Autoencoder-Based Target Detection in Automotive MIMO FMCW Radar System

In general, a constant false alarm rate algorithm (CFAR) is widely used to automatically detect targets in an automotive frequency-modulated continuous wave (FMCW) radar system. However, if the number of guard cells, the number of training cells, and the probability of false alarm are set improperly...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 22; číslo 15; s. 5552
Hlavní autoři: Kang, Sung-wook, Jang, Min-ho, Lee, Seongwook
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 25.07.2022
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In general, a constant false alarm rate algorithm (CFAR) is widely used to automatically detect targets in an automotive frequency-modulated continuous wave (FMCW) radar system. However, if the number of guard cells, the number of training cells, and the probability of false alarm are set improperly in the conventional CFAR algorithm, the target detection performance is severely degraded. Therefore, we propose a method using a convolutional neural network-based autoencoder (AE) to replace the CFAR algorithm in the multiple-input and multiple-output FMCW radar system. In the AE, the entire detection result is compressed at the encoder side, and only significant signal components are recovered on the decoder side. In this work, by changing the number of hidden layers and the number of filters in each layer, the structure of the AE showing a high signal-to-noise ratio in the target detection result is determined. To evaluate the performance of the proposed method, the AE-based target detection result is compared with the target detection results of conventional CFAR algorithms. As a result of calculating the correlation coefficient with the data marked with the actual target position, the proposed AE-based target detection shows the highest similarity with a correlation of 0.73 or higher.
AbstractList In general, a constant false alarm rate algorithm (CFAR) is widely used to automatically detect targets in an automotive frequency-modulated continuous wave (FMCW) radar system. However, if the number of guard cells, the number of training cells, and the probability of false alarm are set improperly in the conventional CFAR algorithm, the target detection performance is severely degraded. Therefore, we propose a method using a convolutional neural network-based autoencoder (AE) to replace the CFAR algorithm in the multiple-input and multiple-output FMCW radar system. In the AE, the entire detection result is compressed at the encoder side, and only significant signal components are recovered on the decoder side. In this work, by changing the number of hidden layers and the number of filters in each layer, the structure of the AE showing a high signal-to-noise ratio in the target detection result is determined. To evaluate the performance of the proposed method, the AE-based target detection result is compared with the target detection results of conventional CFAR algorithms. As a result of calculating the correlation coefficient with the data marked with the actual target position, the proposed AE-based target detection shows the highest similarity with a correlation of 0.73 or higher.
In general, a constant false alarm rate algorithm (CFAR) is widely used to automatically detect targets in an automotive frequency-modulated continuous wave (FMCW) radar system. However, if the number of guard cells, the number of training cells, and the probability of false alarm are set improperly in the conventional CFAR algorithm, the target detection performance is severely degraded. Therefore, we propose a method using a convolutional neural network-based autoencoder (AE) to replace the CFAR algorithm in the multiple-input and multiple-output FMCW radar system. In the AE, the entire detection result is compressed at the encoder side, and only significant signal components are recovered on the decoder side. In this work, by changing the number of hidden layers and the number of filters in each layer, the structure of the AE showing a high signal-to-noise ratio in the target detection result is determined. To evaluate the performance of the proposed method, the AE-based target detection result is compared with the target detection results of conventional CFAR algorithms. As a result of calculating the correlation coefficient with the data marked with the actual target position, the proposed AE-based target detection shows the highest similarity with a correlation of 0.73 or higher.In general, a constant false alarm rate algorithm (CFAR) is widely used to automatically detect targets in an automotive frequency-modulated continuous wave (FMCW) radar system. However, if the number of guard cells, the number of training cells, and the probability of false alarm are set improperly in the conventional CFAR algorithm, the target detection performance is severely degraded. Therefore, we propose a method using a convolutional neural network-based autoencoder (AE) to replace the CFAR algorithm in the multiple-input and multiple-output FMCW radar system. In the AE, the entire detection result is compressed at the encoder side, and only significant signal components are recovered on the decoder side. In this work, by changing the number of hidden layers and the number of filters in each layer, the structure of the AE showing a high signal-to-noise ratio in the target detection result is determined. To evaluate the performance of the proposed method, the AE-based target detection result is compared with the target detection results of conventional CFAR algorithms. As a result of calculating the correlation coefficient with the data marked with the actual target position, the proposed AE-based target detection shows the highest similarity with a correlation of 0.73 or higher.
Author Jang, Min-ho
Lee, Seongwook
Kang, Sung-wook
AuthorAffiliation School of Electronics and Information Engineering, College of Engineering, Korea Aerospace University, Goyang-si 10540, Gyeonggi-do, Korea; sys77750@kau.kr (S.-w.K.); jmh17360@kau.kr (M.-h.J.)
AuthorAffiliation_xml – name: School of Electronics and Information Engineering, College of Engineering, Korea Aerospace University, Goyang-si 10540, Gyeonggi-do, Korea; sys77750@kau.kr (S.-w.K.); jmh17360@kau.kr (M.-h.J.)
Author_xml – sequence: 1
  givenname: Sung-wook
  orcidid: 0000-0002-0740-1937
  surname: Kang
  fullname: Kang, Sung-wook
– sequence: 2
  givenname: Min-ho
  orcidid: 0000-0001-8099-9923
  surname: Jang
  fullname: Jang, Min-ho
– sequence: 3
  givenname: Seongwook
  orcidid: 0000-0001-9115-4897
  surname: Lee
  fullname: Lee, Seongwook
BookMark eNplkU1v1DAQhi1URD_gwD-IxAUOoRN_rJ0LUlloWamrSlDE0XImk8WrJC62U6n_nmy3IFp8sWU_83g07zE7GMNIjL2u4L0QNZwmzis1L_6MHVWSy9JwDgf_nA_ZcUpbAC6EMC_YoVCmNqDUEbs4m3KgEUNLsfzoErXFtYsbysUnyoTZh7HwY7GjhpD9LRXr1fqqOF8vfxRfXeti8e0uZRpesued6xO9ethP2Pfzz9fLL-Xl1cVqeXZZotCLXJpGd45QiRZaEoIMVBWSqgFNRw0IyVFip1HKhip0jVLCtJwUOtCK3EKcsNXe2wa3tTfRDy7e2eC8vb8IcWNdzB57skiaanAI1KKsTd20lUQnOedOa4Xd7Pqwd91MzTBDNObo-kfSxy-j_2k34dbWQoOR1Sx4-yCI4ddEKdvBJ6S-dyOFKVm-qBcARt2jb56g2zDFcR6V5RpA61pzmKnTPYUxpBSps-iz24Uw_-97W4HdBW7_Bj5XvHtS8af9_9nfy4WqwQ
CitedBy_id crossref_primary_10_3390_s23104956
crossref_primary_10_1016_j_dsp_2024_104962
crossref_primary_10_1038_s41598_025_99104_7
crossref_primary_10_1109_TGRS_2023_3284715
crossref_primary_10_1109_TIM_2024_3366575
crossref_primary_10_1109_ACCESS_2025_3588460
crossref_primary_10_1109_JSEN_2025_3541080
crossref_primary_10_3390_s22239401
crossref_primary_10_1109_TAES_2024_3380581
Cites_doi 10.1109/ICASSP39728.2021.9413619
10.1109/ITSC45102.2020.9294399
10.1145/1390156.1390294
10.1109/RADAR.2019.8835792
10.1109/RadarConf2043947.2020.9266434
10.1109/TAES.2013.6558022
10.1109/ICRA40945.2020.9196884
10.1109/RADAR42522.2020.9114641
10.1109/VTCFall.2019.8891420
10.1109/TEMC.2006.890223
10.1109/EURAD.2007.4404963
10.1109/MSP.2016.2628914
10.1109/ACCESS.2020.2976500
10.23919/IEEECONF54431.2021.9598357
10.1109/IJCNN48605.2020.9207080
10.1109/TITS.2018.2865588
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22155552
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database ProQuest
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ce7e90ac0edc4989bd14ca4222a775cf
PMC9370841
10_3390_s22155552
GrantInformation_xml – fundername: Institute of Information & Communications Technology Planning & Evaluation (IITP)
  grantid: 2021-0-00237
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c376t-8b7faec53d0de33e8011ce590c8feb0342c4cf7c44be1cab5538d2e5ca075ea63
IEDL.DBID 7X7
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000839964700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:08:19 EDT 2025
Tue Nov 04 02:00:04 EST 2025
Sun Nov 09 10:59:45 EST 2025
Tue Oct 07 07:18:21 EDT 2025
Tue Nov 18 21:39:48 EST 2025
Sat Nov 29 07:10:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-8b7faec53d0de33e8011ce590c8feb0342c4cf7c44be1cab5538d2e5ca075ea63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0740-1937
0000-0001-8099-9923
0000-0001-9115-4897
OpenAccessLink https://www.proquest.com/docview/2700779720?pq-origsite=%requestingapplication%
PMID 35898055
PQID 2700779720
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ce7e90ac0edc4989bd14ca4222a775cf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9370841
proquest_miscellaneous_2696008541
proquest_journals_2700779720
crossref_citationtrail_10_3390_s22155552
crossref_primary_10_3390_s22155552
PublicationCentury 2000
PublicationDate 20220725
PublicationDateYYYYMMDD 2022-07-25
PublicationDate_xml – month: 7
  year: 2022
  text: 20220725
  day: 25
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Brooker (ref_25) 2007; 49
ref_14
ref_13
ref_11
ref_10
Cao (ref_12) 2022; 60
ref_18
ref_17
ref_16
ref_15
Kronauge (ref_19) 2013; 49
Lee (ref_4) 2019; 20
ref_24
Wang (ref_8) 2022; 60
ref_23
ref_22
ref_20
ref_1
ref_3
Patole (ref_21) 2017; 34
ref_2
Ryu (ref_27) 2020; 8
ref_28
Wang (ref_7) 2019; 3
ref_26
ref_9
ref_5
ref_6
References_xml – volume: 3
  start-page: 1
  year: 2019
  ident: ref_7
  article-title: A study on radar target detection based on deep neural networks
  publication-title: IEEE Sens. Lett.
– ident: ref_28
– ident: ref_16
  doi: 10.1109/ICASSP39728.2021.9413619
– ident: ref_3
– ident: ref_26
– ident: ref_11
  doi: 10.1109/ITSC45102.2020.9294399
– ident: ref_23
  doi: 10.1145/1390156.1390294
– ident: ref_9
  doi: 10.1109/RADAR.2019.8835792
– ident: ref_15
  doi: 10.1109/RadarConf2043947.2020.9266434
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_8
  article-title: Deep learning-based UAV detection in pulse-Doppler radar
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: ref_6
– volume: 49
  start-page: 1817
  year: 2013
  ident: ref_19
  article-title: Fast two-dimensional CFAR procedure
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2013.6558022
– ident: ref_24
  doi: 10.1109/ICRA40945.2020.9196884
– ident: ref_14
  doi: 10.1109/RADAR42522.2020.9114641
– ident: ref_5
  doi: 10.1109/VTCFall.2019.8891420
– ident: ref_2
– volume: 49
  start-page: 170
  year: 2007
  ident: ref_25
  article-title: Mutual interference of millimeter-wave radar systems
  publication-title: IEEE Trans. Electromagn. Compat.
  doi: 10.1109/TEMC.2006.890223
– ident: ref_1
  doi: 10.1109/EURAD.2007.4404963
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_12
  article-title: DNN-based peak sequence classification CFAR detection algorithm for high-resolution FMCW radar
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 34
  start-page: 22
  year: 2017
  ident: ref_21
  article-title: Automotive radars: A review of signal processing techniques
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2016.2628914
– volume: 8
  start-page: 40656
  year: 2020
  ident: ref_27
  article-title: Denoising autoencoder-based missing value imputation for smart meters
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2976500
– ident: ref_13
– ident: ref_18
  doi: 10.23919/IEEECONF54431.2021.9598357
– ident: ref_17
– ident: ref_10
  doi: 10.1109/IJCNN48605.2020.9207080
– ident: ref_22
– ident: ref_20
– volume: 20
  start-page: 2418
  year: 2019
  ident: ref_4
  article-title: Statistical characteristic-based road structure recognition in automotive FMCW radar systems
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2865588
SSID ssj0023338
Score 2.4345832
Snippet In general, a constant false alarm rate algorithm (CFAR) is widely used to automatically detect targets in an automotive frequency-modulated continuous wave...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5552
SubjectTerms Algorithms
Antennas
autoencoder
Climate change
constant false alarm rate
Deep learning
False alarms
Fourier transforms
frequency-modulated continuous wave radar
multiple-input and multiple-output
Neural networks
Radar systems
Sensors
target detection
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMcEE8RKMggDlyiOn7E9rEPFpDYglCB3iJnPFFXQlm0m-3vZ5xkVxupUi_kGE8k55uMZyYef8PY-0JLVDbIHBS6XGuv8tpIlwdRSxFBN6bvPPfrq724cFdX_vteq69UEzbQAw_AHQNa9CKAQHrSO1_HQkNIPy6CtQaatPoK67fJ1JhqKcq8Bh4hRUn98VqSZ6NLTrxPT9I_iSyndZF7jmb2iD0cI0R-MszsMbuH7RP2YI838Cn7dLLplomBMuIqPyU_FPllX9HNz7Hra6tavmh5kkq1djfI51_m3_hsfvab_wgxrPhAVP6M_Zx9vDz7nI8dEQhKW3a5q20TEIyKIqIidMk60zkqAa7BOrH5gYbGgtY1FhBqQ8tZlGggUGSAoVTP2UG7bPEF464AAyB9GW3UBnQAFcEbV7qi8VZBxj5skapgpAtPXSv-VJQ2JFCrHagZe7cT_TtwZNwmdJrg3gkkWuv-Bim7GpVd3aXsjB1tlVWNtrau0ta5td5KkbG3u2GykrT1EVpcbkimpEyNoktdZMxOlDyZ0HSkXVz3fNsUwQmni5f_4w1esfsyHaAQiR_jiB10qw2-Zodw0y3Wqzf9R_wPkLP53Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Autoencoder-Based Target Detection in Automotive MIMO FMCW Radar System
URI https://www.proquest.com/docview/2700779720
https://www.proquest.com/docview/2696008541
https://pubmed.ncbi.nlm.nih.gov/PMC9370841
https://doaj.org/article/ce7e90ac0edc4989bd14ca4222a775cf
Volume 22
WOSCitedRecordID wos000839964700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5By4EeeCMCZWUQBy5RE9uJnRPqll2oRJZVVWA5Rc7YgZWqpGSzPfLbsb3ZbSMhLuTggz1SosyM5-HxNwBvYk4NE4qGyIwMOc9YWCZUhioqaaSRV4nvPPf1k5jN5GKRzfuE26ovq9zuiX6j1g26HPmROyAVIhM0enf5K3Rdo9zpat9C4zbsu7bZTs7F4jrgYjb-2qAJMRvaH62otW_2oQMb5KH6B_7lsDryhrmZ3v_fD30A93pHkxxvJOMh3DL1Izi4AT_4GD4cr7vGAVlq04Zja840OfeF4eS96XyJVk2WNXFUrmTvypD8NP9MpvnJN3KmtGrJBu_8CXyZTs5PPoZ9YwXLEZF2oSxFpQwmTEfaMMskq-TuOlaEsjKlAwVEjpVAzksToyoTuytqahJU1sEwKmVPYa9uavMMiIwxQaRZqoXmCXKFTGOWyFTGVSYYBvB2-6sL7FHHXfOLi8JGH44rxY4rAbzekV5uoDb-RjR2_NoROHRsP9G0P4pe2Qo0wmSRwsgykWcyK3XMUblklxIiwSqAwy3ril5lV8U13wJ4tVu2yuZOUFRtmrWlSW3AZ51UHgcgBlIy-KDhSr386WG7rSMYSR4___fLX8Bd6m5YRA5A4xD2unZtXsIdvOqWq3bk5duPcgT748lsfjbyaQQ75r8ndm5-ms-__wHO0g0K
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQ58EYEChgEEpeoju2skwNCfbB01d0FoaXsLThjp6yEkpLNFvGn-I3YeWwbCXHrgRzjUWLHX-Zhj78BeBkIZrhUzEduIl-ImPtpyCJf0ZRRjSIL68pzx2M5nUbzefxxA353Z2FcWmWnE2tFrQt0a-Q7boNUylgy-vb0h--qRrnd1a6ERgOLI_Prpw3Zlm9GB3Z-XzE2fDfbP_TbqgK2O3JQ-VEqM2Uw5Jpqw20PLcLdWSSKUWZSx4iHAjOJQqQmQJWGViVoZkJU1roaNeD2uVfgqtXj0gV7cn4e4HEb7zXsRZzHdGfJrD21F-vZvLo0QM-f7WdjXjBvw1v_24e5DTdbR5rsNsi_Axsmvws3LtAr3oP3u6uqcESd2pT-njXXmszqxHdyYKo6BS0ni5w4KZeSeGbIZDT5QIaT_S_kk9KqJA2f-334fCkjeQCbeZGbh0CiAENEFg-01CJEoZBrjMNoEAVZLDl68Lqb2gRbVnVX3ON7YqMrh4JkjQIPXqxFTxsqkb8J7Tl8rAUc-3d9oyhPklaZJGikialCakEj4ihOdSBQucU8JWWImQfbHVSSViUtk3OcePB83WyVidshUrkpVlZmYANa64SLwAPZQ2WvQ_2WfPGtpiW3ji6NRPDo3y9_BtcPZ5NxMh5Njx7DFnOnSagjC9mGzapcmSdwDc-qxbJ8Wv9bBL5eNmb_AHmwZoU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHUJw4BtRGGAQSFyiJrZTJweEtpVCtbVUaMA4BefZgUooGWk6xL_GX8dzmoZFQtx2IMf4KXHin9-H_fx7AE8Dya1QmnsobORJGQsvDXnkaT_lvkGZhXXluQ-HajaLjo_j-Rb82pyFcWmVG51YK2pToFsjH7gNUqVixf1B1qRFzEfjlyffPVdByu20bspprCFyYH_-oPBt-WIyorF-xvn41dH-G6-pMEBdU8PKi1KVaYuhML6xgnpLaHfnknyMMps6djyUmCmUMrUB6jQk9WC4DVGTpbV6KOi5F2CbXHLJe7A9n0znn9pwT1D0t-YyEiL2B0tO1pUu3rGAdaGAjnfbzc08Y-zG1_7n33QdrjYuNttdz4kbsGXzm3DlDPHiLXi9u6oKR-FpbOntkSE37KhOiWcjW9XJaTlb5MxJuWTFU8umk-lbNp7uf2TvtNElWzO934b35_Ild6CXF7m9CywKMETk8dAoI0OUGoXBOIyGUZDFSmAfnm-GOcGGb92V_fiWUNzlEJG0iOjDk1b0ZE0y8jehPYeVVsDxgtc3ivJL0qiZBK2ysa_RJwDJOIpTE0jUbplPKxVi1oedDWySRlktkz-Y6cPjtpnUjNs70rktViQzpFCX3HMZ9EF1ENrpULclX3ytCcvJBfYjGdz798sfwSWCanI4mR3ch8vcHTPxHYvIDvSqcmUfwEU8rRbL8mEz0Rh8Pm_Q_gZ7THDU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoencoder-Based+Target+Detection+in+Automotive+MIMO+FMCW+Radar+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sung-wook+Kang&rft.au=Min-ho%2C+Jang&rft.au=Lee%2C+Seongwook&rft.date=2022-07-25&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=15&rft.spage=5552&rft_id=info:doi/10.3390%2Fs22155552&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon