Control of flow using genetic algorithm for a circular cylinder executing rotary oscillation

We propose here a new approach to optimally control incompressible viscous flow past a circular cylinder for drag minimization by rotary oscillation. The flow at Re = 15000 is simulated by solving 2D Navier–Stokes equations in stream function-vorticity formulation. High accuracy compact scheme for s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & fluids Ročník 36; číslo 3; s. 578 - 600
Hlavní autoři: Sengupta, Tapan K., Deb, Kalyanmoy, Talla, Srikanth B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.03.2007
Elsevier Science
Témata:
ISSN:0045-7930, 1879-0747
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose here a new approach to optimally control incompressible viscous flow past a circular cylinder for drag minimization by rotary oscillation. The flow at Re = 15000 is simulated by solving 2D Navier–Stokes equations in stream function-vorticity formulation. High accuracy compact scheme for space discretization and four stage Runge–Kutta scheme for time integration makes such simulation possible. While numerical solution for this flow field has been reported using a fast viscous-vortex method, to our knowledge, this has not been done at such a high Reynolds number by computing the Navier–Stokes equation before. The importance of scale resolution, aliasing problem and preservation of physical dispersion relation for such vortical flows of the used high accuracy schemes [Sengupta TK. Fundamentals of computational fluid dynamics. Hyderabad, India: University Press; 2004] is highlighted. For the dynamic problem, a novel genetic algorithm (GA) based optimization technique has been adopted, where solutions of Navier–Stokes equations are obtained using small time-horizons at every step of the optimization process, called a GA generation. Then the objective functions is evaluated that is followed by GA determined improvement of the decision variables. This procedure of time advancement can also be adopted to control such flows experimentally, as one obtains time-accurate solution of the Navier–Stokes equation subject to discrete changes of decision variables. The objective function – the time-averaged drag – is optimized using a real-coded genetic algorithm [Deb K. Multi-objective optimization using evolutionary algorithms. Chichester, UK: Wiley; 2001] for the two decision variables, the maximum rotation rate and the forcing frequency of the rotary oscillation. Various approaches to optimal decision variables have been explored for the purpose of drag reduction and the collection of results are self-consistent and furthermore match well with the experimental values reported in [Tokumaru PT, Dimotakis PE. Rotary oscillation control of a cylinder wake. J Fluid Mech 1991;224:77].
AbstractList We propose here a new approach to optimally control incompressible viscous flow past a circular cylinder for drag minimization by rotary oscillation. The flow at Re = 15000 is simulated by solving 2D Navier–Stokes equations in stream function-vorticity formulation. High accuracy compact scheme for space discretization and four stage Runge–Kutta scheme for time integration makes such simulation possible. While numerical solution for this flow field has been reported using a fast viscous-vortex method, to our knowledge, this has not been done at such a high Reynolds number by computing the Navier–Stokes equation before. The importance of scale resolution, aliasing problem and preservation of physical dispersion relation for such vortical flows of the used high accuracy schemes [Sengupta TK. Fundamentals of computational fluid dynamics. Hyderabad, India: University Press; 2004] is highlighted. For the dynamic problem, a novel genetic algorithm (GA) based optimization technique has been adopted, where solutions of Navier–Stokes equations are obtained using small time-horizons at every step of the optimization process, called a GA generation. Then the objective functions is evaluated that is followed by GA determined improvement of the decision variables. This procedure of time advancement can also be adopted to control such flows experimentally, as one obtains time-accurate solution of the Navier–Stokes equation subject to discrete changes of decision variables. The objective function – the time-averaged drag – is optimized using a real-coded genetic algorithm [Deb K. Multi-objective optimization using evolutionary algorithms. Chichester, UK: Wiley; 2001] for the two decision variables, the maximum rotation rate and the forcing frequency of the rotary oscillation. Various approaches to optimal decision variables have been explored for the purpose of drag reduction and the collection of results are self-consistent and furthermore match well with the experimental values reported in [Tokumaru PT, Dimotakis PE. Rotary oscillation control of a cylinder wake. J Fluid Mech 1991;224:77].
We propose here a new approach to optimally control incompressible viscous flow past a circular cylinder for drag minimization by rotary oscillation. The flow at Re=15000 is simulated by solving 2D Navier-Stokes equations in stream function-vorticity formulation. High accuracy compact scheme for space discretization and four stage Runge-Kutta scheme for time integration makes such simulation possible. While numerical solution for this flow field has been reported using a fast viscous-vortex method, to our knowledge, this has not been done at such a high Reynolds number by computing the Navier-Stokes equation before. The importance of scale resolution, aliasing problem and preservation of physical dispersion relation for such vortical flows of the used high accuracy schemes [Sengupta TK. Fundamentals of computational fluid dynamics. Hyderabad, India: University Press; 2004] is highlighted. For the dynamic problem, a novel genetic algorithm (GA) based optimization technique has been adopted, where solutions of Navier-Stokes equations are obtained using small time-horizons at every step of the optimization process, called a GA generation. Then the objective functions is evaluated that is followed by GA determined improvement of the decision variables. This procedure of time advancement can also be adopted to control such flows experimentally, as one obtains time-accurate solution of the Navier-Stokes equation subject to discrete changes of decision variables. The objective function - the time-averaged drag - is optimized using a real-coded genetic algorithm [Deb K. Multi-objective optimization using evolutionary algorithms. Chichester, UK: Wiley; 2001] for the two decision variables, the maximum rotation rate and the forcing frequency of the rotary oscillation. Various approaches to optimal decision variables have been explored for the purpose of drag reduction and the collection of results are self-consistent and furthermore match well with the experimental values reported in [Tokumaru PT, Dimotakis PE. Rotary oscillation control of a cylinder wake. J Fluid Mech 1991;224:77].
Author Talla, Srikanth B.
Sengupta, Tapan K.
Deb, Kalyanmoy
Author_xml – sequence: 1
  givenname: Tapan K.
  surname: Sengupta
  fullname: Sengupta, Tapan K.
  email: tksen@iitk.ac.in
  organization: CFD Laboratory, Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India
– sequence: 2
  givenname: Kalyanmoy
  surname: Deb
  fullname: Deb, Kalyanmoy
  email: deb@iitk.ac.in
  organization: Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India
– sequence: 3
  givenname: Srikanth B.
  surname: Talla
  fullname: Talla, Srikanth B.
  email: tsbabu@iitk.ac.in
  organization: CFD Laboratory, Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18446444$$DView record in Pascal Francis
BookMark eNqNkMGKFDEQQIOs4OzqN5iL3rq30kl3OgcPy-CqsOBFb0JIp6vHDJlkTNK6-_dmnEXBi56KgveK4l2SixADEvKSQcuADdf71sbDcfGrm9sOYGiBtwDdE7Jho1QNSCEvyAZA9I1UHJ6Ry5z3UHfeiQ35so2hpOhpXOji4w-6Zhd2dIcBi7PU-F1Mrnw90CUmaqh1ya7eJGofvAszJor3aNdyclIsJj3QmK3z3hQXw3PydDE-44vHeUU-3779tH3f3H1892F7c9dYLofS9FIxUMKCWWbWI0zjKKE3k-1BDSNMKGcppZg5t9PERdd1swLFJjUOxuCA_Iq8Pt89pvhtxVz0wWWL9YuAcc26U6xXQvQVfPUImmyNX5IJ1mV9TO5QX9dsFGIQQlROnjmbYs4Jlz8I6FN1vde_q-tTdQ1c1-rVfPOXaV35FaMk4_x_-DdnH2uv7w6TrjkxWJxdQlv0HN0_b_wEdvanVQ
CODEN CPFLBI
CitedBy_id crossref_primary_10_1016_j_oceaneng_2016_08_031
crossref_primary_10_1016_j_euromechflu_2022_11_003
crossref_primary_10_1017_jfm_2018_639
crossref_primary_10_1017_jfm_2016_111
crossref_primary_10_3390_en13225920
crossref_primary_10_1007_s00348_015_2107_3
crossref_primary_10_1016_j_compfluid_2013_04_009
crossref_primary_10_1002_fld_4820
crossref_primary_10_1155_2011_521342
crossref_primary_10_1016_j_compfluid_2010_06_014
crossref_primary_10_1016_j_compfluid_2022_105370
Cites_doi 10.1017/S0022112091000484
10.1143/JPSJ.45.1038
10.1115/1.2926511
10.1017/S0022112099007478
10.1063/1.869610
10.1137/0913035
10.1007/BF00350001
10.1017/S0022112091003476
10.1006/jcph.2001.6882
10.1063/1.866925
10.1007/s10915-004-1318-1
10.2498/cit.2002.03.07
10.1006/jfls.1996.0055
10.1016/0021-9991(76)90023-1
10.1016/j.jcp.2003.07.015
10.1146/annurev.fl.16.010184.001211
10.1017/S0022112003005822
10.1006/jfls.2001.0387
10.1006/jcph.1994.1165
10.1016/S0045-7930(97)00031-5
10.1017/S0022112093001867
10.1063/1.1491251
10.1006/jcph.2000.6556
10.1063/1.864127
10.1063/1.1476671
10.1017/S002211200000313X
10.1017/S0022112086003014
10.1023/B:JOMP.0000030076.74896.d7
10.1017/S0022112090003342
10.1017/S0022112091001659
10.1016/0169-5983(86)90014-6
10.1146/annurev.fl.04.010172.001525
10.1063/1.868500
ContentType Journal Article
Copyright 2006 Elsevier Ltd
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier Ltd
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compfluid.2006.03.002
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-0747
EndPage 600
ExternalDocumentID 18446444
10_1016_j_compfluid_2006_03_002
S0045793006000521
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c376t-5791094c0afd15e0b88705abc509680be7d7774d33cbb34222d9091b986aae6e3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000243716200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7930
IngestDate Mon Sep 29 03:50:22 EDT 2025
Mon Jul 21 09:16:09 EDT 2025
Tue Nov 18 21:04:42 EST 2025
Sat Nov 29 03:39:07 EST 2025
Fri Feb 23 02:29:46 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Streamlines
Drag reduction
Digital simulation
Vorticity
Flow control
Circular cylinder
Modelling
Incompressible fluid
Torsional vibration
Oscillating cylinder
Viscous fluids
Genetic algorithms
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-5791094c0afd15e0b88705abc509680be7d7774d33cbb34222d9091b986aae6e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29159445
PQPubID 23500
PageCount 23
ParticipantIDs proquest_miscellaneous_29159445
pascalfrancis_primary_18446444
crossref_primary_10_1016_j_compfluid_2006_03_002
crossref_citationtrail_10_1016_j_compfluid_2006_03_002
elsevier_sciencedirect_doi_10_1016_j_compfluid_2006_03_002
PublicationCentury 2000
PublicationDate 2007-03-01
PublicationDateYYYYMMDD 2007-03-01
PublicationDate_xml – month: 03
  year: 2007
  text: 2007-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computers & fluids
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Sengupta, Guntaka, De (bib24) 2004; 21
Protas, Styczek (bib32) 2002; 14
Branke J. Evolutionary approaches to dynamic optimization problems – updated survey. In: GECCO workshop on evolutionary algorithms for dynamic optimization problems, 2001. p. 27.
Choi, Choi, Kang (bib20) 2002; 14
Badr, Coutanceau, Dennis, Menard (bib8) 1990; 220
Williamson (bib26) 1988; 31
Vose (bib46) 1999
Braza, Chassaing, Haminh (bib28) 1986; 165
Goldberg (bib45) 1989
Sengupta (bib1) 2004
Milano, Koumoutsakos (bib33) 2002; 175
Taneda (bib13) 1978; 45
Kawamura, Takami, Kuwahara (bib29) 1985; 1
He, Glowinski, Metcalfe, Nordlander, Periaux (bib31) 2000; 163
Sengupta, Dipankar (bib25) 2004; 21
Bearman (bib5) 1984; 16
Okajima A, Takata H, Asanuma T. Viscous flow around a rotationally oscillating cylinder. Tech Rep Rept 532, Inst Space and Aero Sci (U. Tokyo), 1981.
Deb (bib2) 2001
Wu, Mo, Vakili (bib15) 1989; 89
Baek, Sung (bib18) 1998; 10
Tokumaru, Dimotakis (bib3) 1991; 224
Sümer, Fredsøe (bib7) 1997
Beyer (bib47) 2001
Sengupta, De, Sarkar (bib27) 2003; 493
Haras, Ta’asan (bib42) 1994; 114
Deb, Agrawal (bib43) 1995; 9
Orlanski (bib38) 1976; 21
Griffin, Hall (bib6) 1991; 113
Nair, Sengupta, Chauhan (bib11) 1998; 27
Cheng, Chew, Luo (bib21) 2001; 15
Saad (bib41) 2003
Lu, Sato (bib17) 1996; 10
Filler, Marston, Mih (bib16) 1991; 231
Goldberg, Deb, Clark (bib48) 1992; 6
Sengupta, Ganeriwal, De (bib23) 2003; 192
Esposito, Verzicco, Orlandi (bib39) 1993
Deb K, Beyer H-G. Self-adaptation in real-parameter genetic algorithms with simulated binary crossover. In: Proceedings of the genetic and evolutionary computation conference (GECCO-99), 1999. p. 172–9.
Shiels, Leonard (bib22) 2001; 431
Chang, Chern (bib9) 1991; 233
Chen, Ou, Pearlstein (bib10) 1993; 253
der Vorst (bib40) 1992; 12
Berger, Willie (bib4) 1972; 4
Mittal, Balachander (bib34) 1995; 7
Dennis, Nguyen, Kocabiyik (bib19) 2000; 407
Sengupta, Sengupta (bib30) 1994; 14
Morrison (bib35) 2004
Ursem, Filipic, Krink (bib37) 2002; 10
Diaz, Gavalda, Kawall, Keffer, Giralt (bib12) 1983; 26
Bearman (10.1016/j.compfluid.2006.03.002_bib5) 1984; 16
der Vorst (10.1016/j.compfluid.2006.03.002_bib40) 1992; 12
10.1016/j.compfluid.2006.03.002_bib44
Morrison (10.1016/j.compfluid.2006.03.002_bib35) 2004
Saad (10.1016/j.compfluid.2006.03.002_bib41) 2003
Vose (10.1016/j.compfluid.2006.03.002_bib46) 1999
Milano (10.1016/j.compfluid.2006.03.002_bib33) 2002; 175
Griffin (10.1016/j.compfluid.2006.03.002_bib6) 1991; 113
Shiels (10.1016/j.compfluid.2006.03.002_bib22) 2001; 431
Nair (10.1016/j.compfluid.2006.03.002_bib11) 1998; 27
Tokumaru (10.1016/j.compfluid.2006.03.002_bib3) 1991; 224
Filler (10.1016/j.compfluid.2006.03.002_bib16) 1991; 231
Chang (10.1016/j.compfluid.2006.03.002_bib9) 1991; 233
Baek (10.1016/j.compfluid.2006.03.002_bib18) 1998; 10
Protas (10.1016/j.compfluid.2006.03.002_bib32) 2002; 14
Haras (10.1016/j.compfluid.2006.03.002_bib42) 1994; 114
He (10.1016/j.compfluid.2006.03.002_bib31) 2000; 163
Badr (10.1016/j.compfluid.2006.03.002_bib8) 1990; 220
Beyer (10.1016/j.compfluid.2006.03.002_bib47) 2001
Orlanski (10.1016/j.compfluid.2006.03.002_bib38) 1976; 21
Sengupta (10.1016/j.compfluid.2006.03.002_bib24) 2004; 21
Sümer (10.1016/j.compfluid.2006.03.002_bib7) 1997
10.1016/j.compfluid.2006.03.002_bib14
10.1016/j.compfluid.2006.03.002_bib36
Sengupta (10.1016/j.compfluid.2006.03.002_bib23) 2003; 192
Williamson (10.1016/j.compfluid.2006.03.002_bib26) 1988; 31
Deb (10.1016/j.compfluid.2006.03.002_bib43) 1995; 9
Dennis (10.1016/j.compfluid.2006.03.002_bib19) 2000; 407
Sengupta (10.1016/j.compfluid.2006.03.002_bib1) 2004
Deb (10.1016/j.compfluid.2006.03.002_bib2) 2001
Taneda (10.1016/j.compfluid.2006.03.002_bib13) 1978; 45
Braza (10.1016/j.compfluid.2006.03.002_bib28) 1986; 165
Sengupta (10.1016/j.compfluid.2006.03.002_bib30) 1994; 14
Diaz (10.1016/j.compfluid.2006.03.002_bib12) 1983; 26
Lu (10.1016/j.compfluid.2006.03.002_bib17) 1996; 10
Goldberg (10.1016/j.compfluid.2006.03.002_bib45) 1989
Berger (10.1016/j.compfluid.2006.03.002_bib4) 1972; 4
Kawamura (10.1016/j.compfluid.2006.03.002_bib29) 1985; 1
Goldberg (10.1016/j.compfluid.2006.03.002_bib48) 1992; 6
Esposito (10.1016/j.compfluid.2006.03.002_bib39) 1993
Choi (10.1016/j.compfluid.2006.03.002_bib20) 2002; 14
Chen (10.1016/j.compfluid.2006.03.002_bib10) 1993; 253
Cheng (10.1016/j.compfluid.2006.03.002_bib21) 2001; 15
Sengupta (10.1016/j.compfluid.2006.03.002_bib25) 2004; 21
Mittal (10.1016/j.compfluid.2006.03.002_bib34) 1995; 7
Ursem (10.1016/j.compfluid.2006.03.002_bib37) 2002; 10
Wu (10.1016/j.compfluid.2006.03.002_bib15) 1989; 89
Sengupta (10.1016/j.compfluid.2006.03.002_bib27) 2003; 493
References_xml – year: 1989
  ident: bib45
  article-title: Genetic algorithms for search, optimization, and machine learning
– year: 2004
  ident: bib1
  article-title: Fundamentals of computational fluid dynamics
– volume: 253
  start-page: 449
  year: 1993
  ident: bib10
  article-title: Development of the wake behind a circular cylinder impulsively started into rotatory and rectilinear motion
  publication-title: J Fluid Mech
– volume: 493
  start-page: 277
  year: 2003
  ident: bib27
  article-title: Vortex-induced instability of incompressible wall-bounded shear layer
  publication-title: J Fluid Mech
– volume: 224
  start-page: 77
  year: 1991
  ident: bib3
  article-title: Rotary oscillation control of a cylinder wake
  publication-title: J Fluid Mech
– volume: 231
  start-page: 481
  year: 1991
  ident: bib16
  article-title: Response of the shear layers separating from a circular cylinder to small-amplitude rotational oscillations
  publication-title: J Fluid Mech
– reference: Deb K, Beyer H-G. Self-adaptation in real-parameter genetic algorithms with simulated binary crossover. In: Proceedings of the genetic and evolutionary computation conference (GECCO-99), 1999. p. 172–9.
– year: 1997
  ident: bib7
  article-title: Hydrodynamics around cylindrical structures
– volume: 10
  start-page: 869
  year: 1998
  ident: bib18
  article-title: Numerical simulations of the flow behind a rotary oscillating circular cylinder
  publication-title: Phys Fluids
– volume: 21
  start-page: 269
  year: 2004
  ident: bib24
  article-title: Incompressible Navier–Stokes solution by new compact schemes
  publication-title: J Sci Comput
– volume: 1
  start-page: 145
  year: 1985
  end-page: 162
  ident: bib29
  article-title: A new higher order upwind scheme for incompressible Navier–Stokes equation
  publication-title: Fluid Dynam Res
– volume: 14
  start-page: 298
  year: 1994
  end-page: 310
  ident: bib30
  article-title: Flow past an impulsively started circular cylinder at high Reynolds number
  publication-title: Comput Mech
– volume: 9
  start-page: 115
  year: 1995
  end-page: 148
  ident: bib43
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– volume: 220
  start-page: 459
  year: 1990
  ident: bib8
  article-title: Unsteady flow past a rotating circular cylinder at Reynolds numbers 10
  publication-title: J Fluid Mech
– volume: 10
  start-page: 829
  year: 1996
  ident: bib17
  article-title: A numerical study of flow past a rotationally oscillating circular cylinder
  publication-title: J Fluids Struct
– volume: 113
  start-page: 526
  year: 1991
  ident: bib6
  article-title: Vortex shedding lock-on and flow control in bluff body wakes
  publication-title: Trans ASME J Fluids Engng
– volume: 21
  start-page: 225
  year: 2004
  ident: bib25
  article-title: A comparative study of time advancement methods for solving Navier–Stokes equations
  publication-title: J Sci Comput
– volume: 4
  start-page: 313
  year: 1972
  ident: bib4
  article-title: Periodic flow phenomenon
  publication-title: Ann Rev Fluid Mech
– volume: 233
  start-page: 265
  year: 1991
  ident: bib9
  article-title: Vortex shedding from an impulsively started rotating and translating circular cylinder
  publication-title: J Fluid Mech
– volume: 165
  start-page: 79
  year: 1986
  end-page: 130
  ident: bib28
  article-title: Numerical study and analysis of the pressure and velocity fields in the near wake of a cylinder
  publication-title: J Fluid Mech
– volume: 21
  start-page: 251
  year: 1976
  ident: bib38
  article-title: A simple boundary condition for unbounded hyperbolic flows
  publication-title: J Comput Phys
– volume: 6
  start-page: 333
  year: 1992
  end-page: 362
  ident: bib48
  article-title: Genetic algorithms, noise, and the sizing of populations
  publication-title: Complex Syst
– volume: 26
  start-page: 3454
  year: 1983
  ident: bib12
  article-title: Vortex shedding from a spinning cylinder
  publication-title: Phys Fluids
– volume: 114
  start-page: 265
  year: 1994
  ident: bib42
  article-title: Finite difference scheme for long time integration
  publication-title: J Comput Phys
– year: 1999
  ident: bib46
  article-title: Simple genetic algorithm: foundation and theory
– volume: 407
  start-page: 123
  year: 2000
  ident: bib19
  article-title: The flow induced by a rotationally oscillating and translating circular cylinder
  publication-title: J Fluid Mech
– volume: 14
  start-page: 2073
  year: 2002
  ident: bib32
  article-title: Optimal rotary control of the cylinder wake in the laminar regime
  publication-title: Phys Fluids
– volume: 27
  start-page: 47
  year: 1998
  ident: bib11
  article-title: Flow past rotating cylinders at high Reynolds numbers using higher order upwind scheme
  publication-title: Comput Fluids
– volume: 431
  start-page: 297
  year: 2001
  ident: bib22
  article-title: Investigation of a drag reduction on a circular cylinder in rotary oscillation
  publication-title: J Fluid Mech
– reference: Okajima A, Takata H, Asanuma T. Viscous flow around a rotationally oscillating cylinder. Tech Rep Rept 532, Inst Space and Aero Sci (U. Tokyo), 1981.
– volume: 31
  start-page: 3165
  year: 1988
  end-page: 3168
  ident: bib26
  article-title: The existence of two stages in the transition to three-dimensionality of a cylinder wake
  publication-title: Phys Fluids
– reference: Branke J. Evolutionary approaches to dynamic optimization problems – updated survey. In: GECCO workshop on evolutionary algorithms for dynamic optimization problems, 2001. p. 27.
– volume: 15
  start-page: 981
  year: 2001
  ident: bib21
  article-title: Numerical investigation of a rotationally oscillating cylinder in mean flow
  publication-title: J Fluids Struct
– volume: 163
  start-page: 83
  year: 2000
  ident: bib31
  article-title: Active control and drag optimization for flow past a circular cylinder
  publication-title: J Comput Phys
– volume: 10
  start-page: 195
  year: 2002
  ident: bib37
  article-title: Exploring the performance of an evolutionary algorithm for greenhouse control
  publication-title: J Comput Inform Technol
– volume: 89
  start-page: 1024
  year: 1989
  ident: bib15
  article-title: On the wake of a cylinder with rotational oscillations
  publication-title: AIAA Paper
– year: 1993
  ident: bib39
  article-title: Boundary condition influence on the flow around a circular cylinder
  publication-title: IUTAM symp proc on bluff-body wakes, dynamics and instabilities
– year: 2003
  ident: bib41
  article-title: Iterative methods for sparse linear systems
– volume: 45
  start-page: 1038
  year: 1978
  ident: bib13
  article-title: Visual observations of the flow past a circular cylinder performing a rotatory oscillation
  publication-title: J Phys Soc Jpn
– volume: 14
  start-page: 2767
  year: 2002
  ident: bib20
  article-title: Characteristics of flow over a rotationally oscillating cylinder at low Reynolds number
  publication-title: Phys Fluids
– volume: 192
  start-page: 677
  year: 2003
  ident: bib23
  article-title: Analysis of central and upwind compact schemes
  publication-title: J Comput Phys
– volume: 7
  start-page: 1841
  year: 1995
  ident: bib34
  article-title: Effect of three-dimensionality on the lift and drag of nominally two-dimensional cylinders
  publication-title: Phys Fluids
– year: 2004
  ident: bib35
  article-title: Designing evolutionary algorithms for dynamic environment
– volume: 16
  start-page: 195
  year: 1984
  ident: bib5
  article-title: Vortex shedding from oscillating bluff bodies
  publication-title: Ann Rev Fluid Mech
– volume: 12
  start-page: 631
  year: 1992
  ident: bib40
  article-title: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems
  publication-title: SIAM J Sci Stat Comput
– year: 2001
  ident: bib47
  article-title: The theory of evolution strategies
– year: 2001
  ident: bib2
  article-title: Multi-objective optimization using evolutionary algorithms
– volume: 175
  start-page: 79
  year: 2002
  ident: bib33
  article-title: A clustering genetic algorithm for cylinder drag optimization
  publication-title: J Comput Phys
– volume: 233
  start-page: 265
  year: 1991
  ident: 10.1016/j.compfluid.2006.03.002_bib9
  article-title: Vortex shedding from an impulsively started rotating and translating circular cylinder
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112091000484
– volume: 45
  start-page: 1038
  year: 1978
  ident: 10.1016/j.compfluid.2006.03.002_bib13
  article-title: Visual observations of the flow past a circular cylinder performing a rotatory oscillation
  publication-title: J Phys Soc Jpn
  doi: 10.1143/JPSJ.45.1038
– volume: 113
  start-page: 526
  year: 1991
  ident: 10.1016/j.compfluid.2006.03.002_bib6
  article-title: Vortex shedding lock-on and flow control in bluff body wakes
  publication-title: Trans ASME J Fluids Engng
  doi: 10.1115/1.2926511
– volume: 6
  start-page: 333
  issue: 4
  year: 1992
  ident: 10.1016/j.compfluid.2006.03.002_bib48
  article-title: Genetic algorithms, noise, and the sizing of populations
  publication-title: Complex Syst
– volume: 407
  start-page: 123
  year: 2000
  ident: 10.1016/j.compfluid.2006.03.002_bib19
  article-title: The flow induced by a rotationally oscillating and translating circular cylinder
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112099007478
– volume: 10
  start-page: 869
  year: 1998
  ident: 10.1016/j.compfluid.2006.03.002_bib18
  article-title: Numerical simulations of the flow behind a rotary oscillating circular cylinder
  publication-title: Phys Fluids
  doi: 10.1063/1.869610
– volume: 12
  start-page: 631
  year: 1992
  ident: 10.1016/j.compfluid.2006.03.002_bib40
  article-title: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems
  publication-title: SIAM J Sci Stat Comput
  doi: 10.1137/0913035
– volume: 14
  start-page: 298
  year: 1994
  ident: 10.1016/j.compfluid.2006.03.002_bib30
  article-title: Flow past an impulsively started circular cylinder at high Reynolds number
  publication-title: Comput Mech
  doi: 10.1007/BF00350001
– year: 1993
  ident: 10.1016/j.compfluid.2006.03.002_bib39
  article-title: Boundary condition influence on the flow around a circular cylinder
– volume: 231
  start-page: 481
  year: 1991
  ident: 10.1016/j.compfluid.2006.03.002_bib16
  article-title: Response of the shear layers separating from a circular cylinder to small-amplitude rotational oscillations
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112091003476
– volume: 175
  start-page: 79
  year: 2002
  ident: 10.1016/j.compfluid.2006.03.002_bib33
  article-title: A clustering genetic algorithm for cylinder drag optimization
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2001.6882
– volume: 31
  start-page: 3165
  year: 1988
  ident: 10.1016/j.compfluid.2006.03.002_bib26
  article-title: The existence of two stages in the transition to three-dimensionality of a cylinder wake
  publication-title: Phys Fluids
  doi: 10.1063/1.866925
– year: 1997
  ident: 10.1016/j.compfluid.2006.03.002_bib7
– year: 2003
  ident: 10.1016/j.compfluid.2006.03.002_bib41
– volume: 21
  start-page: 269
  issue: 3
  year: 2004
  ident: 10.1016/j.compfluid.2006.03.002_bib24
  article-title: Incompressible Navier–Stokes solution by new compact schemes
  publication-title: J Sci Comput
  doi: 10.1007/s10915-004-1318-1
– volume: 10
  start-page: 195
  issue: 3
  year: 2002
  ident: 10.1016/j.compfluid.2006.03.002_bib37
  article-title: Exploring the performance of an evolutionary algorithm for greenhouse control
  publication-title: J Comput Inform Technol
  doi: 10.2498/cit.2002.03.07
– volume: 10
  start-page: 829
  year: 1996
  ident: 10.1016/j.compfluid.2006.03.002_bib17
  article-title: A numerical study of flow past a rotationally oscillating circular cylinder
  publication-title: J Fluids Struct
  doi: 10.1006/jfls.1996.0055
– volume: 21
  start-page: 251
  year: 1976
  ident: 10.1016/j.compfluid.2006.03.002_bib38
  article-title: A simple boundary condition for unbounded hyperbolic flows
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(76)90023-1
– ident: 10.1016/j.compfluid.2006.03.002_bib14
– volume: 192
  start-page: 677
  year: 2003
  ident: 10.1016/j.compfluid.2006.03.002_bib23
  article-title: Analysis of central and upwind compact schemes
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2003.07.015
– volume: 16
  start-page: 195
  year: 1984
  ident: 10.1016/j.compfluid.2006.03.002_bib5
  article-title: Vortex shedding from oscillating bluff bodies
  publication-title: Ann Rev Fluid Mech
  doi: 10.1146/annurev.fl.16.010184.001211
– volume: 493
  start-page: 277
  year: 2003
  ident: 10.1016/j.compfluid.2006.03.002_bib27
  article-title: Vortex-induced instability of incompressible wall-bounded shear layer
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112003005822
– volume: 15
  start-page: 981
  year: 2001
  ident: 10.1016/j.compfluid.2006.03.002_bib21
  article-title: Numerical investigation of a rotationally oscillating cylinder in mean flow
  publication-title: J Fluids Struct
  doi: 10.1006/jfls.2001.0387
– volume: 114
  start-page: 265
  year: 1994
  ident: 10.1016/j.compfluid.2006.03.002_bib42
  article-title: Finite difference scheme for long time integration
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1994.1165
– volume: 27
  start-page: 47
  year: 1998
  ident: 10.1016/j.compfluid.2006.03.002_bib11
  article-title: Flow past rotating cylinders at high Reynolds numbers using higher order upwind scheme
  publication-title: Comput Fluids
  doi: 10.1016/S0045-7930(97)00031-5
– volume: 253
  start-page: 449
  year: 1993
  ident: 10.1016/j.compfluid.2006.03.002_bib10
  article-title: Development of the wake behind a circular cylinder impulsively started into rotatory and rectilinear motion
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112093001867
– volume: 14
  start-page: 2767
  issue: 8
  year: 2002
  ident: 10.1016/j.compfluid.2006.03.002_bib20
  article-title: Characteristics of flow over a rotationally oscillating cylinder at low Reynolds number
  publication-title: Phys Fluids
  doi: 10.1063/1.1491251
– year: 2004
  ident: 10.1016/j.compfluid.2006.03.002_bib1
– volume: 163
  start-page: 83
  year: 2000
  ident: 10.1016/j.compfluid.2006.03.002_bib31
  article-title: Active control and drag optimization for flow past a circular cylinder
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2000.6556
– volume: 89
  start-page: 1024
  year: 1989
  ident: 10.1016/j.compfluid.2006.03.002_bib15
  article-title: On the wake of a cylinder with rotational oscillations
  publication-title: AIAA Paper
– year: 1989
  ident: 10.1016/j.compfluid.2006.03.002_bib45
– volume: 26
  start-page: 3454
  year: 1983
  ident: 10.1016/j.compfluid.2006.03.002_bib12
  article-title: Vortex shedding from a spinning cylinder
  publication-title: Phys Fluids
  doi: 10.1063/1.864127
– year: 2001
  ident: 10.1016/j.compfluid.2006.03.002_bib47
– volume: 14
  start-page: 2073
  issue: 7
  year: 2002
  ident: 10.1016/j.compfluid.2006.03.002_bib32
  article-title: Optimal rotary control of the cylinder wake in the laminar regime
  publication-title: Phys Fluids
  doi: 10.1063/1.1476671
– ident: 10.1016/j.compfluid.2006.03.002_bib44
– year: 2001
  ident: 10.1016/j.compfluid.2006.03.002_bib2
– year: 1999
  ident: 10.1016/j.compfluid.2006.03.002_bib46
– volume: 431
  start-page: 297
  year: 2001
  ident: 10.1016/j.compfluid.2006.03.002_bib22
  article-title: Investigation of a drag reduction on a circular cylinder in rotary oscillation
  publication-title: J Fluid Mech
  doi: 10.1017/S002211200000313X
– volume: 165
  start-page: 79
  year: 1986
  ident: 10.1016/j.compfluid.2006.03.002_bib28
  article-title: Numerical study and analysis of the pressure and velocity fields in the near wake of a cylinder
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112086003014
– volume: 21
  start-page: 225
  issue: 2
  year: 2004
  ident: 10.1016/j.compfluid.2006.03.002_bib25
  article-title: A comparative study of time advancement methods for solving Navier–Stokes equations
  publication-title: J Sci Comput
  doi: 10.1023/B:JOMP.0000030076.74896.d7
– ident: 10.1016/j.compfluid.2006.03.002_bib36
– volume: 220
  start-page: 459
  year: 1990
  ident: 10.1016/j.compfluid.2006.03.002_bib8
  article-title: Unsteady flow past a rotating circular cylinder at Reynolds numbers 103 and 104
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112090003342
– volume: 224
  start-page: 77
  year: 1991
  ident: 10.1016/j.compfluid.2006.03.002_bib3
  article-title: Rotary oscillation control of a cylinder wake
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112091001659
– volume: 9
  start-page: 115
  issue: 2
  year: 1995
  ident: 10.1016/j.compfluid.2006.03.002_bib43
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– volume: 1
  start-page: 145
  year: 1985
  ident: 10.1016/j.compfluid.2006.03.002_bib29
  article-title: A new higher order upwind scheme for incompressible Navier–Stokes equation
  publication-title: Fluid Dynam Res
  doi: 10.1016/0169-5983(86)90014-6
– volume: 4
  start-page: 313
  year: 1972
  ident: 10.1016/j.compfluid.2006.03.002_bib4
  article-title: Periodic flow phenomenon
  publication-title: Ann Rev Fluid Mech
  doi: 10.1146/annurev.fl.04.010172.001525
– volume: 7
  start-page: 1841
  issue: 8
  year: 1995
  ident: 10.1016/j.compfluid.2006.03.002_bib34
  article-title: Effect of three-dimensionality on the lift and drag of nominally two-dimensional cylinders
  publication-title: Phys Fluids
  doi: 10.1063/1.868500
– year: 2004
  ident: 10.1016/j.compfluid.2006.03.002_bib35
SSID ssj0004324
Score 1.8972118
Snippet We propose here a new approach to optimally control incompressible viscous flow past a circular cylinder for drag minimization by rotary oscillation. The flow...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 578
SubjectTerms Computational methods in fluid dynamics
Exact sciences and technology
Flow control
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Physics
Title Control of flow using genetic algorithm for a circular cylinder executing rotary oscillation
URI https://dx.doi.org/10.1016/j.compfluid.2006.03.002
https://www.proquest.com/docview/29159445
Volume 36
WOSCitedRecordID wos000243716200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFiQQQlBAhEfZA7cqkmuvY5tbKOGlKKrUFOWAZO2u19TFtSM_SvsP-NnMvuyUggIHLlZi-SH7-zw7Mzv7DUKvfEGoG6QpkHcfApQE4pQooGxEBPMZSbxEqFXvn2fBfB4ul9HhYPDDroU5z4OiCC8uotV_hRr2Adhy6ew_wN1dFHbAbwAdtgA7bP8K-ANTfA5eYJqX3_dalQ2Aw4XSZs2_llXWnJzp8sk9nlW6EpVf5lI5sZJNmHiriqGrspE1dVLuMs97BK2ugekHUSv2pHmbJZ1_fjSdvz8-XEwUG2A4Lvps6tvpG13FkV_S4qzsMvqLyWymjj-qsm8A94npB20zEkFfkqXTZHapjLFO6-aXSH1MMxFjzK_WPzE089Zsqa97-5hheawETa9bfJ18OJWArdSjmgkmKVzr9oOcndj_ZezrKhIh0CXgGpIbaNsN_Ajs4_bk43T5qV9j67la0ds8wpVawd_e_E-ezt0VreH7S3XjlGs-gHJsFvfRPROR4Ilm0gM0EMUOurOmU7mDbqk6YV4_RF8Mu3CZYskurNiFDbtwxy4M7MIUW3Zhyy7csQtrduE1dj1Cx--mi4MPI9OgY8RhXGpGfgDOZkS4Q9Nk3xcOgxHL8SnjUlModJgIkgDCi8TzOGOeTDYmEfinLArHlIqx8B6jraIsxBOEXTcSoYBoX3iUMB5SkQoKrnLiE0bg7xCN7cuMuVGvl01U8tiWKZ7GHQqyt-o4drwYUBgipztxpQVcNp_y2qIVGz9U-5cxkG7zybtX8O1vahg2RC8t4DGYcjk_RwtRtnXsRhBbEOI_3XSJZ-h2_909R1tN1YoX6CY_b7K62jXM_Qn2H8LA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+flow+using+genetic+algorithm+for+a+circular+cylinder+executing+rotary+oscillation&rft.jtitle=Computers+%26+fluids&rft.au=SENGUPTA%2C+Tapan+K&rft.au=DEB%2C+Kalyanmoy&rft.au=TALLA%2C+Srikanth+B&rft.date=2007-03-01&rft.pub=Elsevier+Science&rft.issn=0045-7930&rft.volume=36&rft.issue=3&rft.spage=578&rft.epage=600&rft_id=info:doi/10.1016%2Fj.compfluid.2006.03.002&rft.externalDBID=n%2Fa&rft.externalDocID=18446444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon