An improved particle swarm optimization based maximum power point tracking algorithm for PV system operating under partial shading conditions

Concerns over environment and increased demand for energy have led the world to think about alternate energy sources such as the wind, hydro, solar and fuel cells. Out of these photovoltaic (PV) generation systems (PGS) become increasingly important all over the world due to its availability, cleann...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy Vol. 158; pp. 1006 - 1015
Main Authors: Dileep, G., Singh, S.N.
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.12.2017
Pergamon Press Inc
Subjects:
ISSN:0038-092X, 1471-1257
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Concerns over environment and increased demand for energy have led the world to think about alternate energy sources such as the wind, hydro, solar and fuel cells. Out of these photovoltaic (PV) generation systems (PGS) become increasingly important all over the world due to its availability, cleanness, low maintenance cost, and inexhaustible nature. The probability of partial shading conditions (PSC) is also high for large PGS. Under PSC, the P–V curve of PGS exhibits multiple peaks, which reduces the effectiveness of conventional maximum power point tracking (MPPT) methods. In this paper, an improved particle swarm optimization (PSO) based MPPT algorithm for PGS operating under PSC is proposed. Conventional PSO is modified to meet practical consideration of PGS operating under PSC. Problem formulation, design details, and experimental results are discussed in detail. The proposed technique is independent of system, it is easy to implement, tracking efficiency is high and performance under PSC is good. The effectiveness of the proposed method is validated by analyzing the experimental results obtained from 110 W solar power generation systems.
AbstractList Concerns over environment and increased demand for energy have led the world to think about alternate energy sources such as the wind, hydro, solar and fuel cells. Out of these photovoltaic (PV) generation systems (PGS) become increasingly important all over the world due to its availability, cleanness, low maintenance cost, and inexhaustible nature. The probability of partial shading conditions (PSC) is also high for large PGS. Under PSC, the P–V curve of PGS exhibits multiple peaks, which reduces the effectiveness of conventional maximum power point tracking (MPPT) methods. In this paper, an improved particle swarm optimization (PSO) based MPPT algorithm for PGS operating under PSC is proposed. Conventional PSO is modified to meet practical consideration of PGS operating under PSC. Problem formulation, design details, and experimental results are discussed in detail. The proposed technique is independent of system, it is easy to implement, tracking efficiency is high and performance under PSC is good. The effectiveness of the proposed method is validated by analyzing the experimental results obtained from 110 W solar power generation systems.
Author Dileep, G.
Singh, S.N.
Author_xml – sequence: 1
  givenname: G.
  surname: Dileep
  fullname: Dileep, G.
  email: dileepmon2@gmail.com
– sequence: 2
  givenname: S.N.
  surname: Singh
  fullname: Singh, S.N.
BookMark eNqFkM1u1DAQxy3USmxbHgHJEucsdrKxE3FAVUULUiU4AOJmzdqTdpbEDra3H7wD74zD9sSlF1ua-X9ofifsyAePjL2WYi2FVG936xRG9BjXtZC6zNai1i_YSm60rGTd6iO2EqLpKtHXP16yk5R2oghlp1fsz7nnNM0x3KHjM8RMdkSe7iFOPMyZJvoNmYLnW0hFMcEDTfuJz-EeY3nJZ54j2J_kbziMNyFSvp34ECL_8p2nx5RxycFYQopi791iW2pg5OkW3DK1wTtaStIZOx5gTPjq6T9l3y4_fL34WF1_vvp0cX5d2UarXAHavhsQxKA2W9FZ5YZugEZ1aJ0FUFJt2lr32IAEja3ulXWwba3aggash-aUvTnklsN_7TFlswv76EulkX3XSaFroYrq3UFlY0gp4mAs5X80ysk0GinMwt_szBN_s_BfxoV_cbf_uedIE8THZ33vDz4sAO6obJMl9BYdRbTZuEDPJPwFeV-rCw
CitedBy_id crossref_primary_10_3390_su15053993
crossref_primary_10_1016_j_engappai_2023_106965
crossref_primary_10_1109_ACCESS_2024_3434523
crossref_primary_10_1016_j_enconman_2023_117124
crossref_primary_10_3390_en15207498
crossref_primary_10_1371_journal_pone_0206171
crossref_primary_10_1016_j_rineng_2025_106429
crossref_primary_10_1080_15325008_2023_2249885
crossref_primary_10_1080_15567036_2020_1779872
crossref_primary_10_1155_2024_5585826
crossref_primary_10_1007_s11831_020_09424_2
crossref_primary_10_1016_j_sciaf_2025_e02704
crossref_primary_10_3390_en12081451
crossref_primary_10_1007_s00521_021_06586_3
crossref_primary_10_1080_00207217_2024_2370903
crossref_primary_10_1016_j_solener_2021_01_049
crossref_primary_10_1007_s42835_020_00590_8
crossref_primary_10_3390_en15228480
crossref_primary_10_1016_j_renene_2023_119718
crossref_primary_10_1016_j_rser_2024_115208
crossref_primary_10_1016_j_solener_2018_06_027
crossref_primary_10_1109_TPEL_2021_3089707
crossref_primary_10_3390_su11072091
crossref_primary_10_1016_j_eswa_2021_115253
crossref_primary_10_1109_TIE_2021_3091921
crossref_primary_10_2478_pead_2021_0009
crossref_primary_10_1016_j_est_2024_113012
crossref_primary_10_3390_en12010092
crossref_primary_10_1002_2050_7038_12061
crossref_primary_10_1007_s00170_023_12335_8
crossref_primary_10_1016_j_rser_2018_01_006
crossref_primary_10_1016_j_rineng_2024_102967
crossref_primary_10_1016_j_applthermaleng_2022_118977
crossref_primary_10_1016_j_solener_2018_11_028
crossref_primary_10_1016_j_rineng_2025_107419
crossref_primary_10_1016_j_rser_2019_109372
crossref_primary_10_1109_ACCESS_2020_2966430
crossref_primary_10_3390_app12083828
crossref_primary_10_1016_j_ijleo_2018_11_158
crossref_primary_10_1016_j_egyr_2023_06_019
crossref_primary_10_1088_1742_6596_1865_4_042089
crossref_primary_10_1016_j_solener_2020_01_063
crossref_primary_10_1016_j_solener_2023_03_030
crossref_primary_10_3390_en12244799
crossref_primary_10_1109_ACCESS_2024_3463736
crossref_primary_10_1088_1742_6596_2567_1_012003
crossref_primary_10_1038_s41598_024_70811_x
crossref_primary_10_1016_j_jclepro_2020_124824
crossref_primary_10_1016_j_egyr_2022_03_175
crossref_primary_10_1080_15567036_2019_1677818
crossref_primary_10_1049_iet_rpg_2019_1207
crossref_primary_10_1016_j_solener_2018_06_010
crossref_primary_10_1016_j_rser_2023_113903
crossref_primary_10_1049_pel2_12400
crossref_primary_10_1016_j_compeleceng_2021_107124
crossref_primary_10_1016_j_egyr_2022_09_192
crossref_primary_10_1088_1742_6596_2290_1_012125
crossref_primary_10_1016_j_sasc_2024_200118
crossref_primary_10_3389_fenrg_2022_905310
crossref_primary_10_1016_j_applthermaleng_2025_125592
Cites_doi 10.1109/TIE.2009.2039450
10.1016/j.solmat.2004.09.019
10.1109/TEC.2005.853784
10.1016/j.apenergy.2015.01.060
10.1016/S0927-0248(02)00185-X
10.1016/j.solener.2011.07.018
10.1016/j.epsr.2007.05.026
10.1109/TPEL.2004.833457
10.1049/iet-rpg:20080065
10.1016/j.solener.2005.07.010
10.1109/TAES.2011.5705681
10.1109/TIE.2008.917118
10.1109/TIE.2006.878331
10.1016/j.energy.2016.06.037
10.1109/TSTE.2011.2141692
10.1016/j.solener.2014.11.010
10.1016/j.solener.2011.08.036
10.1016/j.apenergy.2011.06.024
10.1016/j.solmat.2010.04.011
10.1016/j.solener.2013.01.005
10.1016/j.solener.2014.07.002
10.1109/TIE.2009.2019570
10.1016/j.solener.2014.01.026
10.1016/j.solener.2003.08.038
10.1016/j.jpowsour.2016.09.157
10.1109/TEC.2002.805205
10.1109/TIE.2008.924035
10.1016/j.solmat.2004.01.014
10.1016/j.solmat.2006.06.050
10.1109/41.982265
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Pergamon Press Inc. Dec 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Dec 2017
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
DOI 10.1016/j.solener.2017.10.027
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 1015
ExternalDocumentID 10_1016_j_solener_2017_10_027
S0038092X17309003
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
UKR
VOH
WH7
WUQ
XOL
XPP
YNT
ZMT
ZY4
~02
~A~
~G-
~KM
~S-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
7ST
8FD
AGCQF
C1K
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c376t-aec98fea0f64b08c6df8fa368ecdcaa61645279e3a1a7e5796cdab5c6ba7ae2f3
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418974500095&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-092X
IngestDate Wed Aug 13 08:53:10 EDT 2025
Sat Nov 29 02:23:50 EST 2025
Tue Nov 18 22:27:09 EST 2025
Fri Feb 23 02:28:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Photo voltaic (PV) generation system (PGS)
Partial shading
MPPT
PSO
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-aec98fea0f64b08c6df8fa368ecdcaa61645279e3a1a7e5796cdab5c6ba7ae2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1988107206
PQPubID 9393
PageCount 10
ParticipantIDs proquest_journals_1988107206
crossref_citationtrail_10_1016_j_solener_2017_10_027
crossref_primary_10_1016_j_solener_2017_10_027
elsevier_sciencedirect_doi_10_1016_j_solener_2017_10_027
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Solar energy
PublicationYear 2017
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Hiroshi, Koukichi, Hirotaka, Kosuke, Masayasu, Liu (b0060) 2003; 75
Solodovnik, Liu, Dougal (b0145) 2004; 19
Castellano, Parra, Guirado, Agugliaro (b0020) 2015; 144
Miyatake, Veerachary, Toriumi, Fujii, Ko (b0100) 2011; 47
Wu, Hu, Moura, Yin, Pickert (b0160) 2016; 333
Carannante, Fraddanno, Pagano, Piegari (b0010) 2009; 56
Lei, Li, Seem (b0085) 2011; 2
Ahmed, Miyatake (b0005) 2008; 78
de Cesare, Caputo, Nascetti (b0045) 2006; 80
Nguyen, Low (b0115) 2010; 57
Chen, Lai, Liang (b0025) 2014; 102
Chowdhury, Saha (b0040) 2010; 94
Renaudineau, Houari, Martin, Pierfederici, Tabar, Gerardin (b0130) 2011; 85
Mohammad, Ali (b0105) 2011; 85
Patel, Agarwal (b0125) 2008; 55
Kobayashi, Takano, Sawada (b0075) 2006; 90
Casadei, Grandi, Rossi (b0015) 2006; 21
Li (b0090) 2014; 108
Kim, Kim, Youn (b0070) 2006; 53
Hiroshi (b0055) 2004; 82
Yu, Jung, Choi, Kim (b0170) 2004; 76
Syafaruddin, Karatepe, Hiyama (b0155) 2009; 3
Yousra, Mouna, Anis, Mohamed (b0165) 2013; 90
Hu, Zou, Yang (b0065) 2016; 111
Chia, Cong, Yi, Jian (b0030) 2011; 88
Noguchi, Togashi, Nakamoto (b0120) 2002; 49
Salas, Olı́as, Lázaro, Barrado (b0140) 2005; 87
Rezk, Eltamaly (b0135) 2015; 112
Mutoh, Matuo, Okata, Sakai (b0110) 2002; 33
Masoum, Dehbonei, Fuchs (b0095) 2002; 17
Ching, T.P., Jeng, Y.C., Chin, P.C., Yi, S.H., 1999. A fast maximum power point tracker for photovoltaic power systems. In: Proceedings of 25th annual conference of IEEE Industrial Electronic Society, pp. 390–93.
Femia, Lisi, Petrone, Spagnuolo, Vitelli (b0050) 2008; 55
Castellano (10.1016/j.solener.2017.10.027_b0020) 2015; 144
Kobayashi (10.1016/j.solener.2017.10.027_b0075) 2006; 90
Masoum (10.1016/j.solener.2017.10.027_b0095) 2002; 17
Chia (10.1016/j.solener.2017.10.027_b0030) 2011; 88
Hu (10.1016/j.solener.2017.10.027_b0065) 2016; 111
Wu (10.1016/j.solener.2017.10.027_b0160) 2016; 333
Ahmed (10.1016/j.solener.2017.10.027_b0005) 2008; 78
Hiroshi (10.1016/j.solener.2017.10.027_b0055) 2004; 82
Patel (10.1016/j.solener.2017.10.027_b0125) 2008; 55
10.1016/j.solener.2017.10.027_b0035
Yousra (10.1016/j.solener.2017.10.027_b0165) 2013; 90
Casadei (10.1016/j.solener.2017.10.027_b0015) 2006; 21
Renaudineau (10.1016/j.solener.2017.10.027_b0130) 2011; 85
Syafaruddin (10.1016/j.solener.2017.10.027_b0155) 2009; 3
Kim (10.1016/j.solener.2017.10.027_b0070) 2006; 53
de Cesare (10.1016/j.solener.2017.10.027_b0045) 2006; 80
Salas (10.1016/j.solener.2017.10.027_b0140) 2005; 87
Solodovnik (10.1016/j.solener.2017.10.027_b0145) 2004; 19
Carannante (10.1016/j.solener.2017.10.027_b0010) 2009; 56
Chowdhury (10.1016/j.solener.2017.10.027_b0040) 2010; 94
Miyatake (10.1016/j.solener.2017.10.027_b0100) 2011; 47
Yu (10.1016/j.solener.2017.10.027_b0170) 2004; 76
Nguyen (10.1016/j.solener.2017.10.027_b0115) 2010; 57
Mutoh (10.1016/j.solener.2017.10.027_b0110) 2002; 33
Li (10.1016/j.solener.2017.10.027_b0090) 2014; 108
Mohammad (10.1016/j.solener.2017.10.027_b0105) 2011; 85
Noguchi (10.1016/j.solener.2017.10.027_b0120) 2002; 49
Lei (10.1016/j.solener.2017.10.027_b0085) 2011; 2
Rezk (10.1016/j.solener.2017.10.027_b0135) 2015; 112
Chen (10.1016/j.solener.2017.10.027_b0025) 2014; 102
Femia (10.1016/j.solener.2017.10.027_b0050) 2008; 55
Hiroshi (10.1016/j.solener.2017.10.027_b0060) 2003; 75
References_xml – volume: 78
  start-page: 777
  year: 2008
  end-page: 784
  ident: b0005
  article-title: A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions
  publication-title: Electric Power Syst. Res.
– volume: 56
  start-page: 4374
  year: 2009
  end-page: 4380
  ident: b0010
  article-title: Experimental performance of MPPT algorithm for photovoltaic sources subject to in homogeneous insolation
  publication-title: IEEE Trans. Ind. Electron.
– volume: 76
  start-page: 455
  year: 2004
  end-page: 463
  ident: b0170
  article-title: A novel two-mode MPPT control algorithm based on comparative study of existing algorithms
  publication-title: Sol. Energy
– volume: 90
  start-page: 2975
  year: 2006
  end-page: 2988
  ident: b0075
  article-title: A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 17
  start-page: 514
  year: 2002
  end-page: 522
  ident: b0095
  article-title: Theoretical and experimental analyses of photovoltaic systems with voltage- and current based maximum power-point tracking
  publication-title: IEEE Trans. Energy Convers.
– volume: 333
  start-page: 203
  year: 2016
  end-page: 212
  ident: b0160
  article-title: Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array
  publication-title: J. Power Sources
– volume: 87
  start-page: 675
  year: 2005
  end-page: 684
  ident: b0140
  article-title: New algorithm using only one variable measurement applied to a maximum power point tracker
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 3
  start-page: 239
  year: 2009
  end-page: 253
  ident: b0155
  article-title: Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions
  publication-title: IET Renew. PowerGener.
– volume: 75
  start-page: 537
  year: 2003
  end-page: 546
  ident: b0060
  article-title: Dynamic evaluation of maximum power point tracking operation with PV array simulator
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 57
  start-page: 3456
  year: 2010
  end-page: 3467
  ident: b0115
  article-title: A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems
  publication-title: IEEE Trans. Ind. Electron.
– volume: 47
  start-page: 367
  year: 2011
  end-page: 380
  ident: b0100
  article-title: Maximum power point tracking of multiple photovoltaic arrays: A PSO approach
  publication-title: IEEE Trans. Aerospace Electron. Syst.
– volume: 80
  start-page: 982
  year: 2006
  end-page: 988
  ident: b0045
  article-title: Maximum power point tracker for portable photovoltaic systems with resistive-like load
  publication-title: Sol. Energy
– volume: 112
  start-page: 1
  year: 2015
  end-page: 11
  ident: b0135
  article-title: A comprehensive comparison of different MPPT techniques for photovoltaic systems
  publication-title: Sol. Energy
– reference: Ching, T.P., Jeng, Y.C., Chin, P.C., Yi, S.H., 1999. A fast maximum power point tracker for photovoltaic power systems. In: Proceedings of 25th annual conference of IEEE Industrial Electronic Society, pp. 390–93.
– volume: 144
  start-page: 1
  year: 2015
  end-page: 9
  ident: b0020
  article-title: Optimal displacement of photovoltaic array’s rows using a novel shading model
  publication-title: Appl. Energy
– volume: 85
  start-page: 2580
  year: 2011
  end-page: 2588
  ident: b0130
  article-title: A new approach in tracking maximum power under partially shaded conditions with consideration of converter losses
  publication-title: Sol. Energy
– volume: 88
  start-page: 4840
  year: 2011
  end-page: 4847
  ident: b0030
  article-title: Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method
  publication-title: Appl. Energy
– volume: 82
  start-page: 159
  year: 2004
  end-page: 167
  ident: b0055
  article-title: I-V curve simulation by multi-module simulator using I2V magnifier circuit
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 111
  start-page: 971
  year: 2016
  end-page: 980
  ident: b0065
  article-title: Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization
  publication-title: Energy
– volume: 33
  start-page: 1489
  year: 2002
  end-page: 1894
  ident: b0110
  article-title: Prediction-data-based maximum power-point-tracking method for photovoltaic power generation systems
  publication-title: IEEE Power Electron. Specialists Conf.
– volume: 55
  start-page: 2610
  year: 2008
  end-page: 2621
  ident: b0050
  article-title: Distributed maximum power point tracking of photovoltaic arrays: Novel approach and system analysis
  publication-title: IEEE Trans. Ind. Electron.
– volume: 55
  start-page: 1689
  year: 2008
  end-page: 1698
  ident: b0125
  article-title: Maximum power point tracking scheme for PV systems operating under partially shaded conditions
  publication-title: IEEE Trans. Ind. Electron.
– volume: 21
  start-page: 562
  year: 2006
  end-page: 568
  ident: b0015
  article-title: Single-phase single-stage photovoltaic generation system based on a ripple correlation control maximum power point tracking
  publication-title: IEEE Trans. Energy Convers.
– volume: 94
  start-page: 1441
  year: 2010
  end-page: 1447
  ident: b0040
  article-title: Maximum power point tracking of partially shaded solar photovoltaic arrays
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 108
  start-page: 117
  year: 2014
  end-page: 125
  ident: b0090
  article-title: An MPPT control strategy with variable weather parameter and no DC/DC converter for photovoltaic systems
  publication-title: Sol. Energy
– volume: 90
  start-page: 107
  year: 2013
  end-page: 122
  ident: b0165
  article-title: Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators
  publication-title: Sol. Energy
– volume: 49
  start-page: 217
  year: 2002
  end-page: 223
  ident: b0120
  article-title: Short-current pulse- based maximum-power-point tracking method for multiple photovoltaic and-converter module system
  publication-title: IEEE Trans. Industr. Electron.
– volume: 19
  start-page: 1295
  year: 2004
  end-page: 1306
  ident: b0145
  article-title: Power controller design for maximum power tracking in solar installations
  publication-title: IEEE Trans. Power Electron.
– volume: 2
  start-page: 348
  year: 2011
  end-page: 358
  ident: b0085
  article-title: Sequential ESC-based global MPPT control for photovoltaic array with variable shading
  publication-title: IEEE Trans. Sustainable Energy
– volume: 53
  start-page: 1027
  year: 2006
  end-page: 1035
  ident: b0070
  article-title: New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system
  publication-title: IEEE Trans. Industr. Electron.
– volume: 85
  start-page: 2965
  year: 2011
  end-page: 2976
  ident: b0105
  article-title: A hybrid maximum power point tracking method for photovoltaic systems
  publication-title: Sol. Energy
– volume: 102
  start-page: 247
  year: 2014
  end-page: 256
  ident: b0025
  article-title: A novel auto-scaling variable step-size MPPT method for a PV system
  publication-title: Sol. Energy
– volume: 57
  start-page: 3456
  issue: 10
  year: 2010
  ident: 10.1016/j.solener.2017.10.027_b0115
  article-title: A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2009.2039450
– volume: 87
  start-page: 675
  year: 2005
  ident: 10.1016/j.solener.2017.10.027_b0140
  article-title: New algorithm using only one variable measurement applied to a maximum power point tracker
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2004.09.019
– volume: 21
  start-page: 562
  issue: 2
  year: 2006
  ident: 10.1016/j.solener.2017.10.027_b0015
  article-title: Single-phase single-stage photovoltaic generation system based on a ripple correlation control maximum power point tracking
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2005.853784
– volume: 144
  start-page: 1
  year: 2015
  ident: 10.1016/j.solener.2017.10.027_b0020
  article-title: Optimal displacement of photovoltaic array’s rows using a novel shading model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.01.060
– volume: 75
  start-page: 537
  year: 2003
  ident: 10.1016/j.solener.2017.10.027_b0060
  article-title: Dynamic evaluation of maximum power point tracking operation with PV array simulator
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/S0927-0248(02)00185-X
– volume: 85
  start-page: 2580
  issue: 11
  year: 2011
  ident: 10.1016/j.solener.2017.10.027_b0130
  article-title: A new approach in tracking maximum power under partially shaded conditions with consideration of converter losses
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.07.018
– volume: 78
  start-page: 777
  issue: 5
  year: 2008
  ident: 10.1016/j.solener.2017.10.027_b0005
  article-title: A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions
  publication-title: Electric Power Syst. Res.
  doi: 10.1016/j.epsr.2007.05.026
– ident: 10.1016/j.solener.2017.10.027_b0035
– volume: 19
  start-page: 1295
  issue: 5
  year: 2004
  ident: 10.1016/j.solener.2017.10.027_b0145
  article-title: Power controller design for maximum power tracking in solar installations
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2004.833457
– volume: 3
  start-page: 239
  issue: 2
  year: 2009
  ident: 10.1016/j.solener.2017.10.027_b0155
  article-title: Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions
  publication-title: IET Renew. PowerGener.
  doi: 10.1049/iet-rpg:20080065
– volume: 80
  start-page: 982
  year: 2006
  ident: 10.1016/j.solener.2017.10.027_b0045
  article-title: Maximum power point tracker for portable photovoltaic systems with resistive-like load
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2005.07.010
– volume: 47
  start-page: 367
  issue: 1
  year: 2011
  ident: 10.1016/j.solener.2017.10.027_b0100
  article-title: Maximum power point tracking of multiple photovoltaic arrays: A PSO approach
  publication-title: IEEE Trans. Aerospace Electron. Syst.
  doi: 10.1109/TAES.2011.5705681
– volume: 55
  start-page: 1689
  issue: 4
  year: 2008
  ident: 10.1016/j.solener.2017.10.027_b0125
  article-title: Maximum power point tracking scheme for PV systems operating under partially shaded conditions
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2008.917118
– volume: 53
  start-page: 1027
  issue: 4
  year: 2006
  ident: 10.1016/j.solener.2017.10.027_b0070
  article-title: New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2006.878331
– volume: 111
  start-page: 971
  year: 2016
  ident: 10.1016/j.solener.2017.10.027_b0065
  article-title: Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2016.06.037
– volume: 2
  start-page: 348
  issue: 3
  year: 2011
  ident: 10.1016/j.solener.2017.10.027_b0085
  article-title: Sequential ESC-based global MPPT control for photovoltaic array with variable shading
  publication-title: IEEE Trans. Sustainable Energy
  doi: 10.1109/TSTE.2011.2141692
– volume: 112
  start-page: 1
  year: 2015
  ident: 10.1016/j.solener.2017.10.027_b0135
  article-title: A comprehensive comparison of different MPPT techniques for photovoltaic systems
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.11.010
– volume: 85
  start-page: 2965
  year: 2011
  ident: 10.1016/j.solener.2017.10.027_b0105
  article-title: A hybrid maximum power point tracking method for photovoltaic systems
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.08.036
– volume: 88
  start-page: 4840
  year: 2011
  ident: 10.1016/j.solener.2017.10.027_b0030
  article-title: Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.06.024
– volume: 94
  start-page: 1441
  issue: 9
  year: 2010
  ident: 10.1016/j.solener.2017.10.027_b0040
  article-title: Maximum power point tracking of partially shaded solar photovoltaic arrays
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2010.04.011
– volume: 33
  start-page: 1489
  year: 2002
  ident: 10.1016/j.solener.2017.10.027_b0110
  article-title: Prediction-data-based maximum power-point-tracking method for photovoltaic power generation systems
  publication-title: IEEE Power Electron. Specialists Conf.
– volume: 90
  start-page: 107
  year: 2013
  ident: 10.1016/j.solener.2017.10.027_b0165
  article-title: Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.01.005
– volume: 108
  start-page: 117
  year: 2014
  ident: 10.1016/j.solener.2017.10.027_b0090
  article-title: An MPPT control strategy with variable weather parameter and no DC/DC converter for photovoltaic systems
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.07.002
– volume: 56
  start-page: 4374
  issue: 11
  year: 2009
  ident: 10.1016/j.solener.2017.10.027_b0010
  article-title: Experimental performance of MPPT algorithm for photovoltaic sources subject to in homogeneous insolation
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2009.2019570
– volume: 102
  start-page: 247
  year: 2014
  ident: 10.1016/j.solener.2017.10.027_b0025
  article-title: A novel auto-scaling variable step-size MPPT method for a PV system
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.01.026
– volume: 76
  start-page: 455
  year: 2004
  ident: 10.1016/j.solener.2017.10.027_b0170
  article-title: A novel two-mode MPPT control algorithm based on comparative study of existing algorithms
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2003.08.038
– volume: 333
  start-page: 203
  year: 2016
  ident: 10.1016/j.solener.2017.10.027_b0160
  article-title: Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.09.157
– volume: 17
  start-page: 514
  year: 2002
  ident: 10.1016/j.solener.2017.10.027_b0095
  article-title: Theoretical and experimental analyses of photovoltaic systems with voltage- and current based maximum power-point tracking
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2002.805205
– volume: 55
  start-page: 2610
  issue: 7
  year: 2008
  ident: 10.1016/j.solener.2017.10.027_b0050
  article-title: Distributed maximum power point tracking of photovoltaic arrays: Novel approach and system analysis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2008.924035
– volume: 82
  start-page: 159
  year: 2004
  ident: 10.1016/j.solener.2017.10.027_b0055
  article-title: I-V curve simulation by multi-module simulator using I2V magnifier circuit
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2004.01.014
– volume: 90
  start-page: 2975
  issue: 18–19
  year: 2006
  ident: 10.1016/j.solener.2017.10.027_b0075
  article-title: A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2006.06.050
– volume: 49
  start-page: 217
  issue: 1
  year: 2002
  ident: 10.1016/j.solener.2017.10.027_b0120
  article-title: Short-current pulse- based maximum-power-point tracking method for multiple photovoltaic and-converter module system
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/41.982265
SSID ssj0017187
Score 2.4969285
Snippet Concerns over environment and increased demand for energy have led the world to think about alternate energy sources such as the wind, hydro, solar and fuel...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1006
SubjectTerms Algorithms
Electric power generation
Electricity generation
Energy sources
Maintenance costs
Maximum power
MPPT
Optimization algorithms
Partial shading
Particle swarm optimization
Photo voltaic (PV) generation system (PGS)
Photovoltaic cells
Photovoltaics
PSO
Shading
Solar cells
Solar energy
Solar generators
Solar power
Studies
Tracking
Title An improved particle swarm optimization based maximum power point tracking algorithm for PV system operating under partial shading conditions
URI https://dx.doi.org/10.1016/j.solener.2017.10.027
https://www.proquest.com/docview/1988107206
Volume 158
WOSCitedRecordID wos000418974500095&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1471-1257
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017187
  issn: 0038-092X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgc4IJ5iYUE-IC5VSh5N7Bwr1BWgVam03VVvkes4bLpNWtJu6Q_gyn9mxnbSltfCgYtVObVTdb7MTDwz3xDyKvC5CkOWOUEaSqcbZaEjwG11fJ9FMmBdGUlXN5tggwEfj-Nhq_W1roVZz1hZ8s0mXvxXUcMcCBtLZ_9B3M2mMAGfQegwgthh_CvB90osfazma3AlF_Z6e_lFVEV7DvqhsIWXbbRfabsQm7y4LtoL7JYGY16usG2EvNLFi7NP8ypfXRY6GXF4YXmfYR-kYsZvYAlaZW6DhSeXOiMfU9nTfHsSOK0rgTHjVeliw8Z_BqWkdIu8psfXGeygz3rOBrtHEmDm9tM7hrAPtkoyWST7CZ0YiXTcWLdQB_tjlC4YSNjCEFU3Wtkwulu96rmal-BnhW_OHqadJWYxKCR49VgH0_UM48A-wfbgY3JyfnqajPrj0evFZwd7j2GM3jZiuUUOfRbGoN4Pe-_74w9NNArst-Fetb99Wwn25pd3_p2P84O11y7M6D65Z989aM9g4gFpqfIhubvDSPmIfOuVtEYPrdFDNXroLnqoRg-16KEaPVSjh9booQ16KKCHDi-oQQ9t0EM1eqhFD7XooVv0PCbnJ_3R23eO7djhwHMdrRyhZMwzJdws6k5cLqM045kIIq5kKoWIPAyjs1gFwhNMYRm0TMUklNFEMKH8LHhCDsp5qZ4SGkmeSpXC2wXG7rOABzKeKKa6k1hxmcVHpFv_x4m0dPbYVWWW1HmL08SKJkHR4DSI5oh0mmULw-dy0wJeCzCxTqlxNhOA4E1Lj2uBJ1ZBLBMv5txzme9Gz_58-Tm5s322jsnBqrpWL8htuV7ly-qlheh3NmbAiA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+particle+swarm+optimization+based+maximum+power+point+tracking+algorithm+for+PV+system+operating+under+partial+shading+conditions&rft.jtitle=Solar+energy&rft.au=Dileep%2C+G&rft.au=Singh%2C+SN&rft.date=2017-12-01&rft.pub=Pergamon+Press+Inc&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=158&rft.spage=1006&rft_id=info:doi/10.1016%2Fj.solener.2017.10.027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon