Newton’s method for generalized equations: a sequential implicit function theorem
In an extension of Newton’s method to generalized equations, we carry further the implicit function theorem paradigm and place it in the framework of a mapping acting from the parameter and the starting point to the set of all associated sequences of Newton’s iterates as elements of a sequence space...
Uložené v:
| Vydané v: | Mathematical programming Ročník 123; číslo 1; s. 139 - 159 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer-Verlag
01.05.2010
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In an extension of Newton’s method to generalized equations, we carry further the implicit function theorem paradigm and place it in the framework of a mapping acting from the parameter and the starting point to the set of all associated sequences of Newton’s iterates as elements of a sequence space. An inverse function version of this result shows that the strong regularity of the mapping associated with the Newton sequences is equivalent to the strong regularity of the generalized equation mapping. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-009-0322-5 |