A new conservative numerical integration algorithm for the three-dimensional Kepler motion based on the Kustaanheimo–Stiefel regularization theory
A new conservative numerical integration algorithm for the three-dimensional Kepler motion is presented which conserves all of the constants of motion including the Runge–Lenz vector. The Kustaanheimo–Stiefel regularization theory plays a central role in the discretization of the equations of motion...
Uloženo v:
| Vydáno v: | Physics letters. A Ročník 324; číslo 4; s. 282 - 292 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
19.04.2004
|
| Témata: | |
| ISSN: | 0375-9601, 1873-2429 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A new conservative numerical integration algorithm for the three-dimensional Kepler motion is presented which conserves
all of the constants of motion including the Runge–Lenz vector. The Kustaanheimo–Stiefel regularization theory plays a central role in the discretization of the equations of motion. |
|---|---|
| ISSN: | 0375-9601 1873-2429 |
| DOI: | 10.1016/j.physleta.2004.02.059 |