Feature learning from incomplete EEG with denoising autoencoder

An alternative pathway for the human brain to communicate with the outside world is by means of a brain computer interface (BCI). A BCI can decode electroencephalogram (EEG) signals of brain activities, and then send a command or an intent to an external interactive device, such as a wheelchair. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 165; s. 23 - 31
Hlavní autoři: Li, Junhua, Struzik, Zbigniew, Zhang, Liqing, Cichocki, Andrzej
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2015
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract An alternative pathway for the human brain to communicate with the outside world is by means of a brain computer interface (BCI). A BCI can decode electroencephalogram (EEG) signals of brain activities, and then send a command or an intent to an external interactive device, such as a wheelchair. The effectiveness of the BCI depends on the performance in decoding the EEG. Usually, the EEG is contaminated by different kinds of artefacts (e.g., electromyogram (EMG), background activity), which leads to a low decoding performance. A number of filtering methods can be utilized to remove or weaken the effects of artefacts, but they generally fail when the EEG contains extreme artefacts. In such cases, the most common approach is to discard the whole data segment containing extreme artefacts. This causes the fatal drawback that the BCI cannot output decoding results during that time. In order to solve this problem, we employ the Lomb–Scargle periodogram to estimate the spectral power from incomplete EEG (after removing only parts contaminated by artefacts), and Denoising Autoencoder (DAE) for learning. The proposed method is evaluated with motor imagery EEG data. The results show that our method can successfully decode incomplete EEG to good effect.
AbstractList An alternative pathway for the human brain to communicate with the outside world is by means of a brain computer interface (BCI). A BCI can decode electroencephalogram (EEG) signals of brain activities, and then send a command or an intent to an external interactive device, such as a wheelchair. The effectiveness of the BCI depends on the performance in decoding the EEG. Usually, the EEG is contaminated by different kinds of artefacts (e.g., electromyogram (EMG), background activity), which leads to a low decoding performance. A number of filtering methods can be utilized to remove or weaken the effects of artefacts, but they generally fail when the EEG contains extreme artefacts. In such cases, the most common approach is to discard the whole data segment containing extreme artefacts. This causes the fatal drawback that the BCI cannot output decoding results during that time. In order to solve this problem, we employ the Lomb–Scargle periodogram to estimate the spectral power from incomplete EEG (after removing only parts contaminated by artefacts), and Denoising Autoencoder (DAE) for learning. The proposed method is evaluated with motor imagery EEG data. The results show that our method can successfully decode incomplete EEG to good effect.
Author Zhang, Liqing
Cichocki, Andrzej
Li, Junhua
Struzik, Zbigniew
Author_xml – sequence: 1
  givenname: Junhua
  surname: Li
  fullname: Li, Junhua
  email: juhalee.bcmi@gmail.com
  organization: Laboratory for Advanced Brain Signal Processing, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
– sequence: 2
  givenname: Zbigniew
  surname: Struzik
  fullname: Struzik, Zbigniew
  organization: Laboratory for Advanced Brain Signal Processing, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
– sequence: 3
  givenname: Liqing
  surname: Zhang
  fullname: Zhang, Liqing
  organization: Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 4
  givenname: Andrzej
  surname: Cichocki
  fullname: Cichocki, Andrzej
  organization: Laboratory for Advanced Brain Signal Processing, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
BookMark eNqFkM1KAzEUhYNUsK2-gYt5gRnz05nccaFIaatQcKPrkGZuNGWalEyq-Pam1JULhQsHLuc7cM6EjHzwSMg1oxWjrLnZVh4PJuwqTtmsolDRlp-RMQPJS-DQjMg4f-qSC8YvyGQYtpQyyXg7JvdL1OkQsehRR-_8W2Fj2BXO57h9jwmLxWJVfLr0XnTogxuOFn1IAbOjw3hJzq3uB7z60Sl5XS5e5o_l-nn1NH9Yl0bIJpW6wRpqqwEEtAJqaDlrWlszWXe2NdSARs46upHCcKCCawlabqzUs3yWiym5PeWaGIYholXGJZ1c8Clq1ytG1XEKtVWnKdRxCkVB5eIZnv2C99HtdPz6D7s7YZiLfTiMajAu98bORTRJdcH9HfANvCh88g
CitedBy_id crossref_primary_10_1088_1741_2552_ab260c
crossref_primary_10_1109_TNSRE_2020_3001990
crossref_primary_10_1016_j_aei_2022_101708
crossref_primary_10_1109_JBHI_2024_3475817
crossref_primary_10_1002_ima_22254
crossref_primary_10_1007_s11042_023_14799_y
crossref_primary_10_1109_TAFFC_2020_3025777
crossref_primary_10_3390_s19051168
crossref_primary_10_1109_ACCESS_2021_3105917
crossref_primary_10_3390_make4040053
crossref_primary_10_1109_TCYB_2021_3068300
crossref_primary_10_1155_2020_8509142
crossref_primary_10_1016_j_neucom_2016_11_008
crossref_primary_10_1016_j_autcon_2024_105670
crossref_primary_10_1109_JBHI_2018_2885139
crossref_primary_10_1016_j_compbiomed_2022_105815
crossref_primary_10_1016_j_neucom_2017_02_050
crossref_primary_10_1109_TCE_2024_3412774
crossref_primary_10_1155_2021_5229576
crossref_primary_10_1109_TNSRE_2018_2864119
crossref_primary_10_1016_j_asoc_2018_09_037
crossref_primary_10_3390_s22145111
crossref_primary_10_1155_2020_5013871
crossref_primary_10_1109_TCDS_2016_2555952
crossref_primary_10_3390_sym11070944
crossref_primary_10_1016_j_neucom_2017_01_061
crossref_primary_10_1007_s13042_021_01414_5
crossref_primary_10_1186_s40708_022_00167_3
crossref_primary_10_1177_1687814019897212
crossref_primary_10_3390_app122010385
crossref_primary_10_1109_JBHI_2020_2971610
crossref_primary_10_1155_2018_5419645
crossref_primary_10_1109_TCDS_2019_2963476
crossref_primary_10_1016_j_neucom_2019_02_061
crossref_primary_10_1016_j_neucom_2016_08_082
crossref_primary_10_1109_TPAMI_2024_3387317
crossref_primary_10_1109_ACCESS_2022_3213996
crossref_primary_10_1109_TNSRE_2016_2601240
crossref_primary_10_3390_s18092967
crossref_primary_10_1007_s10472_019_09668_0
crossref_primary_10_1109_JSEN_2019_2960876
crossref_primary_10_1109_TMECH_2022_3148141
crossref_primary_10_1016_j_cmpb_2016_12_005
crossref_primary_10_3390_e24091187
crossref_primary_10_1109_TIM_2020_3011734
crossref_primary_10_3389_fnins_2020_00026
crossref_primary_10_1139_cjce_2021_0646
crossref_primary_10_1109_ACCESS_2019_2910287
crossref_primary_10_1109_TCDS_2021_3090217
crossref_primary_10_1109_TSMC_2021_3062715
crossref_primary_10_1061__ASCE_CP_1943_5487_0000927
crossref_primary_10_1109_TETCI_2018_2829981
crossref_primary_10_1109_JBHI_2022_3232514
crossref_primary_10_1016_j_rcim_2023_102610
crossref_primary_10_1016_j_neucom_2017_01_002
crossref_primary_10_1109_JBHI_2015_2491645
crossref_primary_10_3390_s19132841
crossref_primary_10_1145_3366484
crossref_primary_10_1016_j_asoc_2020_107003
crossref_primary_10_1016_j_neuroimage_2025_121123
crossref_primary_10_3389_fnins_2019_01275
crossref_primary_10_1016_j_neuroimage_2022_118994
crossref_primary_10_1016_j_eswa_2020_113285
crossref_primary_10_1016_j_bspc_2022_104349
crossref_primary_10_1007_s11042_019_08602_0
crossref_primary_10_1016_j_jneumeth_2015_08_004
crossref_primary_10_1007_s00500_023_09068_x
crossref_primary_10_1088_1741_2552_ac6d7d
crossref_primary_10_1145_3448302
crossref_primary_10_1007_s00542_024_05711_1
crossref_primary_10_1016_j_eswa_2020_113453
crossref_primary_10_1016_j_eswa_2022_118694
crossref_primary_10_1109_ACCESS_2017_2720164
crossref_primary_10_1109_TBME_2022_3174509
crossref_primary_10_1016_j_knosys_2024_112370
crossref_primary_10_1016_j_bspc_2016_11_013
crossref_primary_10_1109_ACCESS_2019_2962740
crossref_primary_10_1049_iet_sen_2019_0278
crossref_primary_10_4108_eetpht_10_5328
crossref_primary_10_1016_j_neuroimage_2022_119586
crossref_primary_10_1109_TIFS_2023_3266624
crossref_primary_10_1155_2021_3965385
crossref_primary_10_1109_TIM_2018_2885608
crossref_primary_10_1016_j_asoc_2024_112631
crossref_primary_10_1007_s00521_019_04532_y
crossref_primary_10_1016_j_neucom_2020_04_057
crossref_primary_10_1016_j_neucom_2024_128644
crossref_primary_10_1088_1741_2552_abc902
crossref_primary_10_3390_app7010041
crossref_primary_10_1016_j_compbiomed_2019_04_034
crossref_primary_10_1007_s00521_018_3735_3
crossref_primary_10_1016_j_neucom_2024_127957
crossref_primary_10_3389_fnins_2021_652073
crossref_primary_10_1016_j_bspc_2022_103687
crossref_primary_10_3390_fi16050158
crossref_primary_10_1109_ACCESS_2020_2992631
crossref_primary_10_1155_2020_8863223
Cites_doi 10.1007/BF00648343
10.1515/revneuro-2013-0032
10.1109/EMBC.2013.6609972
10.1016/j.jneumeth.2010.09.010
10.1109/TNSRE.2006.881539
10.1109/TRE.2000.847807
10.1007/s00221-012-3084-x
10.1109/TSP.2008.2008973
10.3758/BF03327130
10.1016/j.jneumeth.2007.09.022
10.1142/S0129065713500135
10.1145/1390156.1390294
10.1016/S0304-3940(03)00947-9
10.1016/j.neulet.2005.03.021
10.1088/1741-2560/7/3/036007
10.1088/1741-2560/6/4/046002
10.1109/5254.708428
10.1016/j.jneumeth.2013.11.009
10.1016/S0304-3940(00)01471-3
10.1016/S1474-4422(08)70223-0
10.1038/nature11076
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2014.08.092
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 31
ExternalDocumentID 10_1016_j_neucom_2014_08_092
S0925231215004282
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c376t-a6e585fa88389385892169f5175df9c0c8ae21d0b73c28032a78a7bf7a47a4f23
ISICitedReferencesCount 124
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356747700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 20:38:48 EST 2025
Sat Nov 29 07:52:46 EST 2025
Fri Feb 23 02:28:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spectral power estimation
Denoising autoencoder
Brain computer interface
Motor imagery
Incomplete EEG
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-a6e585fa88389385892169f5175df9c0c8ae21d0b73c28032a78a7bf7a47a4f23
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2014_08_092
crossref_primary_10_1016_j_neucom_2014_08_092
elsevier_sciencedirect_doi_10_1016_j_neucom_2014_08_092
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Müller-Putz, Scherer, Pfurtscheller, Rupp (bib9) 2005; 382
Bin, Gao, Yan, Hong, Gao (bib6) 2009; 6
Vapnik (bib22) 2000
Hearst, Dumais, Osman, Platt, Scholkopf (bib23) 1998; 13
Müller, Tangermann, Dornhege, Krauledat, Curio, Blankertz (bib3) 2008; 167
P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International Conference on Machine Learning, ACM, Helsinki, Finland, 2008, pp. 1096–1103.
Pfurtscheller, Müller, Pfurtscheller, Gerner, Rupp (bib5) 2003; 351
J. Li, Y. Liu, Z. Lu, L. Zhang, A competitive brain computer interface: multi-person car racing system, in: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, Osaka, Japan, 2013, pp. 2200–2203.
McFarland, Neat, Read, Wolpaw (bib7) 1993; 21
Pfurtscheller, Guger, Müller, Krausz, Neuper (bib15) 2000; 292
Lomb (bib18) 1976; 39
McFarland, Sarnacki, Wolpaw (bib8) 2010; 7
Li, Liang, Zhao, Li, Hong, Zhang (bib4) 2013; 23
Stoica, Li, He (bib19) 2009; 57
Hochberg, Bacher, Jarosiewicz, Masse, Simeral, Vogel, Haddadin, Liu, Cash, van der Smagt (bib10) 2012; 485
Wolpaw, Birbaumer, Heetderks, McFarland, Peckham, Schalk, Donchin, Quatrano, Robinson, Vaughan (bib2) 2000; 8
Liu, Li, Zhang, Wang, Li, Jia, Wu, Zhang (bib12) 2014; 222
Ortiz-Rosario, Adeli (bib1) 2013; 24
Li, Zhang (bib16) 2010; 193
Erhan, Bengio, Courville, Manzagol, Vincent, Bengio (bib24) 2010; 11
Palaniappan (bib14) 2006; 14
Daly, Wolpaw (bib11) 2008; 7
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib21) 2010; 11
X. Glorot, A. Bordes, Y. Bengio, Domain adaptation for large-scale sentiment classification: a deep learning approach, in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), Bellevue, USA, 2011, pp. 513–520.
Li, Zhang (bib17) 2012; 219
Ortiz-Rosario (10.1016/j.neucom.2014.08.092_bib1) 2013; 24
Li (10.1016/j.neucom.2014.08.092_bib16) 2010; 193
Lomb (10.1016/j.neucom.2014.08.092_bib18) 1976; 39
10.1016/j.neucom.2014.08.092_bib13
Pfurtscheller (10.1016/j.neucom.2014.08.092_bib5) 2003; 351
Vapnik (10.1016/j.neucom.2014.08.092_bib22) 2000
Wolpaw (10.1016/j.neucom.2014.08.092_bib2) 2000; 8
10.1016/j.neucom.2014.08.092_bib20
Stoica (10.1016/j.neucom.2014.08.092_bib19) 2009; 57
Li (10.1016/j.neucom.2014.08.092_bib4) 2013; 23
Hearst (10.1016/j.neucom.2014.08.092_bib23) 1998; 13
Bin (10.1016/j.neucom.2014.08.092_bib6) 2009; 6
Daly (10.1016/j.neucom.2014.08.092_bib11) 2008; 7
Müller (10.1016/j.neucom.2014.08.092_bib3) 2008; 167
Palaniappan (10.1016/j.neucom.2014.08.092_bib14) 2006; 14
10.1016/j.neucom.2014.08.092_bib25
Li (10.1016/j.neucom.2014.08.092_bib17) 2012; 219
Liu (10.1016/j.neucom.2014.08.092_bib12) 2014; 222
Vincent (10.1016/j.neucom.2014.08.092_bib21) 2010; 11
Hochberg (10.1016/j.neucom.2014.08.092_bib10) 2012; 485
Müller-Putz (10.1016/j.neucom.2014.08.092_bib9) 2005; 382
McFarland (10.1016/j.neucom.2014.08.092_bib7) 1993; 21
Pfurtscheller (10.1016/j.neucom.2014.08.092_bib15) 2000; 292
Erhan (10.1016/j.neucom.2014.08.092_bib24) 2010; 11
McFarland (10.1016/j.neucom.2014.08.092_bib8) 2010; 7
References_xml – volume: 351
  start-page: 33
  year: 2003
  end-page: 36
  ident: bib5
  article-title: Thought–control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia
  publication-title: Neurosci. Lett.
– volume: 39
  start-page: 447
  year: 1976
  end-page: 462
  ident: bib18
  article-title: Least-squares frequency analysis of unequally spaced data
  publication-title: Astrophys. Sp. Sci.
– volume: 57
  start-page: 843
  year: 2009
  end-page: 858
  ident: bib19
  article-title: Spectral analysis of nonuniformly sampled data
  publication-title: IEEE Trans. Signal Process.
– volume: 219
  start-page: 245
  year: 2012
  end-page: 254
  ident: bib17
  article-title: Active training paradigm for motor imagery BCI
  publication-title: Exp. Brain Res.
– volume: 21
  start-page: 77
  year: 1993
  end-page: 81
  ident: bib7
  article-title: An EEG-based method for graded cursor control
  publication-title: Psychobiology
– reference: X. Glorot, A. Bordes, Y. Bengio, Domain adaptation for large-scale sentiment classification: a deep learning approach, in: Proceedings of the 28th International Conference on Machine Learning (ICML-11), Bellevue, USA, 2011, pp. 513–520.
– volume: 14
  start-page: 299
  year: 2006
  end-page: 303
  ident: bib14
  article-title: Utilizing gamma band to improve mental task based brain–computer interface design
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 382
  start-page: 169
  year: 2005
  end-page: 174
  ident: bib9
  article-title: EEG-based neuroprosthesis control
  publication-title: Neurosci. Lett.
– year: 2000
  ident: bib22
  article-title: The Nature of Statistical Learning Theory
– volume: 8
  start-page: 164
  year: 2000
  end-page: 173
  ident: bib2
  article-title: Brain–computer interface technology
  publication-title: IEEE Trans. Rehabil. Eng.
– volume: 485
  start-page: 372
  year: 2012
  end-page: 375
  ident: bib10
  article-title: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm
  publication-title: Nature
– volume: 23
  start-page: 1350013
  year: 2013
  ident: bib4
  article-title: Design of assistive wheelchair system directly steered by human thoughts
  publication-title: Int. J. Neural Syst.
– volume: 6
  start-page: 046002
  year: 2009
  ident: bib6
  article-title: An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method
  publication-title: J. Neural Eng.
– volume: 7
  start-page: 036007
  year: 2010
  ident: bib8
  article-title: Electroencephalographic (EEG) control of three-dimensional movement
  publication-title: J. Neural Eng.
– volume: 7
  start-page: 1032
  year: 2008
  end-page: 1043
  ident: bib11
  article-title: Brain–computer interfaces in neurological rehabilitation
  publication-title: Lancet Neurol.
– reference: P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International Conference on Machine Learning, ACM, Helsinki, Finland, 2008, pp. 1096–1103.
– volume: 13
  start-page: 18
  year: 1998
  end-page: 28
  ident: bib23
  article-title: Support vector machines
  publication-title: IEEE Intell. Syst. Appl.
– volume: 193
  start-page: 373
  year: 2010
  end-page: 379
  ident: bib16
  article-title: Bilateral adaptation and neurofeedback for brain computer interface system
  publication-title: J. Neurosci. Methods
– volume: 24
  start-page: 537
  year: 2013
  end-page: 552
  ident: bib1
  article-title: Brain–computer interface technologies
  publication-title: Rev. Neurosci.
– reference: J. Li, Y. Liu, Z. Lu, L. Zhang, A competitive brain computer interface: multi-person car racing system, in: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, Osaka, Japan, 2013, pp. 2200–2203.
– volume: 222
  start-page: 238
  year: 2014
  end-page: 249
  ident: bib12
  article-title: A tensor-based scheme for stroke patients motor imagery EEG analysis in bci-fes rehabilitation training
  publication-title: J. Neurosci. Methods
– volume: 292
  start-page: 211
  year: 2000
  end-page: 214
  ident: bib15
  article-title: Brain oscillations control hand orthosis in a tetraplegic
  publication-title: Neurosci. Lett.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib21
  article-title: Stacked denoising autoencoders
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 625
  year: 2010
  end-page: 660
  ident: bib24
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: J. Mach. Learn. Res.
– volume: 167
  start-page: 82
  year: 2008
  end-page: 90
  ident: bib3
  article-title: Machine learning for real-time single-trial EEG-analysis
  publication-title: J. Neurosci. methods
– volume: 39
  start-page: 447
  issue: 2
  year: 1976
  ident: 10.1016/j.neucom.2014.08.092_bib18
  article-title: Least-squares frequency analysis of unequally spaced data
  publication-title: Astrophys. Sp. Sci.
  doi: 10.1007/BF00648343
– volume: 24
  start-page: 537
  issue: 5
  year: 2013
  ident: 10.1016/j.neucom.2014.08.092_bib1
  article-title: Brain–computer interface technologies
  publication-title: Rev. Neurosci.
  doi: 10.1515/revneuro-2013-0032
– ident: 10.1016/j.neucom.2014.08.092_bib13
  doi: 10.1109/EMBC.2013.6609972
– volume: 193
  start-page: 373
  issue: 2
  year: 2010
  ident: 10.1016/j.neucom.2014.08.092_bib16
  article-title: Bilateral adaptation and neurofeedback for brain computer interface system
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.09.010
– volume: 14
  start-page: 299
  issue: 3
  year: 2006
  ident: 10.1016/j.neucom.2014.08.092_bib14
  article-title: Utilizing gamma band to improve mental task based brain–computer interface design
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.881539
– volume: 8
  start-page: 164
  issue: 2
  year: 2000
  ident: 10.1016/j.neucom.2014.08.092_bib2
  article-title: Brain–computer interface technology
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/TRE.2000.847807
– volume: 219
  start-page: 245
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2014.08.092_bib17
  article-title: Active training paradigm for motor imagery BCI
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-012-3084-x
– volume: 57
  start-page: 843
  issue: 3
  year: 2009
  ident: 10.1016/j.neucom.2014.08.092_bib19
  article-title: Spectral analysis of nonuniformly sampled data
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.2008973
– volume: 21
  start-page: 77
  issue: 1
  year: 1993
  ident: 10.1016/j.neucom.2014.08.092_bib7
  article-title: An EEG-based method for graded cursor control
  publication-title: Psychobiology
  doi: 10.3758/BF03327130
– volume: 167
  start-page: 82
  issue: 1
  year: 2008
  ident: 10.1016/j.neucom.2014.08.092_bib3
  article-title: Machine learning for real-time single-trial EEG-analysis
  publication-title: J. Neurosci. methods
  doi: 10.1016/j.jneumeth.2007.09.022
– volume: 23
  start-page: 1350013
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2014.08.092_bib4
  article-title: Design of assistive wheelchair system directly steered by human thoughts
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065713500135
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.neucom.2014.08.092_bib21
  article-title: Stacked denoising autoencoders
  publication-title: J. Mach. Learn. Res.
– year: 2000
  ident: 10.1016/j.neucom.2014.08.092_bib22
– ident: 10.1016/j.neucom.2014.08.092_bib20
  doi: 10.1145/1390156.1390294
– volume: 351
  start-page: 33
  issue: 1
  year: 2003
  ident: 10.1016/j.neucom.2014.08.092_bib5
  article-title: Thought–control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(03)00947-9
– volume: 382
  start-page: 169
  issue: 1
  year: 2005
  ident: 10.1016/j.neucom.2014.08.092_bib9
  article-title: EEG-based neuroprosthesis control
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2005.03.021
– volume: 7
  start-page: 036007
  issue: 3
  year: 2010
  ident: 10.1016/j.neucom.2014.08.092_bib8
  article-title: Electroencephalographic (EEG) control of three-dimensional movement
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/7/3/036007
– volume: 6
  start-page: 046002
  issue: 4
  year: 2009
  ident: 10.1016/j.neucom.2014.08.092_bib6
  article-title: An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/6/4/046002
– volume: 13
  start-page: 18
  issue: 4
  year: 1998
  ident: 10.1016/j.neucom.2014.08.092_bib23
  article-title: Support vector machines
  publication-title: IEEE Intell. Syst. Appl.
  doi: 10.1109/5254.708428
– volume: 222
  start-page: 238
  year: 2014
  ident: 10.1016/j.neucom.2014.08.092_bib12
  article-title: A tensor-based scheme for stroke patients motor imagery EEG analysis in bci-fes rehabilitation training
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2013.11.009
– volume: 292
  start-page: 211
  issue: 3
  year: 2000
  ident: 10.1016/j.neucom.2014.08.092_bib15
  article-title: Brain oscillations control hand orthosis in a tetraplegic
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(00)01471-3
– volume: 7
  start-page: 1032
  issue: 11
  year: 2008
  ident: 10.1016/j.neucom.2014.08.092_bib11
  article-title: Brain–computer interfaces in neurological rehabilitation
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(08)70223-0
– ident: 10.1016/j.neucom.2014.08.092_bib25
– volume: 485
  start-page: 372
  issue: 7398
  year: 2012
  ident: 10.1016/j.neucom.2014.08.092_bib10
  article-title: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm
  publication-title: Nature
  doi: 10.1038/nature11076
– volume: 11
  start-page: 625
  year: 2010
  ident: 10.1016/j.neucom.2014.08.092_bib24
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: J. Mach. Learn. Res.
SSID ssj0017129
Score 2.5168684
Snippet An alternative pathway for the human brain to communicate with the outside world is by means of a brain computer interface (BCI). A BCI can decode...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 23
SubjectTerms Brain computer interface
Denoising autoencoder
Incomplete EEG
Motor imagery
Spectral power estimation
Title Feature learning from incomplete EEG with denoising autoencoder
URI https://dx.doi.org/10.1016/j.neucom.2014.08.092
Volume 165
WOSCitedRecordID wos000356747700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZQy4EL5SkKFPnADQUl3ji2T2hVbXmoqjgUacUlshMbsirZQnerqr--M_GjKUWFHlitoijaOLuZb2cm4_H3EfLaqDJvXW6yorQyK0uRZ5rDU0rhHDfcQcRvy0FsQhwcyPlcfQ5VpZNBTkD0vTw7U8f_1dRwDIyNS2dvYe40KByAfTA6bMHssP0nw2NSh7MCR7HoMawgQRIGJAJe2Tez2XtffgWXs-yGWoFer5bIaNmGXt1F5HRaQ3wbdB9CRWH6A4kVWkRRqiDsd355R_99nXw8CiSfd4On_Wq6b_1o_iGVqPe7nzFu4iRIB4648SLa2GV5bhfjikTBU29bKi0ynkHeeNXLVnzsJyejiOvDwDVf7ssKi7e9XWNjD1ypHNhWvXbeVers30JaajSMPWyL2o9S4yg1Cm8qiNubTHAFrnBz-nE2_5Qmn0TBPEVj-BlxxeXQFnj92_w5oxllKYcPyP3weEGnHhYPyR3bPyJbUbqDBk_-mLwLKKERJRRRQi9RQgElFFFCE0roCCVPyJe92eHuhyxoaWQNhJBVpisLD4ZOS4kZquRSsaJSjkP22DrV5I3UlhVtbsSkQcEypoXUwjihS3g7NnlKNvplb58Rin3r0jDRaq1LZpiS8FKu0NbkVVvJbTKJ96NuAtE86p0c1TdZY5tk6axjT7Tyl8-LeKvrkCz6JLAG_Nx45vNbXukFuXeJ8pdkA_5AdofcbU5X3cmvVwE8F9PzjTU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+learning+from+incomplete+EEG+with+denoising+autoencoder&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Li%2C+Junhua&rft.au=Struzik%2C+Zbigniew&rft.au=Zhang%2C+Liqing&rft.au=Cichocki%2C+Andrzej&rft.date=2015-10-01&rft.issn=0925-2312&rft.volume=165&rft.spage=23&rft.epage=31&rft_id=info:doi/10.1016%2Fj.neucom.2014.08.092&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2014_08_092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon