On a new one-step method for numerical solution of initial-value problems in ordinary differential equations

In this paper, we propose a numerical algorithm which is based on the representation of the theoretical solution by a perturbation of a polynomial interpolating function with an exponential function. The numerical algorithm is stable, consistent and convergent. Some numerical results were obtained t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer mathematics Ročník 77; číslo 3; s. 457 - 467
Hlavní autoři: Kama, P., Ibijola, E.A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Gordon and Breach Science Publishers 01.01.2001
Taylor and Francis
Témata:
ISSN:0020-7160, 1029-0265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we propose a numerical algorithm which is based on the representation of the theoretical solution by a perturbation of a polynomial interpolating function with an exponential function. The numerical algorithm is stable, consistent and convergent. Some numerical results were obtained to illustrate the accuracy of the algorithm.
AbstractList In this paper, we propose a numerical algorithm which is based on the representation of the theoretical solution by a perturbation of a polynomial interpolating function with an exponential function. The numerical algorithm is stable, consistent and convergent. Some numerical results were obtained to illustrate the accuracy of the algorithm.
Author Ibijola, E.A.
Kama, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Kama
  fullname: Kama, P.
  organization: Department of Applied Mathematics , University of Fort Hare
– sequence: 2
  givenname: E.A.
  surname: Ibijola
  fullname: Ibijola, E.A.
  organization: Department of Applied Mathematics , University of Fort Hare
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14060935$$DView record in Pascal Francis
BookMark eNqFkEtPHDEQhC0EUnaBH5CbLxwntHfG9ozEBaEEkJD2Es4jP4Ujj72xvWz238fD6wAiObXcrq-6VEt0GGIwCH0l8I1AD-cAK-CEQX30QIH3B2hBYDU0sGL0EC3m_2YWfEHLnH8BQD9wtkB-HbDAwexw9WtyMRs8mfIQNbYx4bCdTHJKeJyj3xYXA44Wu-CKE755FH5r8CZF6c2U6xrHpF0QaY-1s9YkE2YdNr-3YmbzCTqywmdz-jKP0f2P7z-vbpq79fXt1eVdo1rOSiO1pkwpaLXUnFk-KKqolJRb2fJWqs52hDAOvKOGQ2tZv-rV0DGp5WCBmvYYnT37bkSu4W0SQbk8bpKbariRdMBgaGnV8WedSjHnZOyoXHmKWpJwfiQwzuWOH8qtJHlHvpn_g3m55kLtdhK7mLwei9j7mF4jfqDG8qdU8uK_ZPv54b9OdKQd
CODEN IJCMAT
CitedBy_id crossref_primary_10_1007_BF02832047
crossref_primary_10_1088_1742_6596_2199_1_012007
Cites_doi 10.1016/0898-1221(76)90017-1
10.1080/00207169908804894
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2001
2002 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2001
– notice: 2002 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1080/00207160108805078
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
EISSN 1029-0265
EndPage 467
ExternalDocumentID 14060935
10_1080_00207160108805078
8805078
GroupedDBID -~X
.7F
.QJ
0BK
0R~
1TA
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AMVHM
AQTUD
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
DU5
EBS
EJD
ESX
E~A
E~B
GTTXZ
H13
HZ~
H~P
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
QCRFL
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
VH1
WH7
ZGOLN
~S~
.4S
.DC
07G
29J
AAIKQ
AAKBW
AAYJJ
AAYXX
ABDBF
ABEFU
ACGEE
ACTCW
ACTIO
ACUHS
AEUMN
AFFNX
AGCQS
AGLEN
AMXXU
AQRUH
ARCSS
BCCOT
BPLKW
C06
CITATION
DWIFK
EAP
EDO
EMK
EPL
EST
HF~
H~9
IPNFZ
IVXBP
LJTGL
MK~
NUSFT
RIG
TAQ
TFMCV
TUS
UB9
UU8
V3K
V4Q
ZY4
ADYSH
IQODW
ID FETCH-LOGICAL-c376t-bdd56cc03dbd76f79c5c5bb57fb373bc4f411670745e703f6828c946bdb9f05e3
IEDL.DBID TFW
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000170715400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7160
IngestDate Mon Jul 21 09:17:18 EDT 2025
Tue Nov 18 22:41:45 EST 2025
Sat Nov 29 02:21:27 EST 2025
Mon May 13 12:10:04 EDT 2019
Mon Oct 20 23:46:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Interpolation
Accuracy
Stability
Differential equation
Polynomial interpolation
Initial value problem
Consistency
One step method
Numerical method
Perturbation
Algorithm
Convergence
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-bdd56cc03dbd76f79c5c5bb57fb373bc4f411670745e703f6828c946bdb9f05e3
PageCount 11
ParticipantIDs pascalfrancis_primary_14060935
crossref_primary_10_1080_00207160108805078
crossref_citationtrail_10_1080_00207160108805078
informaworld_taylorfrancis_310_1080_00207160108805078
PublicationCentury 2000
PublicationDate 1/1/2001
2001-01-00
2001
PublicationDateYYYYMMDD 2001-01-01
PublicationDate_xml – month: 01
  year: 2001
  text: 1/1/2001
  day: 01
PublicationDecade 2000
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of computer mathematics
PublicationYear 2001
Publisher Gordon and Breach Science Publishers
Taylor and Francis
Publisher_xml – name: Gordon and Breach Science Publishers
– name: Taylor and Francis
References Collatz L. (CIT0001) 1966
Ibijola E.A. (CIT0005) 1998
CIT0003
Fatunla S.O. (CIT0002) 1988
Henrici P. (CIT0004) 1976
CIT0006
Labert J.D. (CIT0007) 1973
References_xml – ident: CIT0003
  doi: 10.1016/0898-1221(76)90017-1
– volume-title: The Numerical Treatment of Differential Equations
  year: 1966
  ident: CIT0001
– ident: CIT0006
  doi: 10.1080/00207169908804894
– volume-title: Ph.D. Thesis
  year: 1998
  ident: CIT0005
– volume-title: Discrete Variable Methods in Ordinary Differential Equations
  year: 1976
  ident: CIT0004
– volume-title: Computational Methods in Ordinary Differential Equations
  year: 1973
  ident: CIT0007
– volume-title: Numerical Methods for IVPs
  year: 1988
  ident: CIT0002
SSID ssj0008976
Score 1.5530899
Snippet In this paper, we propose a numerical algorithm which is based on the representation of the theoretical solution by a perturbation of a polynomial...
SourceID pascalfrancis
crossref
informaworld
SourceType Index Database
Enrichment Source
Publisher
StartPage 457
SubjectTerms Consistency
Exact sciences and technology
G1.7
Initial value
Interpolating function
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Sciences and techniques of general use
Stability
Title On a new one-step method for numerical solution of initial-value problems in ordinary differential equations
URI https://www.tandfonline.com/doi/abs/10.1080/00207160108805078
Volume 77
WOSCitedRecordID wos000170715400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1029-0265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008976
  issn: 0020-7160
  databaseCode: TFW
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1NS8MwNMjw4MX5ifNj5OBJCLSkaZujiMODTA8TdytJmsBgdHPtxJ_ve206N5UdFHoqL-kjeZ99X4RcqyCy3FrNuOARi0IMEmrNmQTbVQujZWzrQuHHZDhMx2P57HNzSp9WiT60axpF1LIamVvpss2IwwpuUIzoSQDxgT2Dpb6g9pEtR4PXlRxOZT1aDqEZgrcxzd922NBKGz1LMVlSlXBerhl0saZ9Bt1_4n1A9r3ZSW8bOjkkO7Y4It12pAP1HH5Mpk8FVRRMbTorLAMKmNNmxjQFXGmxbOI7U9pSLJ05OsH8IzVl2DfcUj-hpoTXFBzbutyXtmNYEI7at6a9eHlCXgb3o7sH5gcyMANyqGI6z0VsTMBznSexS6QRRmgtEqd5wrWJXIRhHbBKhAVJ4mJw54yMYp1r6QJh-SnpFID-GaGBUKmJYXkuVWQsWA1xGgqtQicEbKl6JGgvJDO-WzkOzZhm4aqp6bfT7JGb1ZJ506pjG3CwfstZVf8f8Xf8EzyrPqoeEVuW8C2f6m9Q0BdyYExhHPr8jxtfkL0mIw6fS9KpFkt7RXbNezUpF_2aGT4B0DAG7Q
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60CnrxLdZHzcGTENiSzT6OIpaKtXqo6G3ZZBMQyrZ2t-LPd2YftVXpQWFPyyQ7bCbzyEzmA7iIHdcIYxQXUrjcbVOSUCnBQ_RdldQq9ExxUbjn9_vBy0v4WB24ZVVZJcXQtmwUUehq2tx0GF2XxNEVbrSMFEqg9KFDE6zCmkQ7S73zB53nmSYOwgJcjsg50ddZzd-mWLBLC11LqVwyzvCP2RLqYs7-dLb_y_kObFWeJ7sqRWUXVky6B9s1qgOrNvk-DB9SFjP0ttkoNRyFYMxKmGmGzLJ0WqZ4hqwWWjay7JVKkOIhp9bhhlUgNRm-ZhjbFjd-WY3EQnTMvJUdxrMDeOrcDK67vMJk4BpVUc5VkkhPa0ckKvE964daaqmU9K0SvlDatS5ldtAxkQaVifUwotOh66lEhdaRRhxCI0X2j4A5Mg60h8OTMHa1QcfBC9pSxW0rJU4ZN8GpVyTSVcNyws0YRu1ZX9Nvf7MJl7Mh47JbxzJiZ36Zo7w4IqkW-Sd5lH_kTZBLhogln2otiNAXc-hPUSr6-I8Tn8NGd3Dfi3q3_bsT2CwL5Og5hUY-mZozWNfv-Ws2aRU74xNtpgsX
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MT5MfPgkxBoSdOPR1GL4ph7mLi30qQJDEo310788730YzqVPSj0qVzSkFwuv-td7gdwGVuOYkoJyjhzqGObIKEQjAaIXQWXInBVeVG45_X7_mgUDOrcnLxOqzQ-tK4KRZS22mzuaaKbjDhzgxsPRuNJoPIhnvHXYQNhs2sUfBi-LAyxH5TcckacGvkmqPlbF0vH0lLRUpMtGec4Ybpiuvhy_ITtfw58F3Zq3EmuK0XZgzWV7UO74XQg9RY_gPQpIzFBrE0mmaKoAlNSkUwTHCvJ5lWAJyWNypKJJmOTgBSn1BQOV6SmqMnxNUHPtrzvSxoeFiNH1GtVXzw_hOfwbnhzT2tGBirREBVUJAl3pbRYIhLP1V4gueRCcE8L5jEhHe2YuA7CEq7QlGgX_TkZOK5IRKAtrtgRtDIc_jEQi8e-dLF5EsSOVAgbXN_mIrY159hl3AGrWZBI1uXKDWtGGtmLqqbfZrMDV4sm06pWxyph6-sqR0X5g6Re45_iUfFedICvaMJWfKq7pEGfg0M0ZQLRJ3_s-AK2Brdh1HvoP57CdpUdZ54zaBWzuTqHTflWjPNZt9wXHz-KCck
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+new+one-step+method+for+numerical+solution+of+initial-value+problems+in+ordinary+differential+equations&rft.jtitle=International+journal+of+computer+mathematics&rft.au=KAMA%2C+P&rft.au=IBIJOLA%2C+E.+A&rft.date=2001&rft.pub=Taylor+and+Francis&rft.issn=0020-7160&rft.volume=77&rft.issue=3&rft.spage=457&rft.epage=467&rft_id=info:doi/10.1080%2F00207160108805078&rft.externalDBID=n%2Fa&rft.externalDocID=14060935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon