A Low-Complexity Algorithm for a Reinforcement Learning-Based Channel Estimator for MIMO Systems

This paper proposes a low-complexity algorithm for a reinforcement learning-based channel estimator for multiple-input multiple-output systems. The proposed channel estimator utilizes detected symbols to reduce the channel estimation error. However, the detected data symbols may include errors at th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 22; číslo 12; s. 4379
Hlavní autori: Kim, Tae-Kyoung, Min, Moonsik
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 09.06.2022
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes a low-complexity algorithm for a reinforcement learning-based channel estimator for multiple-input multiple-output systems. The proposed channel estimator utilizes detected symbols to reduce the channel estimation error. However, the detected data symbols may include errors at the receiver owing to the characteristics of the wireless channels. Thus, the detected data symbols are selectively used as additional pilot symbols. To this end, a Markov decision process (MDP) problem is defined to optimize the selection of the detected data symbols. Subsequently, a reinforcement learning algorithm is developed to solve the MDP problem with computational efficiency. The developed algorithm derives the optimal policy in a closed form by introducing backup samples and data subblocks, to reduce latency and complexity. Simulations are conducted, and the results show that the proposed channel estimator significantly reduces the minimum-mean square error of the channel estimates, thus improving the block error rate compared to the conventional channel estimation.
AbstractList This paper proposes a low-complexity algorithm for a reinforcement learning-based channel estimator for multiple-input multiple-output systems. The proposed channel estimator utilizes detected symbols to reduce the channel estimation error. However, the detected data symbols may include errors at the receiver owing to the characteristics of the wireless channels. Thus, the detected data symbols are selectively used as additional pilot symbols. To this end, a Markov decision process (MDP) problem is defined to optimize the selection of the detected data symbols. Subsequently, a reinforcement learning algorithm is developed to solve the MDP problem with computational efficiency. The developed algorithm derives the optimal policy in a closed form by introducing backup samples and data subblocks, to reduce latency and complexity. Simulations are conducted, and the results show that the proposed channel estimator significantly reduces the minimum-mean square error of the channel estimates, thus improving the block error rate compared to the conventional channel estimation.
This paper proposes a low-complexity algorithm for a reinforcement learning-based channel estimator for multiple-input multiple-output systems. The proposed channel estimator utilizes detected symbols to reduce the channel estimation error. However, the detected data symbols may include errors at the receiver owing to the characteristics of the wireless channels. Thus, the detected data symbols are selectively used as additional pilot symbols. To this end, a Markov decision process (MDP) problem is defined to optimize the selection of the detected data symbols. Subsequently, a reinforcement learning algorithm is developed to solve the MDP problem with computational efficiency. The developed algorithm derives the optimal policy in a closed form by introducing backup samples and data subblocks, to reduce latency and complexity. Simulations are conducted, and the results show that the proposed channel estimator significantly reduces the minimum-mean square error of the channel estimates, thus improving the block error rate compared to the conventional channel estimation.This paper proposes a low-complexity algorithm for a reinforcement learning-based channel estimator for multiple-input multiple-output systems. The proposed channel estimator utilizes detected symbols to reduce the channel estimation error. However, the detected data symbols may include errors at the receiver owing to the characteristics of the wireless channels. Thus, the detected data symbols are selectively used as additional pilot symbols. To this end, a Markov decision process (MDP) problem is defined to optimize the selection of the detected data symbols. Subsequently, a reinforcement learning algorithm is developed to solve the MDP problem with computational efficiency. The developed algorithm derives the optimal policy in a closed form by introducing backup samples and data subblocks, to reduce latency and complexity. Simulations are conducted, and the results show that the proposed channel estimator significantly reduces the minimum-mean square error of the channel estimates, thus improving the block error rate compared to the conventional channel estimation.
Author Kim, Tae-Kyoung
Min, Moonsik
AuthorAffiliation 3 School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea
1 Department of Electronic Engineering, Gachon University, Seongnam 13120, Korea; tk415kim@gmail.com
2 School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea
AuthorAffiliation_xml – name: 2 School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea
– name: 3 School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea
– name: 1 Department of Electronic Engineering, Gachon University, Seongnam 13120, Korea; tk415kim@gmail.com
Author_xml – sequence: 1
  givenname: Tae-Kyoung
  orcidid: 0000-0002-9629-7413
  surname: Kim
  fullname: Kim, Tae-Kyoung
– sequence: 2
  givenname: Moonsik
  orcidid: 0000-0002-1206-3805
  surname: Min
  fullname: Min, Moonsik
BookMark eNptkstu2zAQRYkiRfNoF_0DAd00CyV8itSmgGOkrQEHAfpYsyOJsmlIpEvSaf33peIgSIKuOCDvPXOHmFN05LwzCL0n-IKxGl9GSgnlTNav0AnhlJeKUnz0pD5GpzFuMKaMMfUGHTMheUUqeoJ-zYql_1PO_bgdzF-b9sVsWPlg03oseh8KKL4Z63LVmtG4VCwNBGfdqryCaLpivgbnzFBcx2RHSNkwmW4WN7fF931MZoxv0esehmjePZxn6Ofn6x_zr-Xy9stiPluWLZNVKhnBhLOGVYbiFktKCACIpqOKy6YTivMaMyyxonUHfa06XBlhKiwEbhroKTtDiwO387DR25DjhL32YPX9hQ8rDSHZdjBatUqBhIYKaPhUC05rCQRTLkiFq8z6dGBtd81oujYPHmB4Bn3-4uxar_ydrimtMyMDPj4Agv-9MzHp0cbWDAM443dR00oRnOeWU68PL6Qbvwsuf1VWyVpxoe4TnR9UbfAxBtM_hiFYTzugH3cgay9faFubIFk_ZbXDfxz_AALwsWg
CitedBy_id crossref_primary_10_3390_s23125689
crossref_primary_10_1109_JIOT_2023_3294279
crossref_primary_10_3390_s23125542
Cites_doi 10.1109/TWC.2008.070228
10.1109/49.947034
10.1109/78.969514
10.3390/s21144861
10.1109/TCOMM.2021.3071537
10.1109/JCN.2014.000075
10.1109/JSTSP.2014.2317671
10.1109/TWC.2019.2956044
10.1109/TWC.2017.2768423
10.1109/MCOM.2014.6736761
10.1109/WCNC51071.2022.9771693
10.1109/TSP.2018.2879620
10.1109/TSP.2018.2799164
10.1109/TWC.2003.819022
10.3390/s22010309
10.1109/COMST.2007.382406
10.1109/ICC40277.2020.9149283
10.1109/TCOMM.2017.2688447
10.1109/TSP.2005.863008
10.1109/TVT.2021.3090087
10.1109/TIT.2003.810646
10.1109/TWC.2020.2969627
10.1002/ett.4460100604
10.1109/TSP.2015.2416684
10.1109/TSP.2004.826182
10.1109/TSP.2014.2321120
10.1002/bltj.2015
10.1109/TSP.2004.834270
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22124379
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_8c88a7ab25ab4c88a54297a102451606
PMC9229451
10_3390_s22124379
GrantInformation_xml – fundername: Ministry of Education, Korea
  grantid: 4199990113966
– fundername: National Research Foundation of Korea (NRF)
  grantid: 2020R1F1A1071649; 2021R1F1A1063273
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c376t-310143b36e20c07211aaa5bd2847bd5844903070829daf98d06e5e60550bbaf23
IEDL.DBID PIMPY
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000815867100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:51:54 EDT 2025
Tue Nov 04 01:57:36 EST 2025
Sun Nov 09 12:47:15 EST 2025
Tue Oct 07 07:17:04 EDT 2025
Sat Nov 29 07:17:24 EST 2025
Tue Nov 18 20:58:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-310143b36e20c07211aaa5bd2847bd5844903070829daf98d06e5e60550bbaf23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9629-7413
0000-0002-1206-3805
OpenAccessLink https://www.proquest.com/publiccontent/docview/2679845806?pq-origsite=%requestingapplication%
PMID 35746162
PQID 2679845806
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_8c88a7ab25ab4c88a54297a102451606
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9229451
proquest_miscellaneous_2681037676
proquest_journals_2679845806
crossref_primary_10_3390_s22124379
crossref_citationtrail_10_3390_s22124379
PublicationCentury 2000
PublicationDate 20220609
PublicationDateYYYYMMDD 2022-06-09
PublicationDate_xml – month: 6
  year: 2022
  text: 20220609
  day: 9
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Telatar (ref_2) 1999; 10
Foschini (ref_1) 1996; 1
Neumann (ref_12) 2018; 66
ref_14
ref_13
Huang (ref_22) 2018; 67
Yuan (ref_18) 2020; 19
Zheng (ref_3) 2003; 49
Kim (ref_30) 2021; 70
Larsson (ref_5) 2014; 52
Song (ref_25) 2004; 52
Simeone (ref_7) 2004; 3
ref_16
Lu (ref_6) 2014; 8
ref_15
Valenti (ref_24) 2001; 19
Biguesh (ref_10) 2006; 54
Park (ref_21) 2015; 63
(ref_17) 2021; 69
Kim (ref_9) 2014; 16
Zhao (ref_19) 2008; 7
Park (ref_23) 2017; 65
ref_28
Dong (ref_29) 2004; 52
ref_26
Hoydis (ref_4) 2018; 17
Ma (ref_20) 2014; 62
Jeon (ref_27) 2020; 19
Ozdemir (ref_11) 2007; 9
Morelli (ref_8) 2001; 49
References_xml – ident: ref_28
– volume: 7
  start-page: 3174
  year: 2008
  ident: ref_19
  article-title: Iterative Turbo Channel Estimation for OFDM System over Rapid Dispersive Fading Channel
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2008.070228
– volume: 19
  start-page: 1697
  year: 2001
  ident: ref_24
  article-title: Iterative Channel Estimation and Decoding of Pilot Symbol Assisted Turbo Codes Over Flat-Fading Channels
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/49.947034
– volume: 49
  start-page: 3065
  year: 2001
  ident: ref_8
  article-title: A Comparison of Pilot-Aided Channel Estimation Methods for OFDM System
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.969514
– ident: ref_14
  doi: 10.3390/s21144861
– volume: 69
  start-page: 4921
  year: 2021
  ident: ref_17
  article-title: A Reduced Complexity Ungerboeck Receiver for Quantized Wideband Massive SC-MIMO
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2021.3071537
– volume: 16
  start-page: 447
  year: 2014
  ident: ref_9
  article-title: Frequency Domain Channel Estimation for MIMO SC-FDMA Systems with CDM Pilots
  publication-title: J. Commun. Netw.
  doi: 10.1109/JCN.2014.000075
– volume: 8
  start-page: 742
  year: 2014
  ident: ref_6
  article-title: An Overview of Massive MIMO: Benefits and Challenges
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2014.2317671
– volume: 19
  start-page: 1663
  year: 2020
  ident: ref_27
  article-title: Robust Data Detection for MIMO Systems with One-Bit ADCs: A Reinforcement Learning Approach
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2019.2956044
– volume: 17
  start-page: 574
  year: 2018
  ident: ref_4
  article-title: Massive MIMO Has Unlimited Capacity
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2017.2768423
– volume: 52
  start-page: 186
  year: 2014
  ident: ref_5
  article-title: Massive MIMO for Next Generation Wireless Systems
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2014.6736761
– ident: ref_16
  doi: 10.1109/WCNC51071.2022.9771693
– volume: 67
  start-page: 245
  year: 2018
  ident: ref_22
  article-title: Iterative Channel Estimation Using LSE and Sparse Message Passing for mmWave MIMO Systems
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2879620
– volume: 66
  start-page: 2905
  year: 2018
  ident: ref_12
  article-title: Learning the MMSE Channel Estimator
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2799164
– volume: 3
  start-page: 315
  year: 2004
  ident: ref_7
  article-title: Pilot-based Channel Estimation for OFDM Systems by Tracking the Delay-Subspace
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2003.819022
– ident: ref_15
  doi: 10.3390/s22010309
– volume: 9
  start-page: 18
  year: 2007
  ident: ref_11
  article-title: Channel Estimation for Wireless OFDM Systems
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2007.382406
– ident: ref_26
  doi: 10.1109/ICC40277.2020.9149283
– volume: 65
  start-page: 2397
  year: 2017
  ident: ref_23
  article-title: Expectation-Maximization-based Channel Estimation for Multiuser MIMO Systems
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2017.2688447
– volume: 54
  start-page: 884
  year: 2006
  ident: ref_10
  article-title: Training-based MIMO Channel Estimation: A Study of Estimator Tradeoffs and Optimal Training Signals
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.863008
– volume: 70
  start-page: 6999
  year: 2021
  ident: ref_30
  article-title: Training Length Adaptation for Reinforcement Learning-Based Detection in Time-Varying Massive MIMO Systems With One-Bit ADCs
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3090087
– volume: 49
  start-page: 1073
  year: 2003
  ident: ref_3
  article-title: Diversity and Multiplexing: A Fundamental Tradeoff in Multiple-Antenna Channels
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2003.810646
– volume: 19
  start-page: 2960
  year: 2020
  ident: ref_18
  article-title: Machine Learning-Based Channel Prediction in Massive MIMO with Channel Aging
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.2969627
– volume: 10
  start-page: 585
  year: 1999
  ident: ref_2
  article-title: Capacity of Multi-Antenna Gaussian Channels
  publication-title: Eur. Trans. Telecommun.
  doi: 10.1002/ett.4460100604
– volume: 63
  start-page: 3032
  year: 2015
  ident: ref_21
  article-title: Iterative Channel Estimation Using Virtual Pilot Signals for MIMO-OFDM Systems
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2416684
– ident: ref_13
– volume: 52
  start-page: 1403
  year: 2004
  ident: ref_29
  article-title: Optimal Insertion of Pilot Symbols for Transmissions over Time-Varying Flat Fading Channels
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.826182
– volume: 62
  start-page: 3111
  year: 2014
  ident: ref_20
  article-title: Data-Aided Channel Estimation in Large Antenna Systems
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2321120
– volume: 1
  start-page: 41
  year: 1996
  ident: ref_1
  article-title: Layered Space-Time Architecture for Wireless Communication in a Fading Environment When Using Multi-Element Antennas
  publication-title: Bell Labs Tech. J.
  doi: 10.1002/bltj.2015
– volume: 52
  start-page: 2885
  year: 2004
  ident: ref_25
  article-title: Soft Input Channel Estimation for Turbo Equalization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.834270
SSID ssj0023338
Score 2.3776352
Snippet This paper proposes a low-complexity algorithm for a reinforcement learning-based channel estimator for multiple-input multiple-output systems. The proposed...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4379
SubjectTerms Accuracy
Algorithms
channel estimation
Markov decision process
multiple-input multiple-output
Optimization
Probability
Random variables
reinforcement learning
Sensors
Transmitters
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEICDiAc9iE9cX0Tx4KXYpk2bHHdlFwVfiMreatIkKqxdcVfFf-9M2l22IHjxVpopbSczSSaPbwg5MlZy7pQMjAFvSgqmApkYGYhYRdJEoXM-JcvDRXZ1Jfp9eTOT6gv3hFV44EpxJ6IQQmVKM650gteYYClTES4ZRmkF2w4zOQmm6lArhsir4gjFENSfjBi00Ejea_Q-HtLfGFk290XOdDS9FbJcjxBpu_qyVTJnyzWyNMMNXCePbXox_ArQl5FnOf6m7cHTEML851cKg1Cq6K31RNTCT_7RGqL6FHSgzzIUTxSUdkC74N6vGHT7hy7PL69pDTDfIPe97t3pWVCnSggKaCHG0JIip0_HqWVhgcizSCnFtcHORxsYZCTSe7dg0ignhQlTyy2EMjzUWjkWb5L5cljaLUIZt7FmLnNCS8T1CePSxEXcWkTfW90ixxMV5kXNEcd0FoMc4gnUdj7VdoscTkXfKnjGb0IdrIepAPKu_Q2wgry2gvwvK2iR3Ukt5rUTjnKGK0wJF1h8MC0G98E1EVXa4QfKCDwpmWYgkzVqv_FBzZLy5dmDuCVjEt6__R9_sEMWGZ6swAkeuUvmx-8fdo8sFJ_jl9H7vrfuH2Zz_vw
  priority: 102
  providerName: Directory of Open Access Journals
Title A Low-Complexity Algorithm for a Reinforcement Learning-Based Channel Estimator for MIMO Systems
URI https://www.proquest.com/docview/2679845806
https://www.proquest.com/docview/2681037676
https://pubmed.ncbi.nlm.nih.gov/PMC9229451
https://doaj.org/article/8c88a7ab25ab4c88a54297a102451606
Volume 22
WOSCitedRecordID wos000815867100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Lj9MwEIdHbMsBDrxXFJbKIA5coibOyz6hFnXFSttSrQCVU7Bju7tSN1naLIgLfzse1w0bCXHiElXJNIk0mZ89fnwD8FppnqZG8EApG01JSUXAE8UDFouIqyg0xpVk-Xyaz-dsueQLvz1665dV7jXRCfWO9ozrtq0Ij1Rd4oj5iOLkQZKyMHt79S3AGlI41-oLahxAH8FbYQ_6i5PZ4kubgMU2H9vRhWKb6o-21Oo28vg6bZJD93f6m93Vkjean-P7__fFH8A93w0l49138xBu6eoR3L0BJ3wMX8fktP4RoGAgNLP5Scbrlb1Vc35JbE-XCHKmHXa1dCOMxJNaV8HENoyK4LaFSq_J1GrIJWb27k-zk9kH4inpT-DT8fTju_eBr8cQlFaGGivXCAOUcaZpWCJXLRJCpFJhCyeV7ckk3EkIo1wJw5kKM51qmy-loZTC0PgQelVd6adAaKpjSU1umOTIBGTKZImJUq2Rr6_lAN7sPVKUHlaONTPWhU1a0HlF67wBvGpNr3aEjr8ZTdCtrQFCtd2JerMqfIwWrGRM5ELSVMgEf2Mtr1xEODsd2URvAEd7Dxc-0rfFH4cO4GV72cYoTryIStfXaMNwO2aWW5u88zF1Xqh7pbo4d7RvTim3z3_274c_hzsUN2bg-BA_gl6zudYv4Hb5vbnYboZwkC9zd2RD6E-m88XZ0I0-2OPs13ToA-U3rZcgzw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyTgUN5iSwGDQOISNXFe9gGhLbTqqrvLChVUTqkdO9tK26TsplT9U_xGZrJJaCTErQduUTKRnfjzNx4_vgF4Y6wMw0xJxxjsTUHKlSMDIx3hK08az82yKiXLt1E8mYijIzldg1_NWRjaVtlwYkXUpkhpjnyb03JBEAo3-nD-w6GsUbS62qTQWMHiwF5dYsi2fD_8hO37lvO93cOP-06dVcBJsTOVSDokaaf9yHI3JXUwTykVakM8rQ3640BWHUFwaVQmhXEjG1oc9Yeu1iojoQOk_PUAwe72YH06HE-_tyGejxHfSr_I96W7veToGUjxr-P1quQAnRFtdz_mNQe3d-9_-zX3YaMeSrPBCvsPYM3mD-HuNYHFR3A8YKPi0iHSI-HP8ooN5jOsenlyxnC0zhT7Yivp2LSaJWW12uzM2UHnbhgdvcjtnO0iD57R7ET10ng4_sxqpffH8PVGPvEJ9PIit0-B8dD6mmdxJrQkXUNhsijIvNBayhFgdR_eNW2epLXgOuX9mCcYeBE8khYefXjdmp6vVEb-ZrRDwGkNSBi8ulEsZknNM4lIhVCx0jxUOqBrykcWK49W2D0MVvuw1WAoqdlqmfwBUB9etY-RZ2jxSOW2uCAbQUdKoxht4g5cOxXqPslPTyrFcsm5xPI3_134S7i9fzgeJaPh5OAZ3OF00ITmu-QW9MrFhX0Ot9Kf5ely8aLudgyObxrOvwGQCGnO
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKUJw4F0RKLAgkLhYsdev3QNCCU1E1DREFaDe3LV3N62U2iVJqfrX-HXMOLapJcStB26WPZYf-803O_v4BuCtNjIMrZKO1uhNQcaVIwMtHeErT2rPtbYsyfJ9Ek-n4uhIzrbgV70XhpZV1pxYErUuMhoj73GaLghC4UY9Wy2LmO2NPp7_cKiCFM201uU0NhDZN1eXmL6tPoz3sK3fcT4afv302akqDDgZOtYaCYjk7VI_MtzNSCnMU0qFqSbOTjXG5kCWTiG41MpKod3IhAYzgNBNU2VJ9ADpfzv2MenpwPZgOJ0dNumej9nfRsvI96XbW3GMEqT-14qAZaGAVu-2vTbzWrAb3f-ff9MDuFd1sVl_4xMPYcvkj-DuNeHFx3DcZ5Pi0iEyJEHQ9RXrL-b46uuTM4a9eKbYoSklZbNy9JRVKrRzZ4BBXzPakpGbBRsiP57RqEV508H44AurFOCfwLcb-cQd6ORFbp4C46HxU25jK1JJeodC2yiwXmgM1Q4waRfe1-2fZJUQO9UDWSSYkBFUkgYqXXjTmJ5v1Ef-ZjQgEDUGJBheniiW86Tin0RkQqhYpTxUaUDHVKcsVh7NvHuYxHZht8ZTUrHYKvkDpi68bi4j_9CkkspNcUE2graaRjHaxC3otl6ofSU_PSmVzCXnEp__7N8PfwW3EcPJZDzdfw53OO0_oWEwuQud9fLCvIBb2c_16Wr5svJABsc3jebf2UdyaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Low-Complexity+Algorithm+for+a+Reinforcement+Learning-Based+Channel+Estimator+for+MIMO+Systems&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kim%2C+Tae-Kyoung&rft.au=Min%2C+Moonsik&rft.date=2022-06-09&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=12&rft_id=info:doi/10.3390%2Fs22124379&rft_id=info%3Apmid%2F35746162&rft.externalDocID=PMC9229451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon