-based fast greedy sensor selection algorithm (2019). arXiv:1911.08757. – volume: 62 start-page: 227 year: 2019 end-page: 235 ident: b0115 article-title: Linear reduced-order model based on piv data of flow field around airfoil publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. – volume: 120 start-page: 368 year: 1994 end-page: 390 ident: b0025 article-title: Methodology for optimum sensor locations for parameter identification in dynamic systems publication-title: J. Eng. Mech. – volume: 113 start-page: 3932 year: 2016 end-page: 3937 ident: b0030 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc. Natl. Acad. Sci. – reference: NOAA/OAR/ESRL, Noaa optimal interpolation (oi) sea surface temperature (sst) v2 (July 2019). – reference: . – volume: 3 start-page: 91 year: 2015 end-page: 101 ident: b0130 article-title: On submodularity and controllability in complex dynamical networks publication-title: IEEE Trans. Control Netw. Syst. – volume: 159 start-page: 167 year: 2017 end-page: 176 ident: b0040 article-title: Optimal sensor placement using machine learning publication-title: Comput. Fluids – volume: 164 start-page: 107873 year: 2020 ident: b0110 article-title: D-optimal sensor selection in the presence of correlated measurement noise publication-title: Measurement – volume: 64 start-page: 3509 year: 2016 end-page: 3522 ident: b0105 article-title: Sensor selection for estimation with correlated measurement noise publication-title: IEEE Trans. Signal Process. – start-page: 106 year: 2016 end-page: 110 ident: b0095 article-title: Distributed sparse mvdr beamforming using the bi-alternating direction method of multipliers publication-title: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 62 start-page: 227 issue: 4 year: 2019 ident: 10.1016/j.ymssp.2021.107619_b0115 article-title: Linear reduced-order model based on piv data of flow field around airfoil publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. doi: 10.2322/tjsass.62.227 – volume: 120 start-page: 368 issue: 2 year: 1994 ident: 10.1016/j.ymssp.2021.107619_b0025 article-title: Methodology for optimum sensor locations for parameter identification in dynamic systems publication-title: J. Eng. Mech. – volume: 113 start-page: 3932 issue: 15 year: 2016 ident: 10.1016/j.ymssp.2021.107619_b0030 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1517384113 – volume: 38 start-page: 63 issue: 3 year: 2018 ident: 10.1016/j.ymssp.2021.107619_b0075 article-title: Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns publication-title: IEEE Control Syst. Mag. doi: 10.1109/MCS.2018.2810460 – volume: 13 start-page: 1716 issue: 4 year: 2014 ident: 10.1016/j.ymssp.2021.107619_b0020 article-title: Compressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systems publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/130949282 – ident: 10.1016/j.ymssp.2021.107619_b0050 – volume: 64 start-page: 3509 issue: 13 year: 2016 ident: 10.1016/j.ymssp.2021.107619_b0105 article-title: Sensor selection for estimation with correlated measurement noise publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2550005 – ident: 10.1016/j.ymssp.2021.107619_b0090 doi: 10.1109/JSEN.2021.3073978 – volume: 43 start-page: 193 issue: 7–8 year: 2007 ident: 10.1016/j.ymssp.2021.107619_b0010 article-title: Sdbd plasma enhanced aerodynamics: concepts, optimization and applications publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2007.06.001 – start-page: 106 year: 2016 ident: 10.1016/j.ymssp.2021.107619_b0095 article-title: Distributed sparse mvdr beamforming using the bi-alternating direction method of multipliers – volume: 32 start-page: 2737 issue: 5 year: 2010 ident: 10.1016/j.ymssp.2021.107619_b0035 article-title: Nonlinear model reduction via discrete empirical interpolation publication-title: SIAM J. Sci. Comput. doi: 10.1137/090766498 – volume: 25 start-page: 539 issue: 1 year: 1993 ident: 10.1016/j.ymssp.2021.107619_b0045 article-title: The proper orthogonal decomposition in the analysis of turbulent flows publication-title: Ann. Rev. Fluid Mech. doi: 10.1146/annurev.fl.25.010193.002543 – volume: 4 year: 2020 ident: 10.1016/j.ymssp.2021.107619_b0120 article-title: Data-driven vector-measurement-sensor selection based on greedy algorithm publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2020.2999186 – ident: 10.1016/j.ymssp.2021.107619_b0080 – ident: 10.1016/j.ymssp.2021.107619_b0125 – volume: 57 start-page: 451 issue: 2 year: 2009 ident: 10.1016/j.ymssp.2021.107619_b0065 article-title: Sensor selection via convex optimization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.2007095 – volume: 164 start-page: 107873 year: 2020 ident: 10.1016/j.ymssp.2021.107619_b0110 article-title: D-optimal sensor selection in the presence of correlated measurement noise publication-title: Measurement doi: 10.1016/j.measurement.2020.107873 – volume: 41 start-page: 268 issue: 1–2 year: 2013 ident: 10.1016/j.ymssp.2021.107619_b0100 article-title: Robustness of optimal sensor placement under parametric uncertainty publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.06.022 – start-page: 5049 year: 2018 ident: 10.1016/j.ymssp.2021.107619_b0060 article-title: On the complexity and approximability of optimal sensor selection for kalman filtering – volume: 58 start-page: 77 issue: 1 year: 1996 ident: 10.1016/j.ymssp.2021.107619_b0015 article-title: Experimental design and observation for large systems publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1996.tb02068.x – start-page: 4039 year: 2014 ident: 10.1016/j.ymssp.2021.107619_b0085 article-title: An admm algorithm for optimal sensor and actuator selection, in – volume: 159 start-page: 167 year: 2017 ident: 10.1016/j.ymssp.2021.107619_b0040 article-title: Optimal sensor placement using machine learning publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2017.10.002 – volume: 29 start-page: 701 issue: 6 year: 2002 ident: 10.1016/j.ymssp.2021.107619_b0005 article-title: D-optimal designs for sensor and actuator locations publication-title: Comput. Oper. Res. doi: 10.1016/S0305-0548(01)00048-X – ident: 10.1016/j.ymssp.2021.107619_b0055 doi: 10.1109/ACCESS.2021.3067712 – volume: 28 start-page: 284 year: 2021 ident: 10.1016/j.ymssp.2021.107619_b0070 article-title: Randomized subspace newton convex method applied to data-driven sensor selection problem publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2021.3050708 – volume: 3 start-page: 91 issue: 1 year: 2015 ident: 10.1016/j.ymssp.2021.107619_b0130 article-title: On submodularity and controllability in complex dynamical networks publication-title: IEEE Trans. Control Netw. Syst. doi: 10.1109/TCNS.2015.2453711 |
| SSID | ssj0009406 |
| Score | 2.571247 |
| Snippet | •A sub-optimal sensor selection method was introduced for sensing high-dimensional, low-ranked phenomena.•Maximization on the determinant of the Fisher... A greedy algorithm is proposed for sparse-sensor selection in reduced-order sensing that contains correlated noise in measurement. The sensor selection is... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107619 |
| SubjectTerms | Algorithms Bayesian analysis Bayesian state estimation Computational efficiency Computing time Conditional probability Covariance matrix Data processing Fisher information Greedy algorithm Greedy algorithms Noise Noise measurement Optimization Parameter estimation Sensor placement optimization Sensors |
| Title | Fast greedy optimization of sensor selection in measurement with correlated noise |
| URI | https://dx.doi.org/10.1016/j.ymssp.2021.107619 https://www.proquest.com/docview/2614126982 |
| Volume | 158 |
| WOSCitedRecordID | wos000636423500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOiE9tYyAfuJVM8Udi5zihTYDEBFIP5WQ5sYPSrsnUtNM47H_HX0m6ARU7cIkqK3Etv1_ee355v_cAeEek1nki40hhRSIqEYokKvJIGXtASckTjnPXbIKdn_PZLPs6Gt10XJirC1bX_Po6u_yvojZjRtiWOnsPcfeTmgHz2wjdXI3YzfWfBH8m2_XEnKK1LRZtFMIyMC2tW9iaQ2uzmrSu-U3IclwOUcIuEX3lGC42MaCp2lu5Ql-0ZQp7KqWvde6-PtgsEEvp8qyDzhpaZSKXUnnWma5-NH08R1aufdPk-2Ze9fFoWS9Cc-xmMYxa1sXGdUOaTOVisx2mwKjPwxq0GY8I9l1CetXry7YH5YlcTOWPet2HGObHP5dta6uMYnQ83H27ivYd69bnHHbpbHPhJhF2EuEneQD2MEsyPgZ7J59OZ5-Hqs3UNWft196VrXIJgr-t5W-uzR0j7zyX6VPwJBw54ImHyjMw0vVz8HirEOUL8M2CBnrQwG3QwKaEHjSwBw2sargFGmhBAwfQQAeal2B6djr98DEKzTaiwtiYdVQgiXLzL-bERQuKcqS5pFinBCU6TkrNiKK5jDVXcaY0NpvBWIFZGquC4bIkr8C4bmq9DyDhCVOxLFiiJbWf2UmJJE90luo0V4QeANxtkyhCIXrbD-VC7BDRAXjfP3Tp67Dsvj3t9l8EV9K7iMIgaveDR520RHipW4GND4twmnF8eL9lvAaPhnfhCIzXq41-Ax4WV-uqXb0NaPsFKl-kmg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+greedy+optimization+of+sensor+selection+in+measurement+with+correlated+noise&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Yamada%2C+Keigo&rft.au=Saito%2C+Yuji&rft.au=Nankai%2C+Koki&rft.au=Nonomura%2C+Taku&rft.date=2021-09-01&rft.issn=0888-3270&rft.volume=158&rft.spage=107619&rft_id=info:doi/10.1016%2Fj.ymssp.2021.107619&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2021_107619 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |