Modelling a permanent magnet synchronous motor in FEniCSx for parallel high-performance simulations

There are concerns that the extreme requirements of heavy-duty vehicles and aviation will see them left behind in the electrification of the transport sector, becoming the most significant emitters of greenhouse gases. Engineers extensively use the finite element method to analyse and improve the pe...

Full description

Saved in:
Bibliographic Details
Published in:Finite elements in analysis and design Vol. 204; p. 103755
Main Authors: McDonagh, James, Palumbo, Nunzio, Cherukunnath, Neeraj, Dimov, Nikolay, Yousif, Nada
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.07.2022
Elsevier BV
Subjects:
ISSN:0168-874X, 1872-6925
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract There are concerns that the extreme requirements of heavy-duty vehicles and aviation will see them left behind in the electrification of the transport sector, becoming the most significant emitters of greenhouse gases. Engineers extensively use the finite element method to analyse and improve the performance of electric machines, but new highly scalable methods with a linear (or near) time complexity are required to make extreme-scale models viable. This paper introduces a three-dimensional permanent magnet synchronous motor model using FEniCSx, a finite element platform tailored for efficient computing and data handling at scale. The model demonstrates comparable magnetic flux density distributions to a verification model built in Ansys Maxwell with a maximum deviation of 7% in the motor’s static regions. Solving the largest mesh, comprising over eight million cells, displayed a speedup of 198 at 512 processes. A preconditioned Krylov subspace method was used to solve the system, requiring 92% less memory than a direct solution. It is expected that advances built on this approach will allow system-level multiphysics simulations to become feasible within electric machine development. This capability could provide the near real-world accuracy needed to bring electric propulsion systems to large vehicles. •Stable and scalable electric machine analysis is possible using iterative methods.•Open-source solvers can leverage the advantages of high-performance computing.•The parallel performance of FEniCSx exceeds an established electromagnetic code.
AbstractList There are concerns that the extreme requirements of heavy-duty vehicles and aviation will see them left behind in the electrification of the transport sector, becoming the most significant emitters of greenhouse gases. Engineers extensively use the finite element method to analyse and improve the performance of electric machines, but new highly scalable methods with a linear (or near) time complexity are required to make extreme-scale models viable. This paper introduces a three-dimensional permanent magnet synchronous motor model using FEniCSx, a finite element platform tailored for efficient computing and data handling at scale. The model demonstrates comparable magnetic flux density distributions to a verification model built in Ansys Maxwell with a maximum deviation of 7% in the motor's static regions. Solving the largest mesh, comprising over eight million cells, displayed a speedup of 198 at 512 processes. A preconditioned Krylov subspace method was used to solve the system, requiring 92% less memory than a direct solution. It is expected that advances built on this approach will allow system-level multiphysics simulations to become feasible within electric machine development. This capability could provide the near real-world accuracy needed to bring electric propulsion systems to large vehicles.
There are concerns that the extreme requirements of heavy-duty vehicles and aviation will see them left behind in the electrification of the transport sector, becoming the most significant emitters of greenhouse gases. Engineers extensively use the finite element method to analyse and improve the performance of electric machines, but new highly scalable methods with a linear (or near) time complexity are required to make extreme-scale models viable. This paper introduces a three-dimensional permanent magnet synchronous motor model using FEniCSx, a finite element platform tailored for efficient computing and data handling at scale. The model demonstrates comparable magnetic flux density distributions to a verification model built in Ansys Maxwell with a maximum deviation of 7% in the motor’s static regions. Solving the largest mesh, comprising over eight million cells, displayed a speedup of 198 at 512 processes. A preconditioned Krylov subspace method was used to solve the system, requiring 92% less memory than a direct solution. It is expected that advances built on this approach will allow system-level multiphysics simulations to become feasible within electric machine development. This capability could provide the near real-world accuracy needed to bring electric propulsion systems to large vehicles. •Stable and scalable electric machine analysis is possible using iterative methods.•Open-source solvers can leverage the advantages of high-performance computing.•The parallel performance of FEniCSx exceeds an established electromagnetic code.
ArticleNumber 103755
Author Palumbo, Nunzio
McDonagh, James
Dimov, Nikolay
Yousif, Nada
Cherukunnath, Neeraj
Author_xml – sequence: 1
  givenname: James
  orcidid: 0000-0002-2774-7177
  surname: McDonagh
  fullname: McDonagh, James
  email: james.d.mcdonagh@outlook.com
  organization: School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
– sequence: 2
  givenname: Nunzio
  surname: Palumbo
  fullname: Palumbo, Nunzio
  organization: Future Methods, Rolls-Royce plc, Derby, DE24 8BJ, United Kingdom
– sequence: 3
  givenname: Neeraj
  surname: Cherukunnath
  fullname: Cherukunnath, Neeraj
  organization: Future Methods, Rolls-Royce plc, Derby, DE24 8BJ, United Kingdom
– sequence: 4
  givenname: Nikolay
  surname: Dimov
  fullname: Dimov, Nikolay
  organization: School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
– sequence: 5
  givenname: Nada
  surname: Yousif
  fullname: Yousif, Nada
  organization: School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
BookMark eNqFkLFOwzAQhi1UJErhCVgsMafYSZ3EAwOqWkAqYgAkNstJzq0rxy62i-jb47ZMDDCdfPq_O993jgbWWUDoipIxJbS8WY-VtmDGOcnz1Ckqxk7QkNZVnpU8ZwM0TKk6q6vJ-xk6D2FNCGF5ORmi9sl1YIy2SyzxBnwvLdiIe7m0EHHY2XblnXXbgHsXncfa4vnM6unLF1bpuZFeGgMGr_RylSU-NdOIFnDQ_dbIqJ0NF-hUSRPg8qeO0Nt89jp9yBbP94_Tu0XWFlUZs4YqphrgRUc5LThVBVMK6qpRXdNJCs2krDs1kVVdQK5Yk87ralZXTFYNYQSKEbo-zt1497GFEMXabb1NK0VelpxwzihPKX5Mtd6F4EGJVsfDR6OX2ghKxN6pWIuDU7F3Ko5OE1v8Yjde99Lv_qFujxSk4z81eBFaDUlSpz20UXRO_8l_A7ahlak
CitedBy_id crossref_primary_10_1007_s42835_025_02250_1
crossref_primary_10_1016_j_est_2024_110893
crossref_primary_10_1016_j_measurement_2025_117208
crossref_primary_10_3390_en16052182
crossref_primary_10_1016_j_est_2022_106443
crossref_primary_10_3390_en15218077
crossref_primary_10_1007_s40430_024_04723_2
crossref_primary_10_1177_18758967251358111
Cites_doi 10.1109/MCSE.2017.2421459
10.1145/2566630
10.5897/SRE11.901
10.1145/1644001.1644009
10.1109/TMAG.2012.2206821
10.1109/20.996119
10.1556/Pollack.4.2009.2.6
10.1007/PL00005386
10.1016/0304-8853(86)90066-1
10.1016/j.finel.2018.11.002
10.1109/20.996141
10.1016/0166-3615(91)90049-F
10.1016/S0167-8191(00)00106-X
10.1016/j.cam.2010.05.021
10.1109/TMAG.2009.2022328
10.1109/20.104981
10.1109/12.21127
10.1109/20.123957
10.3390/en14020328
10.2528/PIER17072501
10.1137/S0036142997326203
10.1109/20.334188
10.3390/en11020344
10.1002/nla.2215
10.1109/TTE.2018.2834142
10.1016/j.parco.2007.12.001
10.1088/1748-9326/ab6658
10.1126/science.aam9744
10.1109/20.280859
10.1109/TMAG.2015.2455955
10.1137/0710032
10.1145/1163641.1163644
10.1016/0895-7177(88)90478-5
ContentType Journal Article
Copyright 2022 The Authors
Copyright Elsevier BV Jul 1, 2022
Copyright_xml – notice: 2022 The Authors
– notice: Copyright Elsevier BV Jul 1, 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.finel.2022.103755
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-6925
ExternalDocumentID 10_1016_j_finel_2022_103755
S0168874X22000312
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LX9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29H
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
T9H
VH1
WUQ
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c376t-b1f5fbe93d191391f35ffe87bfdbda1eb468df4a783e2f5b187d85875a7b050e3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798382600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-874X
IngestDate Sun Oct 05 00:16:00 EDT 2025
Sat Nov 29 07:28:00 EST 2025
Tue Nov 18 22:23:32 EST 2025
Fri Feb 23 02:39:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Open-source software
FEniCS
Electric machine
High-performance computing
Maxwell’s equations
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-b1f5fbe93d191391f35ffe87bfdbda1eb468df4a783e2f5b187d85875a7b050e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2774-7177
OpenAccessLink https://dx.doi.org/10.1016/j.finel.2022.103755
PQID 2669099519
PQPubID 2045476
ParticipantIDs proquest_journals_2669099519
crossref_citationtrail_10_1016_j_finel_2022_103755
crossref_primary_10_1016_j_finel_2022_103755
elsevier_sciencedirect_doi_10_1016_j_finel_2022_103755
PublicationCentury 2000
PublicationDate 2022-07-01
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Finite elements in analysis and design
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Williams (b6) 2019
Mirzaie, Yazdani-Asrami, Akmal (b32) 2011; 6
Wolff, Kalt, Bstieler, Lienkamp (b4) 2021; 14
Marcsa, Kuczmann (b33) 2009; 4
Bastos, Sadowski (b38) 2003
Alnæs, Blechta, Hake, Johansson, Kehlet, Logg, Richardson, Ring, Rognes, Wells (b13) 2015; 3
Haase, Kuhn, Langer (b27) 2001; 27
Rudyy, Garcia-Gasulla, Mantovani, Santiago, Sirvent, Vázquez (b46) 2019
Alnæs, Logg, Ølgaard, Rognes, Wells (b16) 2014; 40
Ansys (b62) 2019
George (b9) 1973; 10
Leiserson, Thompson, Emer, Kuszmaul, Lampson, Sanchez, Schardl (b12) 2020; 368
Zhou, Jiao (b11) 2013
Balay, Abhyankar, Adams, Benson, Brown, Brune, Buschelman, Constantinescu, Dalcin, Dener, Eijkhout, Gropp, Hapla, Isaac, Jolivet, Karpeev, Kaushik, Knepley, Kong, Kruger, May, McInnes, Mills, Mitchell, Munson, Roman, Rupp, Sanan, Sarich, Smith, Zampini, Zhang, Zhang, Zhang (b22) 2021
Smith (b66) 2014
IEA (b1) 2021
Bermúdez, Gómez, Salgado (b59) 2014
Chevalier, Pellegrini (b63) 2008; 34
Ansys (b55) 2019
Jiles, Atherton (b36) 1986; 61
Bastos, Sadowski (b42) 2003
Chow, Falgout, Hu, Tuminaro, Yang (b70) 2006
Ansys (b53) 2019
.
Bermúdez, Gómez, Salgado (b35) 2014
Balay, Abhyankar, Adams, Benson, Brown, Brune, Buschelman, Constantinescu, Dalcin, Dener, Eijkhout, Gropp, Hapla, Isaac, Jolivet, Karpeev, Kaushik, Knepley, Kong, Kruger, May, McInnes, Mills, Mitchell, Munson, Roman, Rupp, Sanan, Sarich, Smith, Zampini, Zhang, Zhang, Zhang (b23) 2021
Meessen, Paulides, Lomonova (b60) 2013; 49
Eager, Zahorjan, Lazowska (b65) 1989; 38
IEA (b2) 2020
Mayergoyz, Bedrosian (b28) 1993; 29
Liu, Bondeson, Bergström, Johnson, Larson, Samuelsson (b30) 2002; 38
M. Habera, J.S. Hale, C.N. Richardson, J. Ring, M.E. Rognes, N. Sime, G.N. Wells, FEniCSX: A sustainable future for the FEniCS Project, in: SIAM PP20 Minisymposium: Improving Productivity and Sustainability for Parallel Computing Software, Seattle WA, US, 2020
Zhang, Fujimori (b3) 2020; 15
Song, Ida (b44) 1991; 27
Marcsa, Kuczmann (b54) 2009; 45
Ansys (b67) 2017
Logg, Mardal, Wells (b14) 2012
Kirby, Logg (b18) 2006; 32
Balay, Gropp, McInnes, Smith (b24) 1997
Simpson, Mellor (b26) 2015
Hiptmair (b71) 1998; 36
Ølgaard, Wells (b20) 2010; 37
Scroggs, Dokken, Richardson, Wells (b21) 2021
Zhang, Cen (b40) 2016
Ansys (b57) 2019
Ghai, Lu, Jiao (b48) 2019; 26
Henke, Narjes, Hoffmann, Wohlers, Urbanek, Heister, Steinbrink, Canders, Ponick (b7) 2018; 11
Chan, Chau (b25) 1991; 17
Sadowski, Lefevre, Lajoie-Mazenc, Cros (b41) 1992; 28
Bastos, Sadowski (b34) 2014
Arnold, Falk, Winther (b69) 2000; 85
Zhang, Cen (b37) 2016
Lubin, Rezzoug (b39) 2015; 51
Logg, Ølgaard, Rognes, Wells (b19) 2012
Ma, Hu, Yuan, Liu (b51) 2021; 2021
Ayachit (b58) 2015
Rodger, Lai, Leonard (b31) 2002; 38
Gordon, Gordon (b49) 2010; 234
Hale, Li, Richardson, Wells (b45) 2017; 19
Cendes, Smetak, Shenton (b52) 1988; 11
Alnæs (b17) 2012
Bastos, Sadowski (b43) 2014
Madonna, Giangrande, Galea (b8) 2018; 4
Wang, Klie, Parashar, Sudan (b50) 2009; 5544
Rodger, Allen, Coles, Street, Leonard, Eastham (b29) 1994; 30
Collette (b47) 2013
Richardson, Sime, Wells (b10) 2019; 155
The HDF Group (b68) 1997
El-Refaie, Osama (b5) 2017
He, Lu, Chen, Lin, Rosu, Zhou (b56) 2017; 160
Richardson, Wells (b64) 2013
Park, Kim, Jung (b61) 2016; 26
Chan (10.1016/j.finel.2022.103755_b25) 1991; 17
Sadowski (10.1016/j.finel.2022.103755_b41) 1992; 28
Marcsa (10.1016/j.finel.2022.103755_b54) 2009; 45
IEA (10.1016/j.finel.2022.103755_b2) 2020
George (10.1016/j.finel.2022.103755_b9) 1973; 10
Bermúdez (10.1016/j.finel.2022.103755_b35) 2014
Ghai (10.1016/j.finel.2022.103755_b48) 2019; 26
Ma (10.1016/j.finel.2022.103755_b51) 2021; 2021
Ansys (10.1016/j.finel.2022.103755_b55) 2019
Smith (10.1016/j.finel.2022.103755_b66) 2014
Richardson (10.1016/j.finel.2022.103755_b64) 2013
Balay (10.1016/j.finel.2022.103755_b22) 2021
Balay (10.1016/j.finel.2022.103755_b24) 1997
Meessen (10.1016/j.finel.2022.103755_b60) 2013; 49
10.1016/j.finel.2022.103755_b15
Ansys (10.1016/j.finel.2022.103755_b62) 2019
Cendes (10.1016/j.finel.2022.103755_b52) 1988; 11
The HDF Group (10.1016/j.finel.2022.103755_b68) 1997
Haase (10.1016/j.finel.2022.103755_b27) 2001; 27
Bastos (10.1016/j.finel.2022.103755_b42) 2003
Richardson (10.1016/j.finel.2022.103755_b10) 2019; 155
Hale (10.1016/j.finel.2022.103755_b45) 2017; 19
Song (10.1016/j.finel.2022.103755_b44) 1991; 27
Arnold (10.1016/j.finel.2022.103755_b69) 2000; 85
El-Refaie (10.1016/j.finel.2022.103755_b5) 2017
Logg (10.1016/j.finel.2022.103755_b14) 2012
Leiserson (10.1016/j.finel.2022.103755_b12) 2020; 368
Williams (10.1016/j.finel.2022.103755_b6) 2019
Rodger (10.1016/j.finel.2022.103755_b31) 2002; 38
Eager (10.1016/j.finel.2022.103755_b65) 1989; 38
Bastos (10.1016/j.finel.2022.103755_b38) 2003
Hiptmair (10.1016/j.finel.2022.103755_b71) 1998; 36
Jiles (10.1016/j.finel.2022.103755_b36) 1986; 61
Zhang (10.1016/j.finel.2022.103755_b40) 2016
Bermúdez (10.1016/j.finel.2022.103755_b59) 2014
Henke (10.1016/j.finel.2022.103755_b7) 2018; 11
Ayachit (10.1016/j.finel.2022.103755_b58) 2015
Alnæs (10.1016/j.finel.2022.103755_b16) 2014; 40
Mayergoyz (10.1016/j.finel.2022.103755_b28) 1993; 29
Collette (10.1016/j.finel.2022.103755_b47) 2013
Ansys (10.1016/j.finel.2022.103755_b53) 2019
Rudyy (10.1016/j.finel.2022.103755_b46) 2019
Ansys (10.1016/j.finel.2022.103755_b57) 2019
Bastos (10.1016/j.finel.2022.103755_b34) 2014
Gordon (10.1016/j.finel.2022.103755_b49) 2010; 234
He (10.1016/j.finel.2022.103755_b56) 2017; 160
Kirby (10.1016/j.finel.2022.103755_b18) 2006; 32
Wolff (10.1016/j.finel.2022.103755_b4) 2021; 14
Zhou (10.1016/j.finel.2022.103755_b11) 2013
Simpson (10.1016/j.finel.2022.103755_b26) 2015
Zhang (10.1016/j.finel.2022.103755_b37) 2016
Lubin (10.1016/j.finel.2022.103755_b39) 2015; 51
Alnæs (10.1016/j.finel.2022.103755_b13) 2015; 3
Chevalier (10.1016/j.finel.2022.103755_b63) 2008; 34
Zhang (10.1016/j.finel.2022.103755_b3) 2020; 15
Alnæs (10.1016/j.finel.2022.103755_b17) 2012
Ølgaard (10.1016/j.finel.2022.103755_b20) 2010; 37
Park (10.1016/j.finel.2022.103755_b61) 2016; 26
Ansys (10.1016/j.finel.2022.103755_b67) 2017
Mirzaie (10.1016/j.finel.2022.103755_b32) 2011; 6
Marcsa (10.1016/j.finel.2022.103755_b33) 2009; 4
Madonna (10.1016/j.finel.2022.103755_b8) 2018; 4
Bastos (10.1016/j.finel.2022.103755_b43) 2014
Rodger (10.1016/j.finel.2022.103755_b29) 1994; 30
Chow (10.1016/j.finel.2022.103755_b70) 2006
Scroggs (10.1016/j.finel.2022.103755_b21) 2021
IEA (10.1016/j.finel.2022.103755_b1) 2021
Logg (10.1016/j.finel.2022.103755_b19) 2012
Wang (10.1016/j.finel.2022.103755_b50) 2009; 5544
Liu (10.1016/j.finel.2022.103755_b30) 2002; 38
Balay (10.1016/j.finel.2022.103755_b23) 2021
References_xml – start-page: 179
  year: 2006
  end-page: 201
  ident: b70
  article-title: A survey of parallelization techniques for multigrid solvers
  publication-title: Parallel Processing for Scientific Computing
– start-page: 243
  year: 2014
  end-page: 259
  ident: b43
  article-title: Using nodal elements with magnetic vector potential
  publication-title: Magnetic Materials and 3D Finite Element Modeling
– volume: 5544
  start-page: 864
  year: 2009
  end-page: 873
  ident: b50
  article-title: Solving sparse linear systems on NVIDIA Tesla GPUs
  publication-title: Computational Science – ICCS 2009
– volume: 17
  start-page: 367
  year: 1991
  end-page: 374
  ident: b25
  article-title: Design of electrical machines by the finite element method using distributed computing
  publication-title: Comput. Ind.
– volume: 11
  start-page: 334
  year: 2018
  ident: b7
  article-title: Challenges and opportunities of very light high-performance electric drives for aviation
  publication-title: Energies
– start-page: 1223
  year: 2019
  end-page: 1225
  ident: b57
  article-title: Time decomposition method for maxwell transient designs
  publication-title: Maxwell Help, Electromagnetics Suite 2019 R3
– start-page: 303
  year: 2012
  end-page: 338
  ident: b17
  article-title: UFL: a finite element form language
  publication-title: Automated Solution of Differential Equations By the Finite Element Method
– volume: 26
  year: 2019
  ident: b48
  article-title: A comparison of preconditioned Krylov subspace methods for large-scale nonsymmetric linear systems
  publication-title: Numer. Linear Algebra Appl.
– year: 2021
  ident: b1
  article-title: Global EV Outlook 2021
– volume: 61
  start-page: 48
  year: 1986
  end-page: 60
  ident: b36
  article-title: Theory of ferromagnetic hysteresis
  publication-title: J. Magn. Magn. Mater.
– year: 2015
  ident: b58
  article-title: The ParaView Guide: A Parallel Visualization Application
– volume: 38
  start-page: 449
  year: 2002
  end-page: 452
  ident: b30
  article-title: Eddy-current computations using adaptive grids and edge elements
  publication-title: IEEE Trans. Magn.
– start-page: 2925
  year: 2019
  end-page: 2928
  ident: b55
  article-title: Iterative matrix solver technical details
  publication-title: Maxwell Help, Electromagnetics Suite 2019 R3
– start-page: 2928
  year: 2019
  end-page: 2930
  ident: b53
  article-title: 3D transient excitations (sources)
  publication-title: Maxwell Help, Electromagnetics Suite 2019 R3
– start-page: 567
  year: 2019
  end-page: 577
  ident: b46
  article-title: Containers in HPC: A scalability and portability study in production biological simulations
  publication-title: 2019 IEEE International Parallel and Distributed Processing Symposium
– volume: 14
  start-page: 328
  year: 2021
  ident: b4
  article-title: Influence of powertrain topology and electric machine design on efficiency of battery electric trucks—A simulative case-study
  publication-title: Energies
– volume: 49
  start-page: 536
  year: 2013
  end-page: 545
  ident: b60
  article-title: Force calculations in 3-D cylindrical structures using Fourier analysis and the Maxwell stress tensor
  publication-title: IEEE Trans. Magn.
– volume: 368
  year: 2020
  ident: b12
  article-title: There’s plenty of room at the top: What will drive computer performance after moore’s law?
  publication-title: Science
– volume: 2021
  year: 2021
  ident: b51
  article-title: Developing a multi-GPU-enabled preconditioned GMRES with inexact triangular solves for block sparse matrices
  publication-title: Math. Probl. Eng.
– year: 2021
  ident: b23
  article-title: PETSc/TAO Users Manual
– start-page: 1
  year: 2014
  end-page: 57
  ident: b34
  article-title: Statics and quasistatics electromagnetics brief presentation
  publication-title: Magnetic Materials and 3D Finite Element Modeling
– start-page: 77
  year: 2014
  end-page: 113
  ident: b59
  article-title: Maxwell’s equations in material regions
  publication-title: Mathematical Models and Numerical Simulation in Electromagnetism
– start-page: 343
  year: 2003
  end-page: 366
  ident: b42
  article-title: Movement modeling for electrical machines
  publication-title: Electromagnetic Modeling By Finite Element Methods
– start-page: 1
  year: 2015
  end-page: 8
  ident: b26
  article-title: Exploiting cloud computing in the multi-physics design and optimisation of electromagnetic devices
  publication-title: 2015 IEEE 16th Workshop on Control and Modeling for Power Electronics
– start-page: 164
  year: 2016
  end-page: 166
  ident: b40
  article-title: Mesh controls for rotating machinery
  publication-title: Multiphysics Modeling: Numerical Methods and Engineering Applications
– year: 2014
  ident: b66
  article-title: 16X Speedup in ANSYS Maxwell DSO on 32-Core High-Performance Compute Farm Doubles Traction Motor Design Productivity at General Motors
– start-page: 183
  year: 2014
  end-page: 216
  ident: b35
  article-title: The eddy currents model
  publication-title: Mathematical Models and Numerical Simulation in Electromagnetism
– volume: 4
  start-page: 646
  year: 2018
  end-page: 659
  ident: b8
  article-title: Electrical power generation in aircraft: Review, challenges, and opportunities
  publication-title: IEEE Trans. Transp. Electrification
– start-page: 227
  year: 2012
  end-page: 238
  ident: b19
  article-title: FFC: the FEniCS form compiler
  publication-title: Automated Solution of Differential Equations By the Finite Element Method
– volume: 27
  start-page: 4012
  year: 1991
  end-page: 4015
  ident: b44
  article-title: An eddy current constraint formulation for 3D electromagnetic field calculations
  publication-title: IEEE Trans. Magn.
– volume: 19
  start-page: 40
  year: 2017
  end-page: 50
  ident: b45
  article-title: Containers for portable, productive, and performant scientific computing
  publication-title: Comput. Sci. Eng.
– volume: 234
  start-page: 3480
  year: 2010
  end-page: 3495
  ident: b49
  article-title: Row scaling as a preconditioner for some nonsymmetric linear systems with discontinuous coefficients
  publication-title: J. Comput. Appl. Math.
– volume: 38
  start-page: 537
  year: 2002
  end-page: 540
  ident: b31
  article-title: A comparison of finite-element models for 3-D rotating conductors
  publication-title: IEEE Trans. Magn.
– reference: M. Habera, J.S. Hale, C.N. Richardson, J. Ring, M.E. Rognes, N. Sime, G.N. Wells, FEniCSX: A sustainable future for the FEniCS Project, in: SIAM PP20 Minisymposium: Improving Productivity and Sustainability for Parallel Computing Software, Seattle WA, US, 2020,
– year: 2021
  ident: b22
  article-title: PETSc web page
– volume: 4
  start-page: 57
  year: 2009
  end-page: 66
  ident: b33
  article-title: Motional finite element simulation of a single-phase induction motor
  publication-title: Pollack Period.
– volume: 34
  start-page: 318
  year: 2008
  end-page: 331
  ident: b63
  article-title: PT-Scotch: A tool for efficient parallel graph ordering
  publication-title: Parallel Comput.
– volume: 32
  start-page: 417
  year: 2006
  end-page: 444
  ident: b18
  article-title: A compiler for variational forms
  publication-title: ACM Trans. Math. Software
– start-page: 163
  year: 1997
  end-page: 202
  ident: b24
  article-title: Efficient management of parallelism in object oriented numerical software libraries
  publication-title: Modern Software Tools in Scientific Computing
– volume: 28
  start-page: 1410
  year: 1992
  end-page: 1413
  ident: b41
  article-title: Finite element torque calculation in electrical machines while considering the movement
  publication-title: IEEE Trans. Magn.
– volume: 160
  start-page: 1
  year: 2017
  end-page: 8
  ident: b56
  article-title: Time decomposition method for the general transient simulation of low-frequency electromagnetics
  publication-title: Prog. Electromagn. Res.
– volume: 37
  start-page: 1
  year: 2010
  end-page: 23
  ident: b20
  article-title: Optimisations for quadrature representations of finite element tensors through automated code generation
  publication-title: ACM Trans. Math. Software
– volume: 155
  start-page: 32
  year: 2019
  end-page: 42
  ident: b10
  article-title: Scalable computation of thermomechanical turbomachinery problems
  publication-title: Finite Elem. Anal. Des.
– volume: 6
  start-page: 4414
  year: 2011
  end-page: 4420
  ident: b32
  article-title: 3D electromagnetic study of transformers’ flux line distribution and losses determination under harmonic distortion caused by electronic equipments
  publication-title: Sci. Res. Essays
– volume: 30
  start-page: 4680
  year: 1994
  end-page: 4682
  ident: b29
  article-title: Finite element calculation of forces on a DC magnet moving over an iron rail
  publication-title: IEEE Trans. Magn.
– start-page: 27
  year: 2003
  end-page: 121
  ident: b38
  article-title: Maxwell equations, electrostatics, magnetostatics and magnetodynamic fields
  publication-title: Electromagnetic Modeling By Finite Element Methods
– volume: 85
  start-page: 197
  year: 2000
  end-page: 217
  ident: b69
  article-title: Multigrid in H(div) and H(curl)
  publication-title: Numer. Math.
– year: 2013
  ident: b47
  article-title: Python and HDF5
– volume: 11
  start-page: 192
  year: 1988
  end-page: 196
  ident: b52
  article-title: Mesh generation for modelling in magnetics
  publication-title: Math. Comput. Modelling
– year: 2020
  ident: b2
  article-title: Tracking Transport 2020
– volume: 40
  start-page: 1
  year: 2014
  end-page: 37
  ident: b16
  article-title: Unified form language: A domain-specific language for weak formulations of partial differential equations
  publication-title: ACM Trans. Math. Software
– start-page: 1103
  year: 2019
  end-page: 1111
  ident: b62
  article-title: Setting up motion for transient projects
  publication-title: Maxwell Help, Electromagnetics Suite 2019 R3
– year: 2017
  ident: b67
  article-title: Maxwell Time Decomposition Method Accelerates Simulation of Transient Electromagnetic Fields with Intel Xeon Processor E5-2697 v4
– year: 2012
  ident: b14
  article-title: Automated Solution of Differential Equations by the Finite Element Method
– volume: 26
  start-page: 1
  year: 2016
  end-page: 5
  ident: b61
  article-title: Design of IPMSM applying V-Shape skew considering axial force distribution and performance characteristics according to the rotating direction
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 38
  start-page: 408
  year: 1989
  end-page: 423
  ident: b65
  article-title: Speedup versus efficiency in parallel systems
  publication-title: IEEE Trans. Comput.
– volume: 15
  year: 2020
  ident: b3
  article-title: The role of transport electrification in global climate change mitigation scenarios
  publication-title: Environ. Res. Lett.
– year: 2019
  ident: b6
  article-title: Aviation electrification - choosing your motor topology and material advancements
  publication-title: AIAA Propulsion and Energy 2019 Forum
– volume: 51
  start-page: 1
  year: 2015
  end-page: 12
  ident: b39
  article-title: 3-D analytical model for axial-flux eddy-current couplings and brakes under steady-state conditions
  publication-title: IEEE Trans. Magn.
– start-page: 1
  year: 2021
  end-page: 23
  ident: b21
  article-title: Construction of arbitrary order finite element degree-of-freedom maps on polygonal and polyhedral cell meshes
– year: 1997
  ident: b68
  article-title: Hierarchical data format, version 5
– start-page: 1
  year: 2016
  end-page: 96
  ident: b37
  article-title: The physics models
  publication-title: Multiphysics Modeling: Numerical Methods and Engineering Applications
– volume: 3
  year: 2015
  ident: b13
  article-title: The FEniCS project version 1.5
  publication-title: Arch. Numer. Softw.
– volume: 45
  start-page: 3329
  year: 2009
  end-page: 3333
  ident: b54
  article-title: Comparison of the
  publication-title: IEEE Trans. Magn.
– volume: 29
  start-page: 2335
  year: 1993
  end-page: 2340
  ident: b28
  article-title: Iterative solution of 3D eddy current problems
  publication-title: IEEE Trans. Magn.
– year: 2013
  ident: b64
  article-title: Expressive and Scalable Finite Element Simulation Beyond 1000 Cores
– reference: .
– volume: 36
  start-page: 204
  year: 1998
  end-page: 225
  ident: b71
  article-title: Multigrid method for Maxwell’s equations
  publication-title: SIAM J. Numer. Anal.
– start-page: 1
  year: 2017
  end-page: 6
  ident: b5
  article-title: High specific power electrical machines: A system perspective
  publication-title: 2017 20th International Conference on Electrical Machines and Systems
– start-page: 1684
  year: 2013
  end-page: 1685
  ident: b11
  article-title: A linear complexity direct finite element solver for large-scale 3-D electromagnetic analysis
  publication-title: 2013 IEEE Antennas and Propagation Society International Symposium
– volume: 10
  start-page: 345
  year: 1973
  end-page: 363
  ident: b9
  article-title: Nested dissection of a regular finite element mesh
  publication-title: SIAM J. Numer. Anal.
– volume: 27
  start-page: 761
  year: 2001
  end-page: 775
  ident: b27
  article-title: Parallel multigrid 3D maxwell solvers
  publication-title: Parallel Comput.
– volume: 19
  start-page: 40
  issue: 6
  year: 2017
  ident: 10.1016/j.finel.2022.103755_b45
  article-title: Containers for portable, productive, and performant scientific computing
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2017.2421459
– year: 2015
  ident: 10.1016/j.finel.2022.103755_b58
– start-page: 1
  year: 2015
  ident: 10.1016/j.finel.2022.103755_b26
  article-title: Exploiting cloud computing in the multi-physics design and optimisation of electromagnetic devices
– year: 2019
  ident: 10.1016/j.finel.2022.103755_b6
  article-title: Aviation electrification - choosing your motor topology and material advancements
– volume: 40
  start-page: 1
  issue: 2
  year: 2014
  ident: 10.1016/j.finel.2022.103755_b16
  article-title: Unified form language: A domain-specific language for weak formulations of partial differential equations
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/2566630
– volume: 6
  start-page: 4414
  issue: 20
  year: 2011
  ident: 10.1016/j.finel.2022.103755_b32
  article-title: 3D electromagnetic study of transformers’ flux line distribution and losses determination under harmonic distortion caused by electronic equipments
  publication-title: Sci. Res. Essays
  doi: 10.5897/SRE11.901
– year: 2017
  ident: 10.1016/j.finel.2022.103755_b67
– start-page: 183
  year: 2014
  ident: 10.1016/j.finel.2022.103755_b35
  article-title: The eddy currents model
– start-page: 1103
  year: 2019
  ident: 10.1016/j.finel.2022.103755_b62
  article-title: Setting up motion for transient projects
– start-page: 303
  year: 2012
  ident: 10.1016/j.finel.2022.103755_b17
  article-title: UFL: a finite element form language
– volume: 37
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.finel.2022.103755_b20
  article-title: Optimisations for quadrature representations of finite element tensors through automated code generation
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/1644001.1644009
– year: 2021
  ident: 10.1016/j.finel.2022.103755_b23
– start-page: 2928
  year: 2019
  ident: 10.1016/j.finel.2022.103755_b53
  article-title: 3D transient excitations (sources)
– volume: 49
  start-page: 536
  issue: 1
  year: 2013
  ident: 10.1016/j.finel.2022.103755_b60
  article-title: Force calculations in 3-D cylindrical structures using Fourier analysis and the Maxwell stress tensor
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2012.2206821
– start-page: 77
  year: 2014
  ident: 10.1016/j.finel.2022.103755_b59
  article-title: Maxwell’s equations in material regions
– start-page: 567
  year: 2019
  ident: 10.1016/j.finel.2022.103755_b46
  article-title: Containers in HPC: A scalability and portability study in production biological simulations
– start-page: 343
  year: 2003
  ident: 10.1016/j.finel.2022.103755_b42
  article-title: Movement modeling for electrical machines
– volume: 38
  start-page: 449
  issue: 2
  year: 2002
  ident: 10.1016/j.finel.2022.103755_b30
  article-title: Eddy-current computations using adaptive grids and edge elements
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.996119
– volume: 4
  start-page: 57
  issue: 2
  year: 2009
  ident: 10.1016/j.finel.2022.103755_b33
  article-title: Motional finite element simulation of a single-phase induction motor
  publication-title: Pollack Period.
  doi: 10.1556/Pollack.4.2009.2.6
– start-page: 1684
  year: 2013
  ident: 10.1016/j.finel.2022.103755_b11
  article-title: A linear complexity direct finite element solver for large-scale 3-D electromagnetic analysis
– volume: 85
  start-page: 197
  issue: 2
  year: 2000
  ident: 10.1016/j.finel.2022.103755_b69
  article-title: Multigrid in H(div) and H(curl)
  publication-title: Numer. Math.
  doi: 10.1007/PL00005386
– volume: 61
  start-page: 48
  issue: 1
  year: 1986
  ident: 10.1016/j.finel.2022.103755_b36
  article-title: Theory of ferromagnetic hysteresis
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/0304-8853(86)90066-1
– start-page: 27
  year: 2003
  ident: 10.1016/j.finel.2022.103755_b38
  article-title: Maxwell equations, electrostatics, magnetostatics and magnetodynamic fields
– year: 2014
  ident: 10.1016/j.finel.2022.103755_b66
– volume: 155
  start-page: 32
  year: 2019
  ident: 10.1016/j.finel.2022.103755_b10
  article-title: Scalable computation of thermomechanical turbomachinery problems
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2018.11.002
– start-page: 243
  year: 2014
  ident: 10.1016/j.finel.2022.103755_b43
  article-title: Using nodal elements with magnetic vector potential
– volume: 38
  start-page: 537
  issue: 2
  year: 2002
  ident: 10.1016/j.finel.2022.103755_b31
  article-title: A comparison of finite-element models for 3-D rotating conductors
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.996141
– volume: 17
  start-page: 367
  issue: 4
  year: 1991
  ident: 10.1016/j.finel.2022.103755_b25
  article-title: Design of electrical machines by the finite element method using distributed computing
  publication-title: Comput. Ind.
  doi: 10.1016/0166-3615(91)90049-F
– volume: 27
  start-page: 761
  issue: 6
  year: 2001
  ident: 10.1016/j.finel.2022.103755_b27
  article-title: Parallel multigrid 3D maxwell solvers
  publication-title: Parallel Comput.
  doi: 10.1016/S0167-8191(00)00106-X
– start-page: 1
  year: 2021
  ident: 10.1016/j.finel.2022.103755_b21
– ident: 10.1016/j.finel.2022.103755_b15
– start-page: 227
  year: 2012
  ident: 10.1016/j.finel.2022.103755_b19
  article-title: FFC: the FEniCS form compiler
– start-page: 2925
  year: 2019
  ident: 10.1016/j.finel.2022.103755_b55
  article-title: Iterative matrix solver technical details
– volume: 234
  start-page: 3480
  issue: 12
  year: 2010
  ident: 10.1016/j.finel.2022.103755_b49
  article-title: Row scaling as a preconditioner for some nonsymmetric linear systems with discontinuous coefficients
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2010.05.021
– volume: 45
  start-page: 3329
  issue: 9
  year: 2009
  ident: 10.1016/j.finel.2022.103755_b54
  article-title: Comparison of the A∗−A and T,Φ−Φ formulations for the 2-D analysis of solid-rotor induction machines
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2009.2022328
– volume: 27
  start-page: 4012
  issue: 5
  year: 1991
  ident: 10.1016/j.finel.2022.103755_b44
  article-title: An eddy current constraint formulation for 3D electromagnetic field calculations
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.104981
– volume: 38
  start-page: 408
  issue: 3
  year: 1989
  ident: 10.1016/j.finel.2022.103755_b65
  article-title: Speedup versus efficiency in parallel systems
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/12.21127
– year: 2012
  ident: 10.1016/j.finel.2022.103755_b14
– volume: 28
  start-page: 1410
  issue: 2
  year: 1992
  ident: 10.1016/j.finel.2022.103755_b41
  article-title: Finite element torque calculation in electrical machines while considering the movement
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.123957
– start-page: 1
  year: 2017
  ident: 10.1016/j.finel.2022.103755_b5
  article-title: High specific power electrical machines: A system perspective
– year: 2013
  ident: 10.1016/j.finel.2022.103755_b64
– start-page: 163
  year: 1997
  ident: 10.1016/j.finel.2022.103755_b24
  article-title: Efficient management of parallelism in object oriented numerical software libraries
– year: 2020
  ident: 10.1016/j.finel.2022.103755_b2
– volume: 14
  start-page: 328
  issue: 2
  year: 2021
  ident: 10.1016/j.finel.2022.103755_b4
  article-title: Influence of powertrain topology and electric machine design on efficiency of battery electric trucks—A simulative case-study
  publication-title: Energies
  doi: 10.3390/en14020328
– start-page: 1
  year: 2016
  ident: 10.1016/j.finel.2022.103755_b37
  article-title: The physics models
– volume: 160
  start-page: 1
  year: 2017
  ident: 10.1016/j.finel.2022.103755_b56
  article-title: Time decomposition method for the general transient simulation of low-frequency electromagnetics
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER17072501
– volume: 36
  start-page: 204
  issue: 1
  year: 1998
  ident: 10.1016/j.finel.2022.103755_b71
  article-title: Multigrid method for Maxwell’s equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142997326203
– volume: 30
  start-page: 4680
  issue: 6
  year: 1994
  ident: 10.1016/j.finel.2022.103755_b29
  article-title: Finite element calculation of forces on a DC magnet moving over an iron rail
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.334188
– volume: 11
  start-page: 334
  issue: 2
  year: 2018
  ident: 10.1016/j.finel.2022.103755_b7
  article-title: Challenges and opportunities of very light high-performance electric drives for aviation
  publication-title: Energies
  doi: 10.3390/en11020344
– volume: 26
  issue: 1
  year: 2019
  ident: 10.1016/j.finel.2022.103755_b48
  article-title: A comparison of preconditioned Krylov subspace methods for large-scale nonsymmetric linear systems
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.2215
– start-page: 1223
  year: 2019
  ident: 10.1016/j.finel.2022.103755_b57
  article-title: Time decomposition method for maxwell transient designs
– volume: 4
  start-page: 646
  issue: 3
  year: 2018
  ident: 10.1016/j.finel.2022.103755_b8
  article-title: Electrical power generation in aircraft: Review, challenges, and opportunities
  publication-title: IEEE Trans. Transp. Electrification
  doi: 10.1109/TTE.2018.2834142
– year: 2021
  ident: 10.1016/j.finel.2022.103755_b1
– start-page: 179
  year: 2006
  ident: 10.1016/j.finel.2022.103755_b70
  article-title: A survey of parallelization techniques for multigrid solvers
– volume: 34
  start-page: 318
  issue: 6
  year: 2008
  ident: 10.1016/j.finel.2022.103755_b63
  article-title: PT-Scotch: A tool for efficient parallel graph ordering
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2007.12.001
– year: 2013
  ident: 10.1016/j.finel.2022.103755_b47
– year: 1997
  ident: 10.1016/j.finel.2022.103755_b68
– volume: 15
  issue: 3
  year: 2020
  ident: 10.1016/j.finel.2022.103755_b3
  article-title: The role of transport electrification in global climate change mitigation scenarios
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab6658
– volume: 368
  issue: 6495
  year: 2020
  ident: 10.1016/j.finel.2022.103755_b12
  article-title: There’s plenty of room at the top: What will drive computer performance after moore’s law?
  publication-title: Science
  doi: 10.1126/science.aam9744
– volume: 5544
  start-page: 864
  year: 2009
  ident: 10.1016/j.finel.2022.103755_b50
  article-title: Solving sparse linear systems on NVIDIA Tesla GPUs
– start-page: 1
  year: 2014
  ident: 10.1016/j.finel.2022.103755_b34
  article-title: Statics and quasistatics electromagnetics brief presentation
– volume: 29
  start-page: 2335
  issue: 6
  year: 1993
  ident: 10.1016/j.finel.2022.103755_b28
  article-title: Iterative solution of 3D eddy current problems
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.280859
– volume: 51
  start-page: 1
  issue: 10
  year: 2015
  ident: 10.1016/j.finel.2022.103755_b39
  article-title: 3-D analytical model for axial-flux eddy-current couplings and brakes under steady-state conditions
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2015.2455955
– volume: 10
  start-page: 345
  issue: 2
  year: 1973
  ident: 10.1016/j.finel.2022.103755_b9
  article-title: Nested dissection of a regular finite element mesh
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0710032
– volume: 32
  start-page: 417
  issue: 3
  year: 2006
  ident: 10.1016/j.finel.2022.103755_b18
  article-title: A compiler for variational forms
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/1163641.1163644
– volume: 3
  issue: 100
  year: 2015
  ident: 10.1016/j.finel.2022.103755_b13
  article-title: The FEniCS project version 1.5
  publication-title: Arch. Numer. Softw.
– volume: 2021
  year: 2021
  ident: 10.1016/j.finel.2022.103755_b51
  article-title: Developing a multi-GPU-enabled preconditioned GMRES with inexact triangular solves for block sparse matrices
  publication-title: Math. Probl. Eng.
– volume: 26
  start-page: 1
  issue: 4
  year: 2016
  ident: 10.1016/j.finel.2022.103755_b61
  article-title: Design of IPMSM applying V-Shape skew considering axial force distribution and performance characteristics according to the rotating direction
  publication-title: IEEE Trans. Appl. Supercond.
– start-page: 164
  year: 2016
  ident: 10.1016/j.finel.2022.103755_b40
  article-title: Mesh controls for rotating machinery
– year: 2021
  ident: 10.1016/j.finel.2022.103755_b22
– volume: 11
  start-page: 192
  year: 1988
  ident: 10.1016/j.finel.2022.103755_b52
  article-title: Mesh generation for modelling in magnetics
  publication-title: Math. Comput. Modelling
  doi: 10.1016/0895-7177(88)90478-5
SSID ssj0005264
Score 2.36637
Snippet There are concerns that the extreme requirements of heavy-duty vehicles and aviation will see them left behind in the electrification of the transport sector,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103755
SubjectTerms Electric machine
Electric propulsion
Electrification
Emitters
FEniCS
Finite element method
Flux density
Greenhouse gases
Heavy vehicles
High-performance computing
Magnetic flux
Maxwell’s equations
Open-source software
Performance enhancement
Permanent magnets
Propulsion systems
Scale models
Subspace methods
Synchronous motors
Transportation industry
Title Modelling a permanent magnet synchronous motor in FEniCSx for parallel high-performance simulations
URI https://dx.doi.org/10.1016/j.finel.2022.103755
https://www.proquest.com/docview/2669099519
Volume 204
WOSCitedRecordID wos000798382600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005264
  issn: 0168-874X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELVKlwMc-FhALCzIB24lq3wnPq5WrYBDhcQi9RbZ8Ri1m2arpq3K_pX9s4xjJ812RcUeuERVlFhW5nU8M35-Q8gnYEIlXs4ddIuRE0oAh-My6aC9AXIuA5ebZhPJeJxOJux7r3fbnIXZFElZptstW_xXU-M9NLY-OvsAc7eD4g38jUbHK5odr_9keN3dzAhtcy1KPOel3u6f818lrLRAQa7lcDXxFY1Uk9EHo2E5vfixrRmHWgq8KKAYaB1jZ9E5VlBN57bVV9WNaEdTHbUOwNDQa3Ytb4ROdFFe3qGImGK02depCbq7LSz0kqKu247X5Y1hhxneASzXVxhmc1MBGgMs-ayNvxFqG4PoK0zSf3eLGP6O8NrWNeMUHbMhazaO2XfDjmvVBxqNou89r28KELMzhYG53k7y_bPd03c1tvfWvpaR2JDdZlk9SKYHycwgj8iRn0Qs7ZOj86_DybcOgyi20vFm7o2oVU0fvDeXvwU-eyFAHddcviDPbEJCzw2QXpIelMfkuU1OqHX91TF52lGufEXyFmWU0xZl1KCMdlBGa5TRaUktyigCijYoo_soox2UvSY_R8PLiy-O7dfh5LhMrRzhqUgJYIH0tNisp4JIKUgToaSQ3AMRxqlUIU_SAHwVCS9NZBphwswT4UYuBG9Iv7wu4S2hKs8DKRXkjLOQxywFJqXHXVdKEYeCnRC_-ZhZbsXsdU-VIjtgyBPyuX1pYbRcDj8eN1bKbDhqwswMcXf4xdPGppl1DFWGgTDDbAwTpncPm8Z78mT3jzkl_dVyDR_I43yzmlbLjxaTfwAFU722
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+a+permanent+magnet+synchronous+motor+in+FEniCSx+for+parallel+high-performance+simulations&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=McDonagh%2C+James&rft.au=Palumbo%2C+Nunzio&rft.au=Cherukunnath%2C+Neeraj&rft.au=Dimov%2C+Nikolay&rft.date=2022-07-01&rft.issn=0168-874X&rft.volume=204&rft.spage=103755&rft_id=info:doi/10.1016%2Fj.finel.2022.103755&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_finel_2022_103755
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon