Bridging the Methodological Gap Between Inertial Sensors and Optical Motion Capture: Deep Learning as the Path to Accurate Joint Kinematic Modelling Using Inertial Sensors
As advancements in inertial measurement units (IMUs) for motion analysis progress, the inability to directly apply decades of research-based optical motion capture (OMC) methodologies presents a significant challenge. This study aims to bridge this gap by proposing an innovative deep learning approa...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 25; číslo 18; s. 5728 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
14.09.2025
|
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | As advancements in inertial measurement units (IMUs) for motion analysis progress, the inability to directly apply decades of research-based optical motion capture (OMC) methodologies presents a significant challenge. This study aims to bridge this gap by proposing an innovative deep learning approach to predict marker positions from IMU data, allowing traditional OMC-based calculations to estimate joint kinematics. Eighteen participants walked on a treadmill with seven IMUs and retroreflective markers. Trials were divided into normalized gait cycles (101 frames), and an autoencoder network with a custom Biomech loss function was used to predict 16 marker positions from IMU data. The model was validated using the leave-one-subject-out method and assessed using root mean squared error (RMSE). Joint angles in the sagittal plane were calculated using OMC methods, and RMSE was computed with and without alignment using dynamic time warping (DTW). The models were also tested on external datasets. Marker predictions achieved RMSE values of 2–4 cm, enabling joint angle predictions with 4–7° RMSE without alignment and 2–4° RMSE after DTW for sagittal plane joint angles (ankle, knee, hip). Validation using separate and open-source datasets confirmed the model’s generalizability, with similar RMSE values across datasets (4–7° RMSE without DTW and 2–4° with DTW). This study demonstrates the feasibility of applying conventional biomechanical models to IMUs, enabling accurate movement analysis and visualization outside controlled environments. This approach to predicting marker positions helps to bridge the gap between IMUs and OMC systems, enabling decades of research-based biomechanical methodologies to be applied to IMU data. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1424-8220 1424-8220 |
| DOI: | 10.3390/s25185728 |