Multi-target FIR tracking algorithm for Markov jump linear systems based on true-target decision-making

Most existing multi-target tracking (MTT) algorithms are based on Kalman filters (KFs). However, KFs exhibit poor estimation performance or even diverge when system models have parameter uncertainties. To overcome this drawback, finite impulse response (FIR) filters have been studied; these are more...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 168; s. 298 - 307
Hlavní autori: Lee, Chang Joo, Pak, Jung Min, Ahn, Choon Ki, Min, Kyung Min, Shi, Peng, Lim, Myo Taeg
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 30.11.2015
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Most existing multi-target tracking (MTT) algorithms are based on Kalman filters (KFs). However, KFs exhibit poor estimation performance or even diverge when system models have parameter uncertainties. To overcome this drawback, finite impulse response (FIR) filters have been studied; these are more robust against model uncertainty than KFs. In this paper, we propose a novel MTT algorithm based on FIR filtering for Markov jump linear systems (MJLSs). The proposed algorithm is called the multi-target FIR tracking algorithm (MTFTA). The MTFTA is based on the decision-making process to identify the true-target׳s state among candidate states. The true-target decision-making process utilizes the likelihood function and the Mahalanobis distance. We show that the proposed MTFTA exhibits better robustness against model parameter uncertainties than the conventional KF-based algorithm.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2015.05.096