Mining version histories to guide software changes

We apply data mining to version histories in order to guide programmers along related changes: "Programmers who changed these functions also changed..." Given a set of existing changes, the mined association rules 1) suggest and predict likely further changes, 2) show up item coupling that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on software engineering Jg. 31; H. 6; S. 429 - 445
Hauptverfasser: Zimmermann, T., Zeller, A., Weissgerber, P., Diehl, S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.06.2005
IEEE Computer Society
Schlagworte:
ISSN:0098-5589, 1939-3520
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply data mining to version histories in order to guide programmers along related changes: "Programmers who changed these functions also changed..." Given a set of existing changes, the mined association rules 1) suggest and predict likely further changes, 2) show up item coupling that is undetectable by program analysis, and 3) can prevent errors due to incomplete changes. After an initial change, our ROSE prototype can correctly predict further locations to be changed; the best predictive power is obtained for changes to existing software. In our evaluation based on the history of eight popular open source projects, ROSE's topmost three suggestions contained a correct location with a likelihood of more than 70 percent.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-News-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0098-5589
1939-3520
DOI:10.1109/TSE.2005.72