Fast greedy optimization of sensor selection in measurement with correlated noise

•A sub-optimal sensor selection method was introduced for sensing high-dimensional, low-ranked phenomena.•Maximization on the determinant of the Fisher Information matrix was conducted.•Data-driven modeling of the correlated measurement noise was developed.•Mode information was utilized for efficien...

Full description

Saved in:
Bibliographic Details
Published in:Mechanical systems and signal processing Vol. 158; p. 107619
Main Authors: Yamada, Keigo, Saito, Yuji, Nankai, Koki, Nonomura, Taku, Asai, Keisuke, Tsubakino, Daisuke
Format: Journal Article
Language:English
Published: Berlin Elsevier Ltd 01.09.2021
Elsevier BV
Subjects:
ISSN:0888-3270, 1096-1216
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A sub-optimal sensor selection method was introduced for sensing high-dimensional, low-ranked phenomena.•Maximization on the determinant of the Fisher Information matrix was conducted.•Data-driven modeling of the correlated measurement noise was developed.•Mode information was utilized for efficient algorithm computation. A greedy algorithm is proposed for sparse-sensor selection in reduced-order sensing that contains correlated noise in measurement. The sensor selection is carried out by maximizing the determinant of the Fisher information matrix in a Bayesian estimation operator. The Bayesian estimation with a covariance matrix of the measurement noise and a prior probability distribution of estimating parameters, which are given by the modal decomposition of high dimensional data, robustly works even in the presence of the correlated noise. After computational efficiency of the algorithm is improved by a low-rank approximation of the noise covariance matrix, the proposed algorithms are applied to various problems. The proposed method yields more accurate reconstruction than the previously presented method with the determinant-based greedy algorithm, with reasonable increase in computational time.
AbstractList •A sub-optimal sensor selection method was introduced for sensing high-dimensional, low-ranked phenomena.•Maximization on the determinant of the Fisher Information matrix was conducted.•Data-driven modeling of the correlated measurement noise was developed.•Mode information was utilized for efficient algorithm computation. A greedy algorithm is proposed for sparse-sensor selection in reduced-order sensing that contains correlated noise in measurement. The sensor selection is carried out by maximizing the determinant of the Fisher information matrix in a Bayesian estimation operator. The Bayesian estimation with a covariance matrix of the measurement noise and a prior probability distribution of estimating parameters, which are given by the modal decomposition of high dimensional data, robustly works even in the presence of the correlated noise. After computational efficiency of the algorithm is improved by a low-rank approximation of the noise covariance matrix, the proposed algorithms are applied to various problems. The proposed method yields more accurate reconstruction than the previously presented method with the determinant-based greedy algorithm, with reasonable increase in computational time.
A greedy algorithm is proposed for sparse-sensor selection in reduced-order sensing that contains correlated noise in measurement. The sensor selection is carried out by maximizing the determinant of the Fisher information matrix in a Bayesian estimation operator. The Bayesian estimation with a covariance matrix of the measurement noise and a prior probability distribution of estimating parameters, which are given by the modal decomposition of high dimensional data, robustly works even in the presence of the correlated noise. After computational efficiency of the algorithm is improved by a low-rank approximation of the noise covariance matrix, the proposed algorithms are applied to various problems. The proposed method yields more accurate reconstruction than the previously presented method with the determinant-based greedy algorithm, with reasonable increase in computational time.
ArticleNumber 107619
Author Tsubakino, Daisuke
Yamada, Keigo
Asai, Keisuke
Nankai, Koki
Nonomura, Taku
Saito, Yuji
Author_xml – sequence: 1
  givenname: Keigo
  surname: Yamada
  fullname: Yamada, Keigo
  email: keigo.yamada.t5@dc.tohoku.ac.jp
  organization: Department of Aerospace Engineering, Tohoku University, Sendai, Japan
– sequence: 2
  givenname: Yuji
  surname: Saito
  fullname: Saito, Yuji
  organization: Department of Aerospace Engineering, Tohoku University, Sendai, Japan
– sequence: 3
  givenname: Koki
  surname: Nankai
  fullname: Nankai, Koki
  organization: Department of Aerospace Engineering, Tohoku University, Sendai, Japan
– sequence: 4
  givenname: Taku
  surname: Nonomura
  fullname: Nonomura, Taku
  organization: Department of Aerospace Engineering, Tohoku University, Sendai, Japan
– sequence: 5
  givenname: Keisuke
  surname: Asai
  fullname: Asai, Keisuke
  organization: Department of Aerospace Engineering, Tohoku University, Sendai, Japan
– sequence: 6
  givenname: Daisuke
  surname: Tsubakino
  fullname: Tsubakino, Daisuke
  organization: Department of Aerospace Engineering, Nagoya University, Nagoya, Japan
BookMark eNqFkE1LwzAYx4NMcJt-Ai8Bz51J2qXtwYMM32Agwu4hS55qSpvUJFPmpzdbPXnQ0wN_nt_z8puhiXUWELqkZEEJ5dftYt-HMCwYYTQlJaf1CZpSUvOMMsonaEqqqspyVpIzNAuhJYTUBeFT9HIvQ8SvHkDvsRui6c2XjMZZ7BocwAbnU-lAHTNjcQ8y7Dz0YCP-NPENK-c9dDKCxtaZAOfotJFdgIufOkeb-7vN6jFbPz88rW7XmcpLHjNFJd2mrVXFClXQLYVKFgx4TpdAlg2UuS62kkClSa2BpcvLUrGSE61K1jT5HF2NYwfv3ncQomjdztu0UTBOC8p4XbHUlY9dyrsQPDRi8KaXfi8oEQd1ohVHdeKgTozqElX_opSJRyvRS9P9w96MLKTfPwx4EZQBq0AbnywK7cyf_Dc07Y7y
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2023_124699
crossref_primary_10_3390_app11094216
crossref_primary_10_1109_JSEN_2024_3388849
crossref_primary_10_2514_1_G008324
crossref_primary_10_3389_fmars_2024_1467519
crossref_primary_10_1016_j_measurement_2024_115830
crossref_primary_10_1007_s00348_024_03778_0
crossref_primary_10_1007_s10483_025_3295_6
crossref_primary_10_1016_j_jweia_2022_105043
crossref_primary_10_1109_JSEN_2023_3328005
crossref_primary_10_1109_TSP_2022_3212150
crossref_primary_10_1109_LSENS_2025_3591066
crossref_primary_10_1109_ACCESS_2021_3067712
crossref_primary_10_1016_j_applthermaleng_2024_124476
crossref_primary_10_1016_j_expthermflusci_2024_111210
crossref_primary_10_1007_s42979_023_02505_6
crossref_primary_10_1109_LSP_2021_3050708
crossref_primary_10_1109_JSEN_2025_3537702
crossref_primary_10_1186_s13634_024_01127_1
crossref_primary_10_1109_JSEN_2024_3450898
crossref_primary_10_1007_s00348_022_03471_0
crossref_primary_10_1109_TIM_2024_3461788
crossref_primary_10_1109_TSP_2022_3224643
crossref_primary_10_1109_ACCESS_2021_3076186
crossref_primary_10_1007_s00162_022_00616_z
crossref_primary_10_1016_j_icheatmasstransfer_2025_109517
crossref_primary_10_1109_ACCESS_2023_3291415
crossref_primary_10_2514_1_J063263
crossref_primary_10_1109_ACCESS_2022_3194250
crossref_primary_10_1109_JSEN_2023_3258223
crossref_primary_10_1115_1_4068570
crossref_primary_10_3390_s23135961
crossref_primary_10_1016_j_ress_2025_110877
crossref_primary_10_3390_s21227492
crossref_primary_10_1016_j_measurement_2025_117794
crossref_primary_10_32604_cmes_2021_016603
crossref_primary_10_1016_j_probengmech_2024_103727
crossref_primary_10_1063_5_0049071
crossref_primary_10_1007_s00348_025_04039_4
crossref_primary_10_1016_j_jprocont_2023_103035
crossref_primary_10_1177_00405175221084277
crossref_primary_10_1109_JSEN_2021_3073978
Cites_doi 10.2322/tjsass.62.227
10.1073/pnas.1517384113
10.1109/MCS.2018.2810460
10.1137/130949282
10.1109/TSP.2016.2550005
10.1109/JSEN.2021.3073978
10.1016/j.paerosci.2007.06.001
10.1137/090766498
10.1146/annurev.fl.25.010193.002543
10.1109/LSENS.2020.2999186
10.1109/TSP.2008.2007095
10.1016/j.measurement.2020.107873
10.1016/j.ymssp.2013.06.022
10.1111/j.2517-6161.1996.tb02068.x
10.1016/j.compfluid.2017.10.002
10.1016/S0305-0548(01)00048-X
10.1109/ACCESS.2021.3067712
10.1109/LSP.2021.3050708
10.1109/TCNS.2015.2453711
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Sep 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 2021
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2021.107619
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2021_107619
S0888327021000145
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c376t-c1a1beed8824c41b1e8a42e6315e05fe73d4ba0e8d09de227077c2760dc72ff3
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000636423500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-3270
IngestDate Mon Jul 14 08:23:18 EDT 2025
Sat Nov 29 07:13:01 EST 2025
Tue Nov 18 21:46:58 EST 2025
Fri Feb 23 02:46:08 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Sensor placement optimization
37M05
Greedy algorithm
Data processing
90C27
62F15
Bayesian state estimation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-c1a1beed8824c41b1e8a42e6315e05fe73d4ba0e8d09de227077c2760dc72ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1016/j.ymssp.2021.107619
PQID 2614126982
PQPubID 2045429
ParticipantIDs proquest_journals_2614126982
crossref_primary_10_1016_j_ymssp_2021_107619
crossref_citationtrail_10_1016_j_ymssp_2021_107619
elsevier_sciencedirect_doi_10_1016_j_ymssp_2021_107619
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Uciński (b0110) 2020; 164
Brunton, Tu, Bright, Kutz (b0020) 2014; 13
Saito, Nonomura, Nankai, Yamada, Asai, Sasaki, Tsubakino (b0120) 2020; 4
K. Nakai, K. Yamada, T. Nagata, Y. Saito, T. Nonomura, Effect of objective function on data-driven sparsesensor optimization (2020). arXiv:2007.05377.
Ye, Roy, Sundaram (b0060) 2018
Udwadia (b0025) 1994; 120
NOAA/OAR/ESRL, Noaa optimal interpolation (oi) sea surface temperature (sst) v2 (July 2019).
Chaturantabut, Sorensen (b0035) 2010; 32
Joshi, Boyd (b0065) 2009; 57
Nankai, Ozawa, Nonomura, Asai (b0115) 2019; 62
Semaan (b0040) 2017; 159
Liu, Chepuri, Fardad, Maşazade, Leus, Varshney (b0105) 2016; 64
Corke, Post, Orlov (b0010) 2007; 43
Brunton, Proctor, Kutz (b0030) 2016; 113
T. Nagata, T. Nonomura, K. Nakai, K. Yamada, Y. Saito, S. Ono, Data-driven sparse sensor placement based on a-optimal design of experiment with admm (2020). arXiv:2010.09329.
Dhingra, Jovanović, Luo (b0085) 2014
Bates, Buck, Riccomagno, Wynn (b0015) 1996; 58
Y. Saito, T. Nonomura, K. Yamada, K. Asai, Y. Sasaki, D. Tsubakino, Determinant-based fast greedy sensor selection algorithm (2019). arXiv:1911.08757.
Manohar, Brunton, Kutz, Brunton (b0075) 2018; 38
Kincaid, Padula (b0005) 2002; 29
O’Connor, Kleijn, Abhayapala (b0095) 2016
Castro-Triguero, Murugan, Gallego, Friswell (b0100) 2013; 41
.
Berkooz, Holmes, Lumley (b0045) 1993; 25
B. Peherstorfer, Z. Drmac, S. Gugercin, Stability of discrete empirical interpolation and gappy proper orthogonal decomposition with randomized and deterministic sampling points (2018). arXiv:1808.10473.
Summers, Cortesi, Lygeros (b0130) 2015; 3
Nonomura, Ono, Nakai, Saito (b0070) 2021; 28
Joshi (10.1016/j.ymssp.2021.107619_b0065) 2009; 57
Nonomura (10.1016/j.ymssp.2021.107619_b0070) 2021; 28
Nankai (10.1016/j.ymssp.2021.107619_b0115) 2019; 62
Brunton (10.1016/j.ymssp.2021.107619_b0020) 2014; 13
Brunton (10.1016/j.ymssp.2021.107619_b0030) 2016; 113
10.1016/j.ymssp.2021.107619_b0050
Liu (10.1016/j.ymssp.2021.107619_b0105) 2016; 64
Saito (10.1016/j.ymssp.2021.107619_b0120) 2020; 4
Ye (10.1016/j.ymssp.2021.107619_b0060) 2018
Chaturantabut (10.1016/j.ymssp.2021.107619_b0035) 2010; 32
Castro-Triguero (10.1016/j.ymssp.2021.107619_b0100) 2013; 41
Summers (10.1016/j.ymssp.2021.107619_b0130) 2015; 3
10.1016/j.ymssp.2021.107619_b0055
Kincaid (10.1016/j.ymssp.2021.107619_b0005) 2002; 29
Berkooz (10.1016/j.ymssp.2021.107619_b0045) 1993; 25
10.1016/j.ymssp.2021.107619_b0090
Semaan (10.1016/j.ymssp.2021.107619_b0040) 2017; 159
Uciński (10.1016/j.ymssp.2021.107619_b0110) 2020; 164
Corke (10.1016/j.ymssp.2021.107619_b0010) 2007; 43
O’Connor (10.1016/j.ymssp.2021.107619_b0095) 2016
Manohar (10.1016/j.ymssp.2021.107619_b0075) 2018; 38
Udwadia (10.1016/j.ymssp.2021.107619_b0025) 1994; 120
10.1016/j.ymssp.2021.107619_b0080
Bates (10.1016/j.ymssp.2021.107619_b0015) 1996; 58
Dhingra (10.1016/j.ymssp.2021.107619_b0085) 2014
10.1016/j.ymssp.2021.107619_b0125
References_xml – volume: 4
  year: 2020
  ident: b0120
  article-title: Data-driven vector-measurement-sensor selection based on greedy algorithm
  publication-title: IEEE Sens. Lett.
– start-page: 5049
  year: 2018
  end-page: 5054
  ident: b0060
  article-title: On the complexity and approximability of optimal sensor selection for kalman filtering
  publication-title: 2018 Annual American Control Conference (ACC)
– volume: 29
  start-page: 701
  year: 2002
  end-page: 713
  ident: b0005
  article-title: D-optimal designs for sensor and actuator locations
  publication-title: Comput. Oper. Res.
– volume: 43
  start-page: 193
  year: 2007
  end-page: 217
  ident: b0010
  article-title: Sdbd plasma enhanced aerodynamics: concepts, optimization and applications
  publication-title: Prog. Aerosp. Sci.
– volume: 28
  start-page: 284
  year: 2021
  end-page: 288
  ident: b0070
  article-title: Randomized subspace newton convex method applied to data-driven sensor selection problem
  publication-title: IEEE Signal Process. Lett.
– volume: 41
  start-page: 268
  year: 2013
  end-page: 287
  ident: b0100
  article-title: Robustness of optimal sensor placement under parametric uncertainty
  publication-title: Mech. Syst. Signal Process.
– volume: 13
  start-page: 1716
  year: 2014
  end-page: 1732
  ident: b0020
  article-title: Compressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systems
  publication-title: SIAM J. Appl. Dyn. Syst.
– volume: 58
  start-page: 77
  year: 1996
  end-page: 94
  ident: b0015
  article-title: Experimental design and observation for large systems
  publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.)
– reference: T. Nagata, T. Nonomura, K. Nakai, K. Yamada, Y. Saito, S. Ono, Data-driven sparse sensor placement based on a-optimal design of experiment with admm (2020). arXiv:2010.09329.
– volume: 25
  start-page: 539
  year: 1993
  end-page: 575
  ident: b0045
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Ann. Rev. Fluid Mech.
– reference: K. Nakai, K. Yamada, T. Nagata, Y. Saito, T. Nonomura, Effect of objective function on data-driven sparsesensor optimization (2020). arXiv:2007.05377.
– volume: 32
  start-page: 2737
  year: 2010
  end-page: 2764
  ident: b0035
  article-title: Nonlinear model reduction via discrete empirical interpolation
  publication-title: SIAM J. Sci. Comput.
– reference: B. Peherstorfer, Z. Drmac, S. Gugercin, Stability of discrete empirical interpolation and gappy proper orthogonal decomposition with randomized and deterministic sampling points (2018). arXiv:1808.10473.
– start-page: 4039
  year: 2014
  end-page: 4044
  ident: b0085
  article-title: An admm algorithm for optimal sensor and actuator selection, in
  publication-title: 53rd IEEE Conference on Decision and Control
– volume: 57
  start-page: 451
  year: 2009
  end-page: 462
  ident: b0065
  article-title: Sensor selection via convex optimization
  publication-title: IEEE Trans. Signal Process.
– volume: 38
  start-page: 63
  year: 2018
  end-page: 86
  ident: b0075
  article-title: Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns
  publication-title: IEEE Control Syst. Mag.
– reference: Y. Saito, T. Nonomura, K. Yamada, K. Asai, Y. Sasaki, D. Tsubakino, Determinant-based fast greedy sensor selection algorithm (2019). arXiv:1911.08757.
– volume: 62
  start-page: 227
  year: 2019
  end-page: 235
  ident: b0115
  article-title: Linear reduced-order model based on piv data of flow field around airfoil
  publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci.
– volume: 120
  start-page: 368
  year: 1994
  end-page: 390
  ident: b0025
  article-title: Methodology for optimum sensor locations for parameter identification in dynamic systems
  publication-title: J. Eng. Mech.
– volume: 113
  start-page: 3932
  year: 2016
  end-page: 3937
  ident: b0030
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
– reference: NOAA/OAR/ESRL, Noaa optimal interpolation (oi) sea surface temperature (sst) v2 (July 2019).
– reference: .
– volume: 3
  start-page: 91
  year: 2015
  end-page: 101
  ident: b0130
  article-title: On submodularity and controllability in complex dynamical networks
  publication-title: IEEE Trans. Control Netw. Syst.
– volume: 159
  start-page: 167
  year: 2017
  end-page: 176
  ident: b0040
  article-title: Optimal sensor placement using machine learning
  publication-title: Comput. Fluids
– volume: 164
  start-page: 107873
  year: 2020
  ident: b0110
  article-title: D-optimal sensor selection in the presence of correlated measurement noise
  publication-title: Measurement
– volume: 64
  start-page: 3509
  year: 2016
  end-page: 3522
  ident: b0105
  article-title: Sensor selection for estimation with correlated measurement noise
  publication-title: IEEE Trans. Signal Process.
– start-page: 106
  year: 2016
  end-page: 110
  ident: b0095
  article-title: Distributed sparse mvdr beamforming using the bi-alternating direction method of multipliers
  publication-title: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 62
  start-page: 227
  issue: 4
  year: 2019
  ident: 10.1016/j.ymssp.2021.107619_b0115
  article-title: Linear reduced-order model based on piv data of flow field around airfoil
  publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci.
  doi: 10.2322/tjsass.62.227
– volume: 120
  start-page: 368
  issue: 2
  year: 1994
  ident: 10.1016/j.ymssp.2021.107619_b0025
  article-title: Methodology for optimum sensor locations for parameter identification in dynamic systems
  publication-title: J. Eng. Mech.
– volume: 113
  start-page: 3932
  issue: 15
  year: 2016
  ident: 10.1016/j.ymssp.2021.107619_b0030
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1517384113
– volume: 38
  start-page: 63
  issue: 3
  year: 2018
  ident: 10.1016/j.ymssp.2021.107619_b0075
  article-title: Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/MCS.2018.2810460
– volume: 13
  start-page: 1716
  issue: 4
  year: 2014
  ident: 10.1016/j.ymssp.2021.107619_b0020
  article-title: Compressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systems
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/130949282
– ident: 10.1016/j.ymssp.2021.107619_b0050
– volume: 64
  start-page: 3509
  issue: 13
  year: 2016
  ident: 10.1016/j.ymssp.2021.107619_b0105
  article-title: Sensor selection for estimation with correlated measurement noise
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2550005
– ident: 10.1016/j.ymssp.2021.107619_b0090
  doi: 10.1109/JSEN.2021.3073978
– volume: 43
  start-page: 193
  issue: 7–8
  year: 2007
  ident: 10.1016/j.ymssp.2021.107619_b0010
  article-title: Sdbd plasma enhanced aerodynamics: concepts, optimization and applications
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2007.06.001
– start-page: 106
  year: 2016
  ident: 10.1016/j.ymssp.2021.107619_b0095
  article-title: Distributed sparse mvdr beamforming using the bi-alternating direction method of multipliers
– volume: 32
  start-page: 2737
  issue: 5
  year: 2010
  ident: 10.1016/j.ymssp.2021.107619_b0035
  article-title: Nonlinear model reduction via discrete empirical interpolation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090766498
– volume: 25
  start-page: 539
  issue: 1
  year: 1993
  ident: 10.1016/j.ymssp.2021.107619_b0045
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Ann. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.25.010193.002543
– volume: 4
  year: 2020
  ident: 10.1016/j.ymssp.2021.107619_b0120
  article-title: Data-driven vector-measurement-sensor selection based on greedy algorithm
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2020.2999186
– ident: 10.1016/j.ymssp.2021.107619_b0080
– ident: 10.1016/j.ymssp.2021.107619_b0125
– volume: 57
  start-page: 451
  issue: 2
  year: 2009
  ident: 10.1016/j.ymssp.2021.107619_b0065
  article-title: Sensor selection via convex optimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.2007095
– volume: 164
  start-page: 107873
  year: 2020
  ident: 10.1016/j.ymssp.2021.107619_b0110
  article-title: D-optimal sensor selection in the presence of correlated measurement noise
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107873
– volume: 41
  start-page: 268
  issue: 1–2
  year: 2013
  ident: 10.1016/j.ymssp.2021.107619_b0100
  article-title: Robustness of optimal sensor placement under parametric uncertainty
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.06.022
– start-page: 5049
  year: 2018
  ident: 10.1016/j.ymssp.2021.107619_b0060
  article-title: On the complexity and approximability of optimal sensor selection for kalman filtering
– volume: 58
  start-page: 77
  issue: 1
  year: 1996
  ident: 10.1016/j.ymssp.2021.107619_b0015
  article-title: Experimental design and observation for large systems
  publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1996.tb02068.x
– start-page: 4039
  year: 2014
  ident: 10.1016/j.ymssp.2021.107619_b0085
  article-title: An admm algorithm for optimal sensor and actuator selection, in
– volume: 159
  start-page: 167
  year: 2017
  ident: 10.1016/j.ymssp.2021.107619_b0040
  article-title: Optimal sensor placement using machine learning
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2017.10.002
– volume: 29
  start-page: 701
  issue: 6
  year: 2002
  ident: 10.1016/j.ymssp.2021.107619_b0005
  article-title: D-optimal designs for sensor and actuator locations
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(01)00048-X
– ident: 10.1016/j.ymssp.2021.107619_b0055
  doi: 10.1109/ACCESS.2021.3067712
– volume: 28
  start-page: 284
  year: 2021
  ident: 10.1016/j.ymssp.2021.107619_b0070
  article-title: Randomized subspace newton convex method applied to data-driven sensor selection problem
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2021.3050708
– volume: 3
  start-page: 91
  issue: 1
  year: 2015
  ident: 10.1016/j.ymssp.2021.107619_b0130
  article-title: On submodularity and controllability in complex dynamical networks
  publication-title: IEEE Trans. Control Netw. Syst.
  doi: 10.1109/TCNS.2015.2453711
SSID ssj0009406
Score 2.571247
Snippet •A sub-optimal sensor selection method was introduced for sensing high-dimensional, low-ranked phenomena.•Maximization on the determinant of the Fisher...
A greedy algorithm is proposed for sparse-sensor selection in reduced-order sensing that contains correlated noise in measurement. The sensor selection is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107619
SubjectTerms Algorithms
Bayesian analysis
Bayesian state estimation
Computational efficiency
Computing time
Conditional probability
Covariance matrix
Data processing
Fisher information
Greedy algorithm
Greedy algorithms
Noise
Noise measurement
Optimization
Parameter estimation
Sensor placement optimization
Sensors
Title Fast greedy optimization of sensor selection in measurement with correlated noise
URI https://dx.doi.org/10.1016/j.ymssp.2021.107619
https://www.proquest.com/docview/2614126982
Volume 158
WOSCitedRecordID wos000636423500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOiE9tYyAfuJVM8Udi5zihTYDEBFIP5WQ5sYPSrsnUtNM47H_HX0m6ARU7cIkqK3Etv1_ee355v_cAeEek1nki40hhRSIqEYokKvJIGXtASckTjnPXbIKdn_PZLPs6Gt10XJirC1bX_Po6u_yvojZjRtiWOnsPcfeTmgHz2wjdXI3YzfWfBH8m2_XEnKK1LRZtFMIyMC2tW9iaQ2uzmrSu-U3IclwOUcIuEX3lGC42MaCp2lu5Ql-0ZQp7KqWvde6-PtgsEEvp8qyDzhpaZSKXUnnWma5-NH08R1aufdPk-2Ze9fFoWS9Cc-xmMYxa1sXGdUOaTOVisx2mwKjPwxq0GY8I9l1CetXry7YH5YlcTOWPet2HGObHP5dta6uMYnQ83H27ivYd69bnHHbpbHPhJhF2EuEneQD2MEsyPgZ7J59OZ5-Hqs3UNWft196VrXIJgr-t5W-uzR0j7zyX6VPwJBw54ImHyjMw0vVz8HirEOUL8M2CBnrQwG3QwKaEHjSwBw2sargFGmhBAwfQQAeal2B6djr98DEKzTaiwtiYdVQgiXLzL-bERQuKcqS5pFinBCU6TkrNiKK5jDVXcaY0NpvBWIFZGquC4bIkr8C4bmq9DyDhCVOxLFiiJbWf2UmJJE90luo0V4QeANxtkyhCIXrbD-VC7BDRAXjfP3Tp67Dsvj3t9l8EV9K7iMIgaveDR520RHipW4GND4twmnF8eL9lvAaPhnfhCIzXq41-Ax4WV-uqXb0NaPsFKl-kmg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+greedy+optimization+of+sensor+selection+in+measurement+with+correlated+noise&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Yamada%2C+Keigo&rft.au=Saito%2C+Yuji&rft.au=Nankai%2C+Koki&rft.au=Nonomura%2C+Taku&rft.date=2021-09-01&rft.issn=0888-3270&rft.volume=158&rft.spage=107619&rft_id=info:doi/10.1016%2Fj.ymssp.2021.107619&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2021_107619
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon