Autoencoder-Based Target Detection in Automotive MIMO FMCW Radar System
In general, a constant false alarm rate algorithm (CFAR) is widely used to automatically detect targets in an automotive frequency-modulated continuous wave (FMCW) radar system. However, if the number of guard cells, the number of training cells, and the probability of false alarm are set improperly...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 22; číslo 15; s. 5552 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
25.07.2022
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In general, a constant false alarm rate algorithm (CFAR) is widely used to automatically detect targets in an automotive frequency-modulated continuous wave (FMCW) radar system. However, if the number of guard cells, the number of training cells, and the probability of false alarm are set improperly in the conventional CFAR algorithm, the target detection performance is severely degraded. Therefore, we propose a method using a convolutional neural network-based autoencoder (AE) to replace the CFAR algorithm in the multiple-input and multiple-output FMCW radar system. In the AE, the entire detection result is compressed at the encoder side, and only significant signal components are recovered on the decoder side. In this work, by changing the number of hidden layers and the number of filters in each layer, the structure of the AE showing a high signal-to-noise ratio in the target detection result is determined. To evaluate the performance of the proposed method, the AE-based target detection result is compared with the target detection results of conventional CFAR algorithms. As a result of calculating the correlation coefficient with the data marked with the actual target position, the proposed AE-based target detection shows the highest similarity with a correlation of 0.73 or higher. |
|---|---|
| AbstractList | In general, a constant false alarm rate algorithm (CFAR) is widely used to automatically detect targets in an automotive frequency-modulated continuous wave (FMCW) radar system. However, if the number of guard cells, the number of training cells, and the probability of false alarm are set improperly in the conventional CFAR algorithm, the target detection performance is severely degraded. Therefore, we propose a method using a convolutional neural network-based autoencoder (AE) to replace the CFAR algorithm in the multiple-input and multiple-output FMCW radar system. In the AE, the entire detection result is compressed at the encoder side, and only significant signal components are recovered on the decoder side. In this work, by changing the number of hidden layers and the number of filters in each layer, the structure of the AE showing a high signal-to-noise ratio in the target detection result is determined. To evaluate the performance of the proposed method, the AE-based target detection result is compared with the target detection results of conventional CFAR algorithms. As a result of calculating the correlation coefficient with the data marked with the actual target position, the proposed AE-based target detection shows the highest similarity with a correlation of 0.73 or higher. In general, a constant false alarm rate algorithm (CFAR) is widely used to automatically detect targets in an automotive frequency-modulated continuous wave (FMCW) radar system. However, if the number of guard cells, the number of training cells, and the probability of false alarm are set improperly in the conventional CFAR algorithm, the target detection performance is severely degraded. Therefore, we propose a method using a convolutional neural network-based autoencoder (AE) to replace the CFAR algorithm in the multiple-input and multiple-output FMCW radar system. In the AE, the entire detection result is compressed at the encoder side, and only significant signal components are recovered on the decoder side. In this work, by changing the number of hidden layers and the number of filters in each layer, the structure of the AE showing a high signal-to-noise ratio in the target detection result is determined. To evaluate the performance of the proposed method, the AE-based target detection result is compared with the target detection results of conventional CFAR algorithms. As a result of calculating the correlation coefficient with the data marked with the actual target position, the proposed AE-based target detection shows the highest similarity with a correlation of 0.73 or higher.In general, a constant false alarm rate algorithm (CFAR) is widely used to automatically detect targets in an automotive frequency-modulated continuous wave (FMCW) radar system. However, if the number of guard cells, the number of training cells, and the probability of false alarm are set improperly in the conventional CFAR algorithm, the target detection performance is severely degraded. Therefore, we propose a method using a convolutional neural network-based autoencoder (AE) to replace the CFAR algorithm in the multiple-input and multiple-output FMCW radar system. In the AE, the entire detection result is compressed at the encoder side, and only significant signal components are recovered on the decoder side. In this work, by changing the number of hidden layers and the number of filters in each layer, the structure of the AE showing a high signal-to-noise ratio in the target detection result is determined. To evaluate the performance of the proposed method, the AE-based target detection result is compared with the target detection results of conventional CFAR algorithms. As a result of calculating the correlation coefficient with the data marked with the actual target position, the proposed AE-based target detection shows the highest similarity with a correlation of 0.73 or higher. |
| Author | Jang, Min-ho Lee, Seongwook Kang, Sung-wook |
| AuthorAffiliation | School of Electronics and Information Engineering, College of Engineering, Korea Aerospace University, Goyang-si 10540, Gyeonggi-do, Korea; sys77750@kau.kr (S.-w.K.); jmh17360@kau.kr (M.-h.J.) |
| AuthorAffiliation_xml | – name: School of Electronics and Information Engineering, College of Engineering, Korea Aerospace University, Goyang-si 10540, Gyeonggi-do, Korea; sys77750@kau.kr (S.-w.K.); jmh17360@kau.kr (M.-h.J.) |
| Author_xml | – sequence: 1 givenname: Sung-wook orcidid: 0000-0002-0740-1937 surname: Kang fullname: Kang, Sung-wook – sequence: 2 givenname: Min-ho orcidid: 0000-0001-8099-9923 surname: Jang fullname: Jang, Min-ho – sequence: 3 givenname: Seongwook orcidid: 0000-0001-9115-4897 surname: Lee fullname: Lee, Seongwook |
| BookMark | eNplkU1v1DAQhi1URD_gwD-IxAUOoRN_rJ0LUlloWamrSlDE0XImk8WrJC62U6n_nmy3IFp8sWU_83g07zE7GMNIjL2u4L0QNZwmzis1L_6MHVWSy9JwDgf_nA_ZcUpbAC6EMC_YoVCmNqDUEbs4m3KgEUNLsfzoErXFtYsbysUnyoTZh7HwY7GjhpD9LRXr1fqqOF8vfxRfXeti8e0uZRpesued6xO9ethP2Pfzz9fLL-Xl1cVqeXZZotCLXJpGd45QiRZaEoIMVBWSqgFNRw0IyVFip1HKhip0jVLCtJwUOtCK3EKcsNXe2wa3tTfRDy7e2eC8vb8IcWNdzB57skiaanAI1KKsTd20lUQnOedOa4Xd7Pqwd91MzTBDNObo-kfSxy-j_2k34dbWQoOR1Sx4-yCI4ddEKdvBJ6S-dyOFKVm-qBcARt2jb56g2zDFcR6V5RpA61pzmKnTPYUxpBSps-iz24Uw_-97W4HdBW7_Bj5XvHtS8af9_9nfy4WqwQ |
| CitedBy_id | crossref_primary_10_3390_s23104956 crossref_primary_10_1016_j_dsp_2024_104962 crossref_primary_10_1038_s41598_025_99104_7 crossref_primary_10_1109_TGRS_2023_3284715 crossref_primary_10_1109_TIM_2024_3366575 crossref_primary_10_1109_ACCESS_2025_3588460 crossref_primary_10_1109_JSEN_2025_3541080 crossref_primary_10_3390_s22239401 crossref_primary_10_1109_TAES_2024_3380581 |
| Cites_doi | 10.1109/ICASSP39728.2021.9413619 10.1109/ITSC45102.2020.9294399 10.1145/1390156.1390294 10.1109/RADAR.2019.8835792 10.1109/RadarConf2043947.2020.9266434 10.1109/TAES.2013.6558022 10.1109/ICRA40945.2020.9196884 10.1109/RADAR42522.2020.9114641 10.1109/VTCFall.2019.8891420 10.1109/TEMC.2006.890223 10.1109/EURAD.2007.4404963 10.1109/MSP.2016.2628914 10.1109/ACCESS.2020.2976500 10.23919/IEEECONF54431.2021.9598357 10.1109/IJCNN48605.2020.9207080 10.1109/TITS.2018.2865588 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22155552 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_ce7e90ac0edc4989bd14ca4222a775cf PMC9370841 10_3390_s22155552 |
| GrantInformation_xml | – fundername: Institute of Information & Communications Technology Planning & Evaluation (IITP) grantid: 2021-0-00237 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c376t-8b7faec53d0de33e8011ce590c8feb0342c4cf7c44be1cab5538d2e5ca075ea63 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000839964700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:08:19 EDT 2025 Tue Nov 04 02:00:04 EST 2025 Sun Nov 09 10:59:45 EST 2025 Tue Oct 07 07:18:21 EDT 2025 Tue Nov 18 21:39:48 EST 2025 Sat Nov 29 07:10:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c376t-8b7faec53d0de33e8011ce590c8feb0342c4cf7c44be1cab5538d2e5ca075ea63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0740-1937 0000-0001-8099-9923 0000-0001-9115-4897 |
| OpenAccessLink | https://www.proquest.com/docview/2700779720?pq-origsite=%requestingapplication% |
| PMID | 35898055 |
| PQID | 2700779720 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ce7e90ac0edc4989bd14ca4222a775cf pubmedcentral_primary_oai_pubmedcentral_nih_gov_9370841 proquest_miscellaneous_2696008541 proquest_journals_2700779720 crossref_citationtrail_10_3390_s22155552 crossref_primary_10_3390_s22155552 |
| PublicationCentury | 2000 |
| PublicationDate | 20220725 |
| PublicationDateYYYYMMDD | 2022-07-25 |
| PublicationDate_xml | – month: 7 year: 2022 text: 20220725 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Brooker (ref_25) 2007; 49 ref_14 ref_13 ref_11 ref_10 Cao (ref_12) 2022; 60 ref_18 ref_17 ref_16 ref_15 Kronauge (ref_19) 2013; 49 Lee (ref_4) 2019; 20 ref_24 Wang (ref_8) 2022; 60 ref_23 ref_22 ref_20 ref_1 ref_3 Patole (ref_21) 2017; 34 ref_2 Ryu (ref_27) 2020; 8 ref_28 Wang (ref_7) 2019; 3 ref_26 ref_9 ref_5 ref_6 |
| References_xml | – volume: 3 start-page: 1 year: 2019 ident: ref_7 article-title: A study on radar target detection based on deep neural networks publication-title: IEEE Sens. Lett. – ident: ref_28 – ident: ref_16 doi: 10.1109/ICASSP39728.2021.9413619 – ident: ref_3 – ident: ref_26 – ident: ref_11 doi: 10.1109/ITSC45102.2020.9294399 – ident: ref_23 doi: 10.1145/1390156.1390294 – ident: ref_9 doi: 10.1109/RADAR.2019.8835792 – ident: ref_15 doi: 10.1109/RadarConf2043947.2020.9266434 – volume: 60 start-page: 1 year: 2022 ident: ref_8 article-title: Deep learning-based UAV detection in pulse-Doppler radar publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_6 – volume: 49 start-page: 1817 year: 2013 ident: ref_19 article-title: Fast two-dimensional CFAR procedure publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2013.6558022 – ident: ref_24 doi: 10.1109/ICRA40945.2020.9196884 – ident: ref_14 doi: 10.1109/RADAR42522.2020.9114641 – ident: ref_5 doi: 10.1109/VTCFall.2019.8891420 – ident: ref_2 – volume: 49 start-page: 170 year: 2007 ident: ref_25 article-title: Mutual interference of millimeter-wave radar systems publication-title: IEEE Trans. Electromagn. Compat. doi: 10.1109/TEMC.2006.890223 – ident: ref_1 doi: 10.1109/EURAD.2007.4404963 – volume: 60 start-page: 1 year: 2022 ident: ref_12 article-title: DNN-based peak sequence classification CFAR detection algorithm for high-resolution FMCW radar publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 34 start-page: 22 year: 2017 ident: ref_21 article-title: Automotive radars: A review of signal processing techniques publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2016.2628914 – volume: 8 start-page: 40656 year: 2020 ident: ref_27 article-title: Denoising autoencoder-based missing value imputation for smart meters publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2976500 – ident: ref_13 – ident: ref_18 doi: 10.23919/IEEECONF54431.2021.9598357 – ident: ref_17 – ident: ref_10 doi: 10.1109/IJCNN48605.2020.9207080 – ident: ref_22 – ident: ref_20 – volume: 20 start-page: 2418 year: 2019 ident: ref_4 article-title: Statistical characteristic-based road structure recognition in automotive FMCW radar systems publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2865588 |
| SSID | ssj0023338 |
| Score | 2.4345832 |
| Snippet | In general, a constant false alarm rate algorithm (CFAR) is widely used to automatically detect targets in an automotive frequency-modulated continuous wave... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 5552 |
| SubjectTerms | Algorithms Antennas autoencoder Climate change constant false alarm rate Deep learning False alarms Fourier transforms frequency-modulated continuous wave radar multiple-input and multiple-output Neural networks Radar systems Sensors target detection |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMcEE8RKMggDlyiOn7E9rEPFpDYglCB3iJnPFFXQlm0m-3vZ5xkVxupUi_kGE8k55uMZyYef8PY-0JLVDbIHBS6XGuv8tpIlwdRSxFBN6bvPPfrq724cFdX_vteq69UEzbQAw_AHQNa9CKAQHrSO1_HQkNIPy6CtQaatPoK67fJ1JhqKcq8Bh4hRUn98VqSZ6NLTrxPT9I_iSyndZF7jmb2iD0cI0R-MszsMbuH7RP2YI838Cn7dLLplomBMuIqPyU_FPllX9HNz7Hra6tavmh5kkq1djfI51_m3_hsfvab_wgxrPhAVP6M_Zx9vDz7nI8dEQhKW3a5q20TEIyKIqIidMk60zkqAa7BOrH5gYbGgtY1FhBqQ8tZlGggUGSAoVTP2UG7bPEF464AAyB9GW3UBnQAFcEbV7qi8VZBxj5skapgpAtPXSv-VJQ2JFCrHagZe7cT_TtwZNwmdJrg3gkkWuv-Bim7GpVd3aXsjB1tlVWNtrau0ta5td5KkbG3u2GykrT1EVpcbkimpEyNoktdZMxOlDyZ0HSkXVz3fNsUwQmni5f_4w1esfsyHaAQiR_jiB10qw2-Zodw0y3Wqzf9R_wPkLP53Q priority: 102 providerName: Directory of Open Access Journals |
| Title | Autoencoder-Based Target Detection in Automotive MIMO FMCW Radar System |
| URI | https://www.proquest.com/docview/2700779720 https://www.proquest.com/docview/2696008541 https://pubmed.ncbi.nlm.nih.gov/PMC9370841 https://doaj.org/article/ce7e90ac0edc4989bd14ca4222a775cf |
| Volume | 22 |
| WOSCitedRecordID | wos000839964700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5By4EeeCMCZWUQBy5RE9uJnRPqll2oRJZVVWA5Rc7YgZWqpGSzPfLbsb3ZbSMhLuTggz1SosyM5-HxNwBvYk4NE4qGyIwMOc9YWCZUhioqaaSRV4nvPPf1k5jN5GKRzfuE26ovq9zuiX6j1g26HPmROyAVIhM0enf5K3Rdo9zpat9C4zbsu7bZTs7F4jrgYjb-2qAJMRvaH62otW_2oQMb5KH6B_7lsDryhrmZ3v_fD30A93pHkxxvJOMh3DL1Izi4AT_4GD4cr7vGAVlq04Zja840OfeF4eS96XyJVk2WNXFUrmTvypD8NP9MpvnJN3KmtGrJBu_8CXyZTs5PPoZ9YwXLEZF2oSxFpQwmTEfaMMskq-TuOlaEsjKlAwVEjpVAzksToyoTuytqahJU1sEwKmVPYa9uavMMiIwxQaRZqoXmCXKFTGOWyFTGVSYYBvB2-6sL7FHHXfOLi8JGH44rxY4rAbzekV5uoDb-RjR2_NoROHRsP9G0P4pe2Qo0wmSRwsgykWcyK3XMUblklxIiwSqAwy3ril5lV8U13wJ4tVu2yuZOUFRtmrWlSW3AZ51UHgcgBlIy-KDhSr386WG7rSMYSR4___fLX8Bd6m5YRA5A4xD2unZtXsIdvOqWq3bk5duPcgT748lsfjbyaQQ75r8ndm5-ms-__wHO0g0K |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQ58EYEChgEEpeoju2skwNCfbB01d0FoaXsLThjp6yEkpLNFvGn-I3YeWwbCXHrgRzjUWLHX-Zhj78BeBkIZrhUzEduIl-ImPtpyCJf0ZRRjSIL68pzx2M5nUbzefxxA353Z2FcWmWnE2tFrQt0a-Q7boNUylgy-vb0h--qRrnd1a6ERgOLI_Prpw3Zlm9GB3Z-XzE2fDfbP_TbqgK2O3JQ-VEqM2Uw5Jpqw20PLcLdWSSKUWZSx4iHAjOJQqQmQJWGViVoZkJU1roaNeD2uVfgqtXj0gV7cn4e4HEb7zXsRZzHdGfJrD21F-vZvLo0QM-f7WdjXjBvw1v_24e5DTdbR5rsNsi_Axsmvws3LtAr3oP3u6uqcESd2pT-njXXmszqxHdyYKo6BS0ni5w4KZeSeGbIZDT5QIaT_S_kk9KqJA2f-334fCkjeQCbeZGbh0CiAENEFg-01CJEoZBrjMNoEAVZLDl68Lqb2gRbVnVX3ON7YqMrh4JkjQIPXqxFTxsqkb8J7Tl8rAUc-3d9oyhPklaZJGikialCakEj4ihOdSBQucU8JWWImQfbHVSSViUtk3OcePB83WyVidshUrkpVlZmYANa64SLwAPZQ2WvQ_2WfPGtpiW3ji6NRPDo3y9_BtcPZ5NxMh5Njx7DFnOnSagjC9mGzapcmSdwDc-qxbJ8Wv9bBL5eNmb_AHmwZoU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHUJw4BtRGGAQSFyiJrZTJweEtpVCtbVUaMA4BefZgUooGWk6xL_GX8dzmoZFQtx2IMf4KXHin9-H_fx7AE8Dya1QmnsobORJGQsvDXnkaT_lvkGZhXXluQ-HajaLjo_j-Rb82pyFcWmVG51YK2pToFsjH7gNUqVixf1B1qRFzEfjlyffPVdByu20bspprCFyYH_-oPBt-WIyorF-xvn41dH-G6-pMEBdU8PKi1KVaYuhML6xgnpLaHfnknyMMps6djyUmCmUMrUB6jQk9WC4DVGTpbV6KOi5F2CbXHLJe7A9n0znn9pwT1D0t-YyEiL2B0tO1pUu3rGAdaGAjnfbzc08Y-zG1_7n33QdrjYuNttdz4kbsGXzm3DlDPHiLXi9u6oKR-FpbOntkSE37KhOiWcjW9XJaTlb5MxJuWTFU8umk-lbNp7uf2TvtNElWzO934b35_Ild6CXF7m9CywKMETk8dAoI0OUGoXBOIyGUZDFSmAfnm-GOcGGb92V_fiWUNzlEJG0iOjDk1b0ZE0y8jehPYeVVsDxgtc3ivJL0qiZBK2ysa_RJwDJOIpTE0jUbplPKxVi1oedDWySRlktkz-Y6cPjtpnUjNs70rktViQzpFCX3HMZ9EF1ENrpULclX3ytCcvJBfYjGdz798sfwSWCanI4mR3ch8vcHTPxHYvIDvSqcmUfwEU8rRbL8mEz0Rh8Pm_Q_gZ7THDU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoencoder-Based+Target+Detection+in+Automotive+MIMO+FMCW+Radar+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sung-wook+Kang&rft.au=Min-ho%2C+Jang&rft.au=Lee%2C+Seongwook&rft.date=2022-07-25&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=15&rft.spage=5552&rft_id=info:doi/10.3390%2Fs22155552&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |