Centrality measure in social networks based on linear threshold model

Centrality and influence spread are two of the most studied concepts in social network analysis. In recent years, centrality measures have attracted the attention of many researchers, generating a large and varied number of new studies about social network analysis and its applications. However, as...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 140; s. 92 - 102
Hlavní autoři: Riquelme, Fabián, Gonzalez-Cantergiani, Pablo, Molinero, Xavier, Serna, Maria
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 15.01.2018
Elsevier Science Ltd
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Centrality and influence spread are two of the most studied concepts in social network analysis. In recent years, centrality measures have attracted the attention of many researchers, generating a large and varied number of new studies about social network analysis and its applications. However, as far as we know, traditional models of influence spread have not yet been exhaustively used to define centrality measures according to the influence criteria. Most of the considered work in this topic is based on the independent cascade model. In this paper we explore the possibilities of the linear threshold model for the definition of centrality measures to be used on weighted and labeled social networks. We propose a new centrality measure to rank the users of the network, the Linear Threshold Rank (LTR), and a centralization measure to determine to what extent the entire network has a centralized structure, the Linear Threshold Centralization (LTC). We appraise the viability of the approach through several case studies. We consider four different social networks to compare our new measures with two centrality measures based on relevance criteria and another centrality measure based on the independent cascade model. Our results show that our measures are useful for ranking actors and networks in a distinguishable way.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0950-7051
1872-7409
DOI:10.1016/j.knosys.2017.10.029