TTHRESH: Tensor Compression for Multidimensional Visual Data
Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they increasingly demand suitable data compression strategies. We introduce a novel lossy compression algorithm for multidimensional data over regular gri...
Uložené v:
| Vydané v: | IEEE transactions on visualization and computer graphics Ročník 26; číslo 9; s. 2891 - 2903 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they increasingly demand suitable data compression strategies. We introduce a novel lossy compression algorithm for multidimensional data over regular grids. It leverages the higher-order singular value decomposition (HOSVD), a generalization of the SVD to three dimensions and higher, together with bit-plane, run-length and arithmetic coding to compress the HOSVD transform coefficients. Our scheme degrades the data particularly smoothly and achieves lower mean squared error than other state-of-the-art algorithms at low-to-medium bit rates, as it is required in data archiving and management for visualization purposes. Further advantages of the proposed algorithm include very fine bit rate selection granularity and the ability to manipulate data at very small cost in the compression domain, for example to reconstruct filtered and/or subsampled versions of all (or selected parts) of the data set. |
|---|---|
| AbstractList | Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they increasingly demand suitable data compression strategies. We introduce a novel lossy compression algorithm for multidimensional data over regular grids. It leverages the higher-order singular value decomposition (HOSVD), a generalization of the SVD to three dimensions and higher, together with bit-plane, run-length and arithmetic coding to compress the HOSVD transform coefficients. Our scheme degrades the data particularly smoothly and achieves lower mean squared error than other state-of-the-art algorithms at low-to-medium bit rates, as it is required in data archiving and management for visualization purposes. Further advantages of the proposed algorithm include very fine bit rate selection granularity and the ability to manipulate data at very small cost in the compression domain, for example to reconstruct filtered and/or subsampled versions of all (or selected parts) of the data set.Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they increasingly demand suitable data compression strategies. We introduce a novel lossy compression algorithm for multidimensional data over regular grids. It leverages the higher-order singular value decomposition (HOSVD), a generalization of the SVD to three dimensions and higher, together with bit-plane, run-length and arithmetic coding to compress the HOSVD transform coefficients. Our scheme degrades the data particularly smoothly and achieves lower mean squared error than other state-of-the-art algorithms at low-to-medium bit rates, as it is required in data archiving and management for visualization purposes. Further advantages of the proposed algorithm include very fine bit rate selection granularity and the ability to manipulate data at very small cost in the compression domain, for example to reconstruct filtered and/or subsampled versions of all (or selected parts) of the data set. Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they increasingly demand suitable data compression strategies. We introduce a novel lossy compression algorithm for multidimensional data over regular grids. It leverages the higher-order singular value decomposition (HOSVD), a generalization of the SVD to three dimensions and higher, together with bit-plane, run-length and arithmetic coding to compress the HOSVD transform coefficients. Our scheme degrades the data particularly smoothly and achieves lower mean squared error than other state-of-the-art algorithms at low-to-medium bit rates, as it is required in data archiving and management for visualization purposes. Further advantages of the proposed algorithm include very fine bit rate selection granularity and the ability to manipulate data at very small cost in the compression domain, for example to reconstruct filtered and/or subsampled versions of all (or selected parts) of the data set. Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they increasingly demand suitable data compression strategies. In this paper, we introduce a novel lossy compression algorithm for multidimensional data over regular grids. It leverages the higher-order singular value decomposition (HOSVD), a generalization of the SVD to three dimensions and higher, together with bit-plane, run-length and arithmetic coding to compress the HOSVD transform coefficients. Our scheme degrades the data particularly smoothly and achieves lower mean squared error than other state-of-the-art algorithms at low-to-medium bit rates, as it is required in data archiving and management for visualization purposes. Further advantages of the proposed algorithm include very fine bit rate selection granularity and the ability to manipulate data at very small cost in the compression domain, for example to reconstruct filtered and/or subsampled versions of all (or selected parts) of the data set. |
| Author | Ballester-Ripoll, Rafael Pajarola, Renato Lindstrom, Peter |
| Author_xml | – sequence: 1 givenname: Rafael orcidid: 0000-0001-5831-2056 surname: Ballester-Ripoll fullname: Ballester-Ripoll, Rafael email: rballester@ifi.uzh.ch organization: Department of Informatics, University of Zürich, Zürich, Switzerland – sequence: 2 givenname: Peter orcidid: 0000-0003-3817-4199 surname: Lindstrom fullname: Lindstrom, Peter email: pl@llnl.gov organization: Lawrence Livermore National Laboratory, Center for Applied Scientific Computing, Livermore, CA, USA – sequence: 3 givenname: Renato orcidid: 0000-0002-6724-526X surname: Pajarola fullname: Pajarola, Renato email: pajarola@ifi.uzh.ch organization: Department of Informatics, University of Zürich, Zürich, Switzerland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30869621$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1644746$$D View this record in Osti.gov |
| BookMark | eNp9kUlrHDEQhYVx8Bb_gBAIQ3zxpcelpaVWyCWMlwnYBJK2r0KtkYhMd2ssqQ_-99YwYx988Km0fO9RVe8Y7Y9htAh9wTDHGORF-7C4mRPAck4kMOB0Dx1hyXAFNfD9cgYhKsIJP0THKT0CYMYaeYAOKTRccoKP0M-2Xf69-rf8MWvtmEKcLcKwjjYlH8aZK_e7qc9-5YfyW550P3vwaSrlUmf9GX1yuk_2dFdP0P31VbtYVrd_bn4vft1WhgqeKy2Jq5kDMJR2krKmASYcYdCITjhqGyk47pzsqO4c486QVSNXTIsaOya4oSfo-9Y3pOxVMj5b89-EcbQmK8wZE4wX6HwLrWN4mmzKavDJ2L7Xow1TUgRLTOuaSVLQs3foY5hiGa5QjEhCoJYbw287auoGu1Lr6Acdn9Xr8gogtoCJIaVonSqd6VzWlKP2vcKgNjGpTUxqE5PaxVSU-J3y1fwjzdetxltr3_iGc1rmpy8rCpmn |
| CODEN | ITVGEA |
| CitedBy_id | crossref_primary_10_3390_a12090197 crossref_primary_10_1109_TCOMM_2024_3496749 crossref_primary_10_1016_j_cageo_2023_105298 crossref_primary_10_1109_ACCESS_2021_3076033 crossref_primary_10_1109_TVCG_2022_3165392 crossref_primary_10_1109_JSTSP_2024_3454980 crossref_primary_10_1111_cgf_14578 crossref_primary_10_1016_j_future_2024_05_022 crossref_primary_10_1109_ACCESS_2019_2955134 crossref_primary_10_1111_cgf_14857 crossref_primary_10_1016_j_cag_2020_03_002 crossref_primary_10_1177_10943420241284023 crossref_primary_10_1109_TC_2023_3297442 crossref_primary_10_1007_s13253_023_00540_7 crossref_primary_10_1109_TPDS_2022_3168386 crossref_primary_10_1007_s00607_023_01154_0 crossref_primary_10_1007_s10115_024_02252_x crossref_primary_10_1109_JSTSP_2021_3058846 crossref_primary_10_1007_s11831_021_09602_w crossref_primary_10_1145_3585514 crossref_primary_10_1109_TBDATA_2022_3225959 crossref_primary_10_1137_24M1649009 crossref_primary_10_1145_3733104 crossref_primary_10_1111_cgf_14549 crossref_primary_10_1007_s41693_022_00069_0 crossref_primary_10_1109_TBDATA_2022_3201176 crossref_primary_10_1109_TVCG_2022_3165346 crossref_primary_10_1007_s00366_025_02205_0 crossref_primary_10_1109_TVCG_2025_3564255 crossref_primary_10_1080_13658816_2022_2092116 crossref_primary_10_1109_JSTSP_2021_3054314 crossref_primary_10_1109_TVCG_2020_3030381 crossref_primary_10_1145_3728301 crossref_primary_10_1111_cgf_14955 crossref_primary_10_1109_JPROC_2021_3074329 crossref_primary_10_1109_TVCG_2022_3214821 crossref_primary_10_1109_TVCG_2022_3214420 crossref_primary_10_1016_j_bspc_2021_102749 crossref_primary_10_1109_TPS_2023_3268170 crossref_primary_10_1109_TVCG_2024_3432710 crossref_primary_10_1007_s10489_022_03260_6 crossref_primary_10_1038_s43588_021_00156_2 crossref_primary_10_1109_JSEN_2022_3169226 crossref_primary_10_1109_TVCG_2023_3293121 crossref_primary_10_1111_cgf_15097 crossref_primary_10_1109_TVCG_2023_3345373 crossref_primary_10_1109_TPDS_2023_3339474 crossref_primary_10_1109_TVCG_2024_3410091 crossref_primary_10_1177_10943420231179417 crossref_primary_10_1109_TVCG_2020_3028889 crossref_primary_10_1016_j_cag_2023_04_002 crossref_primary_10_1109_TVCG_2019_2947515 crossref_primary_10_1007_s10915_024_02466_9 |
| Cites_doi | 10.2478/s11533-007-0018-0 10.1109/ICPR.2004.1334001 10.1109/TVCG.2018.2802521 10.1016/j.proci.2010.06.013 10.1109/78.258085 10.1111/1467-8659.00497 10.1111/j.1467-8659.2009.01495.x 10.1109/VISUAL.2002.1183757 10.1111/cgf.12280 10.1109/IPDPS.2016.11 10.1109/ICIP.2007.4379951 10.1111/j.1467-8659.2012.03124.x 10.1007/s00371-015-1130-y 10.1109/TMI.2005.846858 10.1088/1367-2630/9/8/301 10.1137/S0895479898346995 10.1109/TVCG.2011.214 10.1137/07070111X 10.1109/76.499834 10.1007/BF02289464 10.1145/2185520.2185576 10.1109/TVCG.2007.70406 10.1007/978-3-642-32820-6_83 10.1145/2753756 10.1016/j.cag.2014.10.002 10.1109/83.847830 10.1145/2167076.2167077 10.1109/VISUAL.2001.964531 10.1109/TVCG.2014.2346458 10.1109/PacificVis.2018.00015 10.1109/2945.468390 10.1038/nphys361 10.1109/TVCG.2017.2771282 10.1111/cgf.12102 10.1109/38.219451 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| CorporateAuthor | Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
| CorporateAuthor_xml | – name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 OIOZB OTOTI |
| DOI | 10.1109/TVCG.2019.2904063 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0506 |
| EndPage | 2903 |
| ExternalDocumentID | 1644746 30869621 10_1109_TVCG_2019_2904063 8663447 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: University of Zurich's Forschungskredit Candoc grantid: FK-16-012 – fundername: U.S. Department of Energy grantid: DE-AC52-07NA27344 funderid: 10.13039/100000015 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 AAYXX CITATION NPM RIC Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 OIOZB OTOTI PQEST |
| ID | FETCH-LOGICAL-c376t-a92f54f00c33b93488047f24087b7f3e89761bf9b3abf46fc2d89d4a751f476c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 107 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000554457900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1077-2626 1941-0506 |
| IngestDate | Mon Jul 10 02:32:52 EDT 2023 Sun Nov 09 12:31:06 EST 2025 Sun Nov 09 08:51:52 EST 2025 Wed Feb 19 02:36:51 EST 2025 Tue Nov 18 22:43:56 EST 2025 Sat Nov 29 06:05:41 EST 2025 Wed Aug 27 02:31:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c376t-a92f54f00c33b93488047f24087b7f3e89761bf9b3abf46fc2d89d4a751f476c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC52-07NA27344; FK-16-012 LLNL-JRNL-750580 USDOE National Nuclear Security Administration (NNSA) |
| ORCID | 0000-0003-3817-4199 0000-0002-6724-526X 0000-0001-5831-2056 0000000338174199 000000026724526X 0000000158312056 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1644746 |
| PMID | 30869621 |
| PQID | 2429220596 |
| PQPubID | 75741 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TVCG_2019_2904063 crossref_primary_10_1109_TVCG_2019_2904063 proquest_journals_2429220596 ieee_primary_8663447 proquest_miscellaneous_2191355492 osti_scitechconnect_1644746 pubmed_primary_30869621 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on visualization and computer graphics |
| PublicationTitleAbbrev | TVCG |
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 wu (ref20) 2008; 14 ref30 ref33 ref11 ref32 ref10 ref2 (ref39) 0 ref17 ref38 ref16 ref19 ref18 guthe (ref8) 2016 (ref1) 0 tsai (ref28) 2009 (ref45) 0 ref24 ref23 ref26 ref25 ref41 ref22 ref43 lakshminarasimhan (ref3) 2011 ref27 ref29 ref7 suter (ref21) 2010 ref9 ref4 ref6 ref5 (ref40) 0 (ref44) 0 (ref42) 0 |
| References_xml | – ident: ref37 doi: 10.2478/s11533-007-0018-0 – year: 0 ident: ref40 – ident: ref18 doi: 10.1109/ICPR.2004.1334001 – ident: ref26 doi: 10.1109/TVCG.2018.2802521 – ident: ref43 doi: 10.1016/j.proci.2010.06.013 – start-page: 77 year: 2016 ident: ref8 article-title: Variable length coding for GPU-based direct volume rendering publication-title: Proc Vis Model Vis Conf – ident: ref34 doi: 10.1109/78.258085 – ident: ref13 doi: 10.1111/1467-8659.00497 – year: 0 ident: ref44 – year: 0 ident: ref45 – ident: ref27 doi: 10.1111/j.1467-8659.2009.01495.x – ident: ref14 doi: 10.1109/VISUAL.2002.1183757 – ident: ref9 doi: 10.1111/cgf.12280 – ident: ref4 doi: 10.1109/IPDPS.2016.11 – year: 0 ident: ref1 – ident: ref19 doi: 10.1109/ICIP.2007.4379951 – year: 0 ident: ref42 – ident: ref7 doi: 10.1111/j.1467-8659.2012.03124.x – ident: ref2 doi: 10.1007/s00371-015-1130-y – ident: ref15 doi: 10.1109/TMI.2005.846858 – start-page: 366 year: 2011 ident: ref3 article-title: Compressing the incompressible with ISABELA: In-situ reduction of spatio-temporal data publication-title: Proc Eur Conf Parallel Process – start-page: 203 year: 2010 ident: ref21 article-title: Application of tensor approximation to multiscale volume feature representations publication-title: Proc Vis Model Vis Conf – ident: ref16 doi: 10.1088/1367-2630/9/8/301 – ident: ref31 doi: 10.1137/S0895479898346995 – ident: ref22 doi: 10.1109/TVCG.2011.214 – ident: ref32 doi: 10.1137/07070111X – ident: ref35 doi: 10.1109/76.499834 – ident: ref33 doi: 10.1007/BF02289464 – ident: ref25 doi: 10.1145/2185520.2185576 – volume: 14 start-page: 186 year: 2008 ident: ref20 article-title: Hierarchical tensor approximation of multidimensional visual data publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2007.70406 – year: 2009 ident: ref28 article-title: Parametric representations and tensor approximation algorithms for real-time data-driven rendering – ident: ref6 doi: 10.1007/978-3-642-32820-6_83 – ident: ref30 doi: 10.1145/2753756 – ident: ref24 doi: 10.1016/j.cag.2014.10.002 – ident: ref36 doi: 10.1109/83.847830 – ident: ref29 doi: 10.1145/2167076.2167077 – ident: ref12 doi: 10.1109/VISUAL.2001.964531 – ident: ref17 doi: 10.1109/TVCG.2014.2346458 – ident: ref5 doi: 10.1109/PacificVis.2018.00015 – ident: ref10 doi: 10.1109/2945.468390 – ident: ref41 doi: 10.1038/nphys361 – year: 0 ident: ref39 – ident: ref38 doi: 10.1109/TVCG.2017.2771282 – ident: ref23 doi: 10.1111/cgf.12102 – ident: ref11 doi: 10.1109/38.219451 |
| SSID | ssj0014489 |
| Score | 2.5604858 |
| Snippet | Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they... |
| SourceID | osti proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2891 |
| SubjectTerms | Algorithms Archiving Arithmetic coding Compression algorithms Data compression Data visualization Datasets Encoding higher-order singular value decomposition Mathematical analysis MATHEMATICS AND COMPUTING Matrix decomposition Multidimensional data scientific visualization Singular value decomposition tensor decompositions Tensors Three-dimensional displays Transform-based compression Transforms Tucker model Visualization |
| Title | TTHRESH: Tensor Compression for Multidimensional Visual Data |
| URI | https://ieeexplore.ieee.org/document/8663447 https://www.ncbi.nlm.nih.gov/pubmed/30869621 https://www.proquest.com/docview/2429220596 https://www.proquest.com/docview/2191355492 https://www.osti.gov/servlets/purl/1644746 |
| Volume | 26 |
| WOSCitedRecordID | wos000554457900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1077-2626 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc48CqP0FIFiRMibWI7sY24oELZU8UhVHuzHD-kSihBu1l-PzNONgIJkDg5UpzEmofnm8x4BuC1d1XXdaUvnPK-EN6XhbJ1KGTjnKjR4tXapmYT8vpardf6ywG8Xc7ChBBS8lk4p8sUy_eD29GvsguF5lEIeQiHUsrprNYSMUA3Q0_5hbJgiNLnCGZV6ov25vIzJXHpc6ZRZhvqncMRyuuGVb-Zo9RfBYcBtevviDNZnqsH_7fmh3B_Rpj5h0kkHsFB6B_DvV_qDh7D-7ZdIeVX7_IWvdhhk9OuMCXE9jmi2Dwdy_VU-H8q2pHf3G53OHy0o30CX68-tZerYm6jUDjcPcbCahZrEcvScd5pThorZKTSZrKTkQeFiKTqou647aJoomNeaS-srKsokGf8KRz1Qx-eQ654wJdwEazQoglBW4RTXXTSWlU2gWdQ7qlp3FxjnFpdfDPJ1yi1IV4Y4oWZeZHBm-WR71OBjX9NPiYKLxNn4mZwQiwzCBqo8q2jFCE3GvQEhRRNBqd7TppZQbeGUZsuRr2HMni13EbVoniJ7cOwwznoyxIc0yyDZ5MELF_ey8-LP6_oBO4ycsxTMtopHI2bXXgJd9yP8Xa7OUP5XauzJL8_AXuM54c |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9VAEB9qFdSDX9UaWzWCJzFtsrvJZsWLVOsT68NDLL0t-wkFScp7ef79ziR5QUEFTxvIJlnmY-c3mdkZgJfeFdba3Geu9j4T3udZbcqQyco5UaLFK5UZmk3I5bK-uFBfd-D1fBYmhDAkn4Ujuhxi-b5zG_pVdlyjeRRCXoPrpRCsGE9rzTEDdDTUmGEoM4Y4fYphFrk6bs5PPlIalzpiCqW2ou45HMG8qljxm0EaOqzg0KF-_R1zDrbn9O7_rfoe3JkwZvpuFIr7sBPaB3D7l8qDe_C2aRZI-8WbtEE_tlultC-MKbFtijg2HQ7meir9P5btSM8v1xsc3pvePIRvpx-ak0U2NVLIHO4ffWYUi6WIee44t4qTzgoZqbiZtDLyUCMmKWxUlhsbRRUd87XywsiyiAK5xh_Bbtu14TGkNQ_4Ei6CEUpUISiDgMpGJ42p8yrwBPItNbWbqoxTs4vvevA2cqWJF5p4oSdeJPBqfuRqLLHxr8l7ROF54kTcBA6IZRphA9W-dZQk5HqNvqCQokrgcMtJPanoWjNq1MWo-1ACL-bbqFwUMTFt6DY4B71ZAmSKJbA_SsD85a38PPnzip7DzUXz5UyffVp-PoBbjNz0ITXtEHb71SY8hRvuR3-5Xj0bpPgnO0jp5g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TTHRESH%3A+Tensor+Compression+for+Multidimensional+Visual+Data&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Ballester-Ripoll%2C+Rafael&rft.au=Lindstrom%2C+Peter&rft.au=Pajarola%2C+Renato&rft.date=2020-09-01&rft.pub=IEEE&rft.issn=1077-2626&rft.volume=26&rft.issue=9&rft.spage=2891&rft.epage=2903&rft_id=info:doi/10.1109%2FTVCG.2019.2904063&rft_id=info%3Apmid%2F30869621&rft.externalDocID=8663447 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |