TTHRESH: Tensor Compression for Multidimensional Visual Data

Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they increasingly demand suitable data compression strategies. We introduce a novel lossy compression algorithm for multidimensional data over regular gri...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on visualization and computer graphics Ročník 26; číslo 9; s. 2891 - 2903
Hlavní autori: Ballester-Ripoll, Rafael, Lindstrom, Peter, Pajarola, Renato
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1077-2626, 1941-0506, 1941-0506
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they increasingly demand suitable data compression strategies. We introduce a novel lossy compression algorithm for multidimensional data over regular grids. It leverages the higher-order singular value decomposition (HOSVD), a generalization of the SVD to three dimensions and higher, together with bit-plane, run-length and arithmetic coding to compress the HOSVD transform coefficients. Our scheme degrades the data particularly smoothly and achieves lower mean squared error than other state-of-the-art algorithms at low-to-medium bit rates, as it is required in data archiving and management for visualization purposes. Further advantages of the proposed algorithm include very fine bit rate selection granularity and the ability to manipulate data at very small cost in the compression domain, for example to reconstruct filtered and/or subsampled versions of all (or selected parts) of the data set.
AbstractList Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they increasingly demand suitable data compression strategies. We introduce a novel lossy compression algorithm for multidimensional data over regular grids. It leverages the higher-order singular value decomposition (HOSVD), a generalization of the SVD to three dimensions and higher, together with bit-plane, run-length and arithmetic coding to compress the HOSVD transform coefficients. Our scheme degrades the data particularly smoothly and achieves lower mean squared error than other state-of-the-art algorithms at low-to-medium bit rates, as it is required in data archiving and management for visualization purposes. Further advantages of the proposed algorithm include very fine bit rate selection granularity and the ability to manipulate data at very small cost in the compression domain, for example to reconstruct filtered and/or subsampled versions of all (or selected parts) of the data set.Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they increasingly demand suitable data compression strategies. We introduce a novel lossy compression algorithm for multidimensional data over regular grids. It leverages the higher-order singular value decomposition (HOSVD), a generalization of the SVD to three dimensions and higher, together with bit-plane, run-length and arithmetic coding to compress the HOSVD transform coefficients. Our scheme degrades the data particularly smoothly and achieves lower mean squared error than other state-of-the-art algorithms at low-to-medium bit rates, as it is required in data archiving and management for visualization purposes. Further advantages of the proposed algorithm include very fine bit rate selection granularity and the ability to manipulate data at very small cost in the compression domain, for example to reconstruct filtered and/or subsampled versions of all (or selected parts) of the data set.
Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they increasingly demand suitable data compression strategies. We introduce a novel lossy compression algorithm for multidimensional data over regular grids. It leverages the higher-order singular value decomposition (HOSVD), a generalization of the SVD to three dimensions and higher, together with bit-plane, run-length and arithmetic coding to compress the HOSVD transform coefficients. Our scheme degrades the data particularly smoothly and achieves lower mean squared error than other state-of-the-art algorithms at low-to-medium bit rates, as it is required in data archiving and management for visualization purposes. Further advantages of the proposed algorithm include very fine bit rate selection granularity and the ability to manipulate data at very small cost in the compression domain, for example to reconstruct filtered and/or subsampled versions of all (or selected parts) of the data set.
Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they increasingly demand suitable data compression strategies. In this paper, we introduce a novel lossy compression algorithm for multidimensional data over regular grids. It leverages the higher-order singular value decomposition (HOSVD), a generalization of the SVD to three dimensions and higher, together with bit-plane, run-length and arithmetic coding to compress the HOSVD transform coefficients. Our scheme degrades the data particularly smoothly and achieves lower mean squared error than other state-of-the-art algorithms at low-to-medium bit rates, as it is required in data archiving and management for visualization purposes. Further advantages of the proposed algorithm include very fine bit rate selection granularity and the ability to manipulate data at very small cost in the compression domain, for example to reconstruct filtered and/or subsampled versions of all (or selected parts) of the data set.
Author Ballester-Ripoll, Rafael
Pajarola, Renato
Lindstrom, Peter
Author_xml – sequence: 1
  givenname: Rafael
  orcidid: 0000-0001-5831-2056
  surname: Ballester-Ripoll
  fullname: Ballester-Ripoll, Rafael
  email: rballester@ifi.uzh.ch
  organization: Department of Informatics, University of Zürich, Zürich, Switzerland
– sequence: 2
  givenname: Peter
  orcidid: 0000-0003-3817-4199
  surname: Lindstrom
  fullname: Lindstrom, Peter
  email: pl@llnl.gov
  organization: Lawrence Livermore National Laboratory, Center for Applied Scientific Computing, Livermore, CA, USA
– sequence: 3
  givenname: Renato
  orcidid: 0000-0002-6724-526X
  surname: Pajarola
  fullname: Pajarola, Renato
  email: pajarola@ifi.uzh.ch
  organization: Department of Informatics, University of Zürich, Zürich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30869621$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1644746$$D View this record in Osti.gov
BookMark eNp9kUlrHDEQhYVx8Bb_gBAIQ3zxpcelpaVWyCWMlwnYBJK2r0KtkYhMd2ssqQ_-99YwYx988Km0fO9RVe8Y7Y9htAh9wTDHGORF-7C4mRPAck4kMOB0Dx1hyXAFNfD9cgYhKsIJP0THKT0CYMYaeYAOKTRccoKP0M-2Xf69-rf8MWvtmEKcLcKwjjYlH8aZK_e7qc9-5YfyW550P3vwaSrlUmf9GX1yuk_2dFdP0P31VbtYVrd_bn4vft1WhgqeKy2Jq5kDMJR2krKmASYcYdCITjhqGyk47pzsqO4c486QVSNXTIsaOya4oSfo-9Y3pOxVMj5b89-EcbQmK8wZE4wX6HwLrWN4mmzKavDJ2L7Xow1TUgRLTOuaSVLQs3foY5hiGa5QjEhCoJYbw287auoGu1Lr6Acdn9Xr8gogtoCJIaVonSqd6VzWlKP2vcKgNjGpTUxqE5PaxVSU-J3y1fwjzdetxltr3_iGc1rmpy8rCpmn
CODEN ITVGEA
CitedBy_id crossref_primary_10_3390_a12090197
crossref_primary_10_1109_TCOMM_2024_3496749
crossref_primary_10_1016_j_cageo_2023_105298
crossref_primary_10_1109_ACCESS_2021_3076033
crossref_primary_10_1109_TVCG_2022_3165392
crossref_primary_10_1109_JSTSP_2024_3454980
crossref_primary_10_1111_cgf_14578
crossref_primary_10_1016_j_future_2024_05_022
crossref_primary_10_1109_ACCESS_2019_2955134
crossref_primary_10_1111_cgf_14857
crossref_primary_10_1016_j_cag_2020_03_002
crossref_primary_10_1177_10943420241284023
crossref_primary_10_1109_TC_2023_3297442
crossref_primary_10_1007_s13253_023_00540_7
crossref_primary_10_1109_TPDS_2022_3168386
crossref_primary_10_1007_s00607_023_01154_0
crossref_primary_10_1007_s10115_024_02252_x
crossref_primary_10_1109_JSTSP_2021_3058846
crossref_primary_10_1007_s11831_021_09602_w
crossref_primary_10_1145_3585514
crossref_primary_10_1109_TBDATA_2022_3225959
crossref_primary_10_1137_24M1649009
crossref_primary_10_1145_3733104
crossref_primary_10_1111_cgf_14549
crossref_primary_10_1007_s41693_022_00069_0
crossref_primary_10_1109_TBDATA_2022_3201176
crossref_primary_10_1109_TVCG_2022_3165346
crossref_primary_10_1007_s00366_025_02205_0
crossref_primary_10_1109_TVCG_2025_3564255
crossref_primary_10_1080_13658816_2022_2092116
crossref_primary_10_1109_JSTSP_2021_3054314
crossref_primary_10_1109_TVCG_2020_3030381
crossref_primary_10_1145_3728301
crossref_primary_10_1111_cgf_14955
crossref_primary_10_1109_JPROC_2021_3074329
crossref_primary_10_1109_TVCG_2022_3214821
crossref_primary_10_1109_TVCG_2022_3214420
crossref_primary_10_1016_j_bspc_2021_102749
crossref_primary_10_1109_TPS_2023_3268170
crossref_primary_10_1109_TVCG_2024_3432710
crossref_primary_10_1007_s10489_022_03260_6
crossref_primary_10_1038_s43588_021_00156_2
crossref_primary_10_1109_JSEN_2022_3169226
crossref_primary_10_1109_TVCG_2023_3293121
crossref_primary_10_1111_cgf_15097
crossref_primary_10_1109_TVCG_2023_3345373
crossref_primary_10_1109_TPDS_2023_3339474
crossref_primary_10_1109_TVCG_2024_3410091
crossref_primary_10_1177_10943420231179417
crossref_primary_10_1109_TVCG_2020_3028889
crossref_primary_10_1016_j_cag_2023_04_002
crossref_primary_10_1109_TVCG_2019_2947515
crossref_primary_10_1007_s10915_024_02466_9
Cites_doi 10.2478/s11533-007-0018-0
10.1109/ICPR.2004.1334001
10.1109/TVCG.2018.2802521
10.1016/j.proci.2010.06.013
10.1109/78.258085
10.1111/1467-8659.00497
10.1111/j.1467-8659.2009.01495.x
10.1109/VISUAL.2002.1183757
10.1111/cgf.12280
10.1109/IPDPS.2016.11
10.1109/ICIP.2007.4379951
10.1111/j.1467-8659.2012.03124.x
10.1007/s00371-015-1130-y
10.1109/TMI.2005.846858
10.1088/1367-2630/9/8/301
10.1137/S0895479898346995
10.1109/TVCG.2011.214
10.1137/07070111X
10.1109/76.499834
10.1007/BF02289464
10.1145/2185520.2185576
10.1109/TVCG.2007.70406
10.1007/978-3-642-32820-6_83
10.1145/2753756
10.1016/j.cag.2014.10.002
10.1109/83.847830
10.1145/2167076.2167077
10.1109/VISUAL.2001.964531
10.1109/TVCG.2014.2346458
10.1109/PacificVis.2018.00015
10.1109/2945.468390
10.1038/nphys361
10.1109/TVCG.2017.2771282
10.1111/cgf.12102
10.1109/38.219451
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
CorporateAuthor Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
OIOZB
OTOTI
DOI 10.1109/TVCG.2019.2904063
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 2903
ExternalDocumentID 1644746
30869621
10_1109_TVCG_2019_2904063
8663447
Genre orig-research
Journal Article
GrantInformation_xml – fundername: University of Zurich's Forschungskredit Candoc
  grantid: FK-16-012
– fundername: U.S. Department of Energy
  grantid: DE-AC52-07NA27344
  funderid: 10.13039/100000015
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
AAYXX
CITATION
NPM
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
OIOZB
OTOTI
PQEST
ID FETCH-LOGICAL-c376t-a92f54f00c33b93488047f24087b7f3e89761bf9b3abf46fc2d89d4a751f476c3
IEDL.DBID RIE
ISICitedReferencesCount 107
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000554457900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-2626
1941-0506
IngestDate Mon Jul 10 02:32:52 EDT 2023
Sun Nov 09 12:31:06 EST 2025
Sun Nov 09 08:51:52 EST 2025
Wed Feb 19 02:36:51 EST 2025
Tue Nov 18 22:43:56 EST 2025
Sat Nov 29 06:05:41 EST 2025
Wed Aug 27 02:31:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-a92f54f00c33b93488047f24087b7f3e89761bf9b3abf46fc2d89d4a751f476c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC52-07NA27344; FK-16-012
LLNL-JRNL-750580
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0003-3817-4199
0000-0002-6724-526X
0000-0001-5831-2056
0000000338174199
000000026724526X
0000000158312056
OpenAccessLink https://www.osti.gov/servlets/purl/1644746
PMID 30869621
PQID 2429220596
PQPubID 75741
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TVCG_2019_2904063
crossref_primary_10_1109_TVCG_2019_2904063
proquest_journals_2429220596
ieee_primary_8663447
proquest_miscellaneous_2191355492
osti_scitechconnect_1644746
pubmed_primary_30869621
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
wu (ref20) 2008; 14
ref30
ref33
ref11
ref32
ref10
ref2
(ref39) 0
ref17
ref38
ref16
ref19
ref18
guthe (ref8) 2016
(ref1) 0
tsai (ref28) 2009
(ref45) 0
ref24
ref23
ref26
ref25
ref41
ref22
ref43
lakshminarasimhan (ref3) 2011
ref27
ref29
ref7
suter (ref21) 2010
ref9
ref4
ref6
ref5
(ref40) 0
(ref44) 0
(ref42) 0
References_xml – ident: ref37
  doi: 10.2478/s11533-007-0018-0
– year: 0
  ident: ref40
– ident: ref18
  doi: 10.1109/ICPR.2004.1334001
– ident: ref26
  doi: 10.1109/TVCG.2018.2802521
– ident: ref43
  doi: 10.1016/j.proci.2010.06.013
– start-page: 77
  year: 2016
  ident: ref8
  article-title: Variable length coding for GPU-based direct volume rendering
  publication-title: Proc Vis Model Vis Conf
– ident: ref34
  doi: 10.1109/78.258085
– ident: ref13
  doi: 10.1111/1467-8659.00497
– year: 0
  ident: ref44
– year: 0
  ident: ref45
– ident: ref27
  doi: 10.1111/j.1467-8659.2009.01495.x
– ident: ref14
  doi: 10.1109/VISUAL.2002.1183757
– ident: ref9
  doi: 10.1111/cgf.12280
– ident: ref4
  doi: 10.1109/IPDPS.2016.11
– year: 0
  ident: ref1
– ident: ref19
  doi: 10.1109/ICIP.2007.4379951
– year: 0
  ident: ref42
– ident: ref7
  doi: 10.1111/j.1467-8659.2012.03124.x
– ident: ref2
  doi: 10.1007/s00371-015-1130-y
– ident: ref15
  doi: 10.1109/TMI.2005.846858
– start-page: 366
  year: 2011
  ident: ref3
  article-title: Compressing the incompressible with ISABELA: In-situ reduction of spatio-temporal data
  publication-title: Proc Eur Conf Parallel Process
– start-page: 203
  year: 2010
  ident: ref21
  article-title: Application of tensor approximation to multiscale volume feature representations
  publication-title: Proc Vis Model Vis Conf
– ident: ref16
  doi: 10.1088/1367-2630/9/8/301
– ident: ref31
  doi: 10.1137/S0895479898346995
– ident: ref22
  doi: 10.1109/TVCG.2011.214
– ident: ref32
  doi: 10.1137/07070111X
– ident: ref35
  doi: 10.1109/76.499834
– ident: ref33
  doi: 10.1007/BF02289464
– ident: ref25
  doi: 10.1145/2185520.2185576
– volume: 14
  start-page: 186
  year: 2008
  ident: ref20
  article-title: Hierarchical tensor approximation of multidimensional visual data
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2007.70406
– year: 2009
  ident: ref28
  article-title: Parametric representations and tensor approximation algorithms for real-time data-driven rendering
– ident: ref6
  doi: 10.1007/978-3-642-32820-6_83
– ident: ref30
  doi: 10.1145/2753756
– ident: ref24
  doi: 10.1016/j.cag.2014.10.002
– ident: ref36
  doi: 10.1109/83.847830
– ident: ref29
  doi: 10.1145/2167076.2167077
– ident: ref12
  doi: 10.1109/VISUAL.2001.964531
– ident: ref17
  doi: 10.1109/TVCG.2014.2346458
– ident: ref5
  doi: 10.1109/PacificVis.2018.00015
– ident: ref10
  doi: 10.1109/2945.468390
– ident: ref41
  doi: 10.1038/nphys361
– year: 0
  ident: ref39
– ident: ref38
  doi: 10.1109/TVCG.2017.2771282
– ident: ref23
  doi: 10.1111/cgf.12102
– ident: ref11
  doi: 10.1109/38.219451
SSID ssj0014489
Score 2.5604858
Snippet Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they...
SourceID osti
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2891
SubjectTerms Algorithms
Archiving
Arithmetic coding
Compression algorithms
Data compression
Data visualization
Datasets
Encoding
higher-order singular value decomposition
Mathematical analysis
MATHEMATICS AND COMPUTING
Matrix decomposition
Multidimensional data
scientific visualization
Singular value decomposition
tensor decompositions
Tensors
Three-dimensional displays
Transform-based compression
Transforms
Tucker model
Visualization
Title TTHRESH: Tensor Compression for Multidimensional Visual Data
URI https://ieeexplore.ieee.org/document/8663447
https://www.ncbi.nlm.nih.gov/pubmed/30869621
https://www.proquest.com/docview/2429220596
https://www.proquest.com/docview/2191355492
https://www.osti.gov/servlets/purl/1644746
Volume 26
WOSCitedRecordID wos000554457900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc48CqP0FIFiRMibWI7sY24oELZU8UhVHuzHD-kSihBu1l-PzNONgIJkDg5UpzEmofnm8x4BuC1d1XXdaUvnPK-EN6XhbJ1KGTjnKjR4tXapmYT8vpardf6ywG8Xc7ChBBS8lk4p8sUy_eD29GvsguF5lEIeQiHUsrprNYSMUA3Q0_5hbJgiNLnCGZV6ov25vIzJXHpc6ZRZhvqncMRyuuGVb-Zo9RfBYcBtevviDNZnqsH_7fmh3B_Rpj5h0kkHsFB6B_DvV_qDh7D-7ZdIeVX7_IWvdhhk9OuMCXE9jmi2Dwdy_VU-H8q2pHf3G53OHy0o30CX68-tZerYm6jUDjcPcbCahZrEcvScd5pThorZKTSZrKTkQeFiKTqou647aJoomNeaS-srKsokGf8KRz1Qx-eQ654wJdwEazQoglBW4RTXXTSWlU2gWdQ7qlp3FxjnFpdfDPJ1yi1IV4Y4oWZeZHBm-WR71OBjX9NPiYKLxNn4mZwQiwzCBqo8q2jFCE3GvQEhRRNBqd7TppZQbeGUZsuRr2HMni13EbVoniJ7cOwwznoyxIc0yyDZ5MELF_ey8-LP6_oBO4ycsxTMtopHI2bXXgJd9yP8Xa7OUP5XauzJL8_AXuM54c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9VAEB9qFdSDX9UaWzWCJzFtsrvJZsWLVOsT68NDLL0t-wkFScp7ef79ziR5QUEFTxvIJlnmY-c3mdkZgJfeFdba3Geu9j4T3udZbcqQyco5UaLFK5UZmk3I5bK-uFBfd-D1fBYmhDAkn4Ujuhxi-b5zG_pVdlyjeRRCXoPrpRCsGE9rzTEDdDTUmGEoM4Y4fYphFrk6bs5PPlIalzpiCqW2ou45HMG8qljxm0EaOqzg0KF-_R1zDrbn9O7_rfoe3JkwZvpuFIr7sBPaB3D7l8qDe_C2aRZI-8WbtEE_tlultC-MKbFtijg2HQ7meir9P5btSM8v1xsc3pvePIRvpx-ak0U2NVLIHO4ffWYUi6WIee44t4qTzgoZqbiZtDLyUCMmKWxUlhsbRRUd87XywsiyiAK5xh_Bbtu14TGkNQ_4Ei6CEUpUISiDgMpGJ42p8yrwBPItNbWbqoxTs4vvevA2cqWJF5p4oSdeJPBqfuRqLLHxr8l7ROF54kTcBA6IZRphA9W-dZQk5HqNvqCQokrgcMtJPanoWjNq1MWo-1ACL-bbqFwUMTFt6DY4B71ZAmSKJbA_SsD85a38PPnzip7DzUXz5UyffVp-PoBbjNz0ITXtEHb71SY8hRvuR3-5Xj0bpPgnO0jp5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TTHRESH%3A+Tensor+Compression+for+Multidimensional+Visual+Data&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Ballester-Ripoll%2C+Rafael&rft.au=Lindstrom%2C+Peter&rft.au=Pajarola%2C+Renato&rft.date=2020-09-01&rft.pub=IEEE&rft.issn=1077-2626&rft.volume=26&rft.issue=9&rft.spage=2891&rft.epage=2903&rft_id=info:doi/10.1109%2FTVCG.2019.2904063&rft_id=info%3Apmid%2F30869621&rft.externalDocID=8663447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon