An analysis of diversity measures

Diversity among the base classifiers is deemed to be important when constructing a classifier ensemble. Numerous algorithms have been proposed to construct a good classifier ensemble by seeking both the accuracy of the base classifiers and the diversity among them. However, there is no generally acc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine learning Ročník 65; číslo 1; s. 247 - 271
Hlavní autoři: Tang, E. K., Suganthan, P. N., Yao, X.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer 01.10.2006
Springer Nature B.V
Témata:
ISSN:0885-6125, 1573-0565
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Diversity among the base classifiers is deemed to be important when constructing a classifier ensemble. Numerous algorithms have been proposed to construct a good classifier ensemble by seeking both the accuracy of the base classifiers and the diversity among them. However, there is no generally accepted definition of diversity, and measuring the diversity explicitly is very difficult. Although researchers have designed several experimental studies to compare different diversity measures, usually confusing results were observed. In this paper, we present a theoretical analysis on six existing diversity measures (namely disagreement measure, double fault measure, KW variance, inter-rater agreement, generalized diversity and measure of difficulty), show underlying relationships between them, and relate them to the concept of margin, which is more explicitly related to the success of ensemble learning algorithms. We illustrate why confusing experimental results were observed and show that the discussed diversity measures are naturally ineffective. Our analysis provides a deeper understanding of the concept of diversity, and hence can help design better ensemble learning algorithms.[PUBLICATION ABSTRACT]
AbstractList Diversity among the base classifiers is deemed to be important when constructing a classifier ensemble. Numerous algorithms have been proposed to construct a good classifier ensemble by seeking both the accuracy of the base classifiers and the diversity among them. However, there is no generally accepted definition of diversity, and measuring the diversity explicitly is very difficult. Although researchers have designed several experimental studies to compare different diversity measures, usually confusing results were observed. In this paper, we present a theoretical analysis on six existing diversity measures (namely disagreement measure, double fault measure, KW variance, inter-rater agreement, generalized diversity and measure of difficulty), show underlying relationships between them, and relate them to the concept of margin, which is more explicitly related to the success of ensemble learning algorithms. We illustrate why confusing experimental results were observed and show that the discussed diversity measures are naturally ineffective. Our analysis provides a deeper understanding of the concept of diversity, and hence can help design better ensemble learning algorithms.[PUBLICATION ABSTRACT]
Diversity among the base classifiers is deemed to be important when constructing a classifier ensemble. Numerous algorithms have been proposed to construct a good classifier ensemble by seeking both the accuracy of the base classifiers and the diversity among them. However, there is no generally accepted definition of diversity, and measuring the diversity explicitly is very difficult. Although researchers have designed several experimental studies to compare different diversity measures, usually confusing results were observed. In this paper, we present a theoretical analysis on six existing diversity measures (namely disagreement measure, double fault measure, KW variance, inter-rater agreement, generalized diversity and measure of difficulty), show underlying relationships between them, and relate them to the concept of margin, which is more explicitly related to the success of ensemble learning algorithms. We illustrate why confusing experimental results were observed and show that the discussed diversity measures are naturally ineffective. Our analysis provides a deeper understanding of the concept of diversity, and hence can help design better ensemble learning algorithms.
Author Yao, X.
Suganthan, P. N.
Tang, E. K.
Author_xml – sequence: 1
  givenname: E. K.
  surname: Tang
  fullname: Tang, E. K.
– sequence: 2
  givenname: P. N.
  surname: Suganthan
  fullname: Suganthan, P. N.
– sequence: 3
  givenname: X.
  surname: Yao
  fullname: Yao, X.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18207886$$DView record in Pascal Francis
BookMark eNp9kEtLw0AUhQdRsK3-AHdR0F303sk8l6X4goIbXQ_DZAJT0qTOTYX-e1NaELpwdeHwnQP3m7Lzru8iYzcIjwignwjBWlECqNIKYUt-xiYodVWCVPKcTcAYWSrk8pJNiVYAwJVRE3Y77wrf-XZHiYq-Ker0EzOlYVeso6dtjnTFLhrfUrw-3hn7enn-XLyVy4_X98V8WYZKq6HE2lfBCggieB25jVZoVdU1cmgQeDRjWEuAKoZG-EZIURuPKtbKcCUlVjP2cNjd5P57G2lw60Qhtq3vYr8lxy2ghUqM4N0JuOq3efyBnJYaEJHv1-6PkKfg2yb7LiRym5zWPu8cGg7aGDVyeOBC7olybP4QcHuz7mDWjWbd3qzjY0efdEIa_JD6bsg-tf80fwH-5Hxj
CitedBy_id crossref_primary_10_1016_j_patcog_2019_107104
crossref_primary_10_1093_bib_bbac344
crossref_primary_10_1016_j_compind_2018_03_038
crossref_primary_10_1016_j_patcog_2013_04_003
crossref_primary_10_1109_TPAMI_2022_3227370
crossref_primary_10_1016_j_cie_2018_12_021
crossref_primary_10_1016_j_patcog_2011_12_016
crossref_primary_10_1109_TR_2024_3356515
crossref_primary_10_1145_3313778
crossref_primary_10_1016_j_neucom_2008_09_020
crossref_primary_10_1109_TKDE_2020_3025173
crossref_primary_10_1007_s10994_023_06305_0
crossref_primary_10_1016_j_solener_2017_07_052
crossref_primary_10_1109_ACCESS_2019_2899389
crossref_primary_10_1162_evco_a_00203
crossref_primary_10_1002_we_411
crossref_primary_10_1109_TNNLS_2013_2246578
crossref_primary_10_1007_s10618_019_00638_y
crossref_primary_10_1016_j_neucom_2008_09_022
crossref_primary_10_1016_j_knosys_2023_111103
crossref_primary_10_3389_fped_2021_759776
crossref_primary_10_1016_j_ejor_2016_02_008
crossref_primary_10_1109_TR_2022_3155183
crossref_primary_10_1109_TASE_2020_2964289
crossref_primary_10_1007_s13042_012_0094_8
crossref_primary_10_1016_j_asoc_2017_10_004
crossref_primary_10_1016_j_dajour_2023_100218
crossref_primary_10_1016_j_neunet_2023_12_025
crossref_primary_10_1142_S0218539325500093
crossref_primary_10_3389_fchem_2022_863838
crossref_primary_10_1007_s11704_018_7151_8
crossref_primary_10_1007_s10994_023_06406_w
crossref_primary_10_1007_s10479_016_2328_8
crossref_primary_10_3414_ME16_01_0055
crossref_primary_10_1155_2021_5533777
crossref_primary_10_1016_j_ces_2018_05_037
crossref_primary_10_1007_s10489_017_1027_8
crossref_primary_10_1016_j_eswa_2023_121269
crossref_primary_10_1016_j_inffus_2013_04_006
crossref_primary_10_1109_TETC_2023_3322563
crossref_primary_10_1155_2014_961747
crossref_primary_10_4018_IJAMC_292501
crossref_primary_10_3233_IDA_183934
crossref_primary_10_1016_j_inffus_2013_11_003
crossref_primary_10_1155_2012_850160
crossref_primary_10_1109_TKDE_2011_234
crossref_primary_10_1016_j_inffus_2016_11_006
crossref_primary_10_3103_S014641162570049X
crossref_primary_10_3934_bdia_2017005
crossref_primary_10_1016_j_patcog_2010_07_021
crossref_primary_10_1080_00207721_2017_1381283
crossref_primary_10_1016_j_knosys_2013_01_002
crossref_primary_10_1080_01969722_2012_688684
crossref_primary_10_1109_TNNLS_2017_2775225
crossref_primary_10_1016_j_knosys_2022_110067
crossref_primary_10_3233_JIFS_237087
crossref_primary_10_1016_j_neucom_2014_07_065
crossref_primary_10_1109_TNNLS_2018_2878400
crossref_primary_10_1007_s10994_010_5172_0
crossref_primary_10_1016_j_isprsjprs_2010_08_007
crossref_primary_10_1016_j_patcog_2015_07_010
crossref_primary_10_1016_j_patcog_2024_111155
crossref_primary_10_1007_s10796_018_9889_9
crossref_primary_10_1016_j_patcog_2016_03_017
crossref_primary_10_1109_LGRS_2022_3147857
crossref_primary_10_1016_j_ins_2014_07_032
crossref_primary_10_1002_widm_1158
crossref_primary_10_1371_journal_pcbi_1005137
crossref_primary_10_4028_www_scientific_net_AMM_130_134_2077
crossref_primary_10_3233_IDT_190354
crossref_primary_10_3390_informatics7040050
crossref_primary_10_1093_bioinformatics_btn644
crossref_primary_10_1007_s13042_015_0333_x
crossref_primary_10_1109_TEVC_2017_2782826
crossref_primary_10_1016_j_engappai_2018_05_006
crossref_primary_10_1016_j_neucom_2016_01_045
crossref_primary_10_1155_2021_8358921
crossref_primary_10_1007_s10489_013_0510_0
crossref_primary_10_1007_s00521_019_04359_7
crossref_primary_10_1016_j_jtbi_2007_10_007
crossref_primary_10_1109_TKDE_2012_219
crossref_primary_10_1016_j_enconman_2024_118471
crossref_primary_10_1007_s42979_020_0119_4
crossref_primary_10_1016_j_patcog_2008_09_036
crossref_primary_10_1016_j_patrec_2016_01_029
crossref_primary_10_1016_j_ymeth_2015_04_006
crossref_primary_10_1111_exsy_12661
crossref_primary_10_1007_s10844_017_0446_7
crossref_primary_10_1109_TKDE_2011_207
crossref_primary_10_1155_2021_4793293
crossref_primary_10_1016_j_eswa_2015_03_028
crossref_primary_10_1016_j_jngse_2015_02_012
crossref_primary_10_1016_j_datak_2023_102232
crossref_primary_10_1016_j_knosys_2014_06_005
crossref_primary_10_1016_j_future_2024_06_051
crossref_primary_10_1007_s13042_015_0366_1
crossref_primary_10_1007_s10489_009_0199_2
crossref_primary_10_1109_MCI_2007_913386
crossref_primary_10_3390_s141223509
crossref_primary_10_1007_s11063_020_10336_2
crossref_primary_10_1007_s11063_017_9703_6
crossref_primary_10_1109_ACCESS_2020_3047057
crossref_primary_10_1007_s10994_024_06604_0
crossref_primary_10_1016_j_neucom_2014_10_086
crossref_primary_10_1109_TNNLS_2017_2784814
crossref_primary_10_3233_JIFS_169685
crossref_primary_10_1109_ACCESS_2023_3280048
crossref_primary_10_1007_s00607_019_00785_6
crossref_primary_10_1007_s42979_022_01063_7
crossref_primary_10_3390_math10111790
crossref_primary_10_1109_TCYB_2021_3053165
crossref_primary_10_1109_TR_2013_2259203
crossref_primary_10_1016_j_eswa_2014_04_010
crossref_primary_10_1109_ACCESS_2021_3060768
crossref_primary_10_1007_s10489_017_1106_x
crossref_primary_10_1016_j_neucom_2023_126516
crossref_primary_10_1109_TMC_2023_3328287
crossref_primary_10_1007_s10618_017_0523_0
crossref_primary_10_1016_j_tra_2020_04_005
crossref_primary_10_1109_ACCESS_2019_2917620
crossref_primary_10_1016_j_asoc_2018_09_021
crossref_primary_10_3390_bdcc4040037
crossref_primary_10_1007_s13042_014_0303_8
crossref_primary_10_1016_j_ins_2019_03_067
crossref_primary_10_1109_TCSS_2023_3264594
crossref_primary_10_1145_3342241
crossref_primary_10_1007_s11047_007_9063_7
crossref_primary_10_1016_j_asoc_2014_10_017
crossref_primary_10_1145_3633286
crossref_primary_10_1016_j_compind_2018_04_002
crossref_primary_10_1109_TPAMI_2014_2299812
crossref_primary_10_1016_j_neucom_2014_02_030
crossref_primary_10_1016_j_infsof_2017_03_007
crossref_primary_10_1016_j_patcog_2010_04_013
crossref_primary_10_1007_s00500_015_1927_7
crossref_primary_10_15388_25_INFOR601
crossref_primary_10_1016_j_oceaneng_2017_07_009
crossref_primary_10_1109_ACCESS_2021_3063254
crossref_primary_10_1109_MCI_2015_2471235
crossref_primary_10_1007_s11063_018_9924_3
crossref_primary_10_1007_s11047_020_09791_6
crossref_primary_10_1145_3495164
crossref_primary_10_1007_s11227_020_03196_z
crossref_primary_10_1007_s10489_017_0922_3
crossref_primary_10_1080_01691864_2014_909293
crossref_primary_10_3390_app12178654
crossref_primary_10_1016_j_ymeth_2015_08_016
crossref_primary_10_1007_s13748_014_0042_9
crossref_primary_10_1109_TVCG_2025_3567053
crossref_primary_10_1016_j_neucom_2013_07_054
crossref_primary_10_1007_s13042_017_0732_2
crossref_primary_10_1007_s11063_022_10807_8
crossref_primary_10_1007_s10796_023_10395_5
crossref_primary_10_1016_j_is_2017_05_002
crossref_primary_10_1016_j_neucom_2012_04_007
crossref_primary_10_1016_j_neucom_2022_09_009
crossref_primary_10_1109_TCBB_2014_2306838
crossref_primary_10_3390_app9194018
crossref_primary_10_3233_JIFS_169993
crossref_primary_10_1016_j_asoc_2022_109136
crossref_primary_10_1007_s10726_020_09667_1
crossref_primary_10_1038_s41467_024_51433_3
crossref_primary_10_1109_TKDE_2011_58
crossref_primary_10_1016_j_neucom_2016_08_013
crossref_primary_10_1109_TCSVT_2018_2881842
crossref_primary_10_1007_s12559_024_10257_5
crossref_primary_10_1016_j_eswa_2017_08_002
crossref_primary_10_1017_S0140525X23002212
crossref_primary_10_1007_s10462_020_09922_6
crossref_primary_10_1007_s10994_023_06429_3
crossref_primary_10_1016_j_inffus_2014_05_006
crossref_primary_10_1016_j_knosys_2016_07_016
crossref_primary_10_1155_2017_3405463
crossref_primary_10_1080_03081079_2017_1314276
crossref_primary_10_1016_j_eswa_2023_119845
crossref_primary_10_1016_j_asoc_2021_107689
crossref_primary_10_1016_j_ins_2010_12_004
crossref_primary_10_1007_s10479_022_04599_2
crossref_primary_10_1016_j_asoc_2015_12_016
crossref_primary_10_1007_s00500_021_05671_y
crossref_primary_10_1109_TSMCC_2013_2247595
crossref_primary_10_1109_TIM_2025_3529050
crossref_primary_10_1109_TKDE_2009_156
crossref_primary_10_1016_j_patcog_2014_03_021
crossref_primary_10_3390_s19163468
crossref_primary_10_1016_j_bdr_2017_07_003
crossref_primary_10_1016_j_compag_2020_105675
crossref_primary_10_1109_TPAMI_2019_2943860
crossref_primary_10_1016_j_knosys_2022_108505
crossref_primary_10_4028_www_scientific_net_AMR_532_533_1548
crossref_primary_10_1016_j_neucom_2020_05_029
crossref_primary_10_1016_j_ijar_2011_12_011
crossref_primary_10_1109_TNNLS_2019_2945116
crossref_primary_10_4028_www_scientific_net_AMM_380_384_1593
crossref_primary_10_1109_TEVC_2013_2293393
crossref_primary_10_1109_TGRS_2025_3574343
crossref_primary_10_1016_j_knosys_2020_106517
crossref_primary_10_1007_s12065_020_00519_0
Cites_doi 10.1142/5089
10.1007/3-540-49097-3_1
10.1023/A:1009715923555
10.1016/S0950-5849(97)00023-2
10.1109/34.58871
10.1007/978-1-4757-2440-0
10.1023/A:1007607513941
10.1023/A:1007618119488
10.1016/S0262-8856(01)00045-2
10.1023/A:1022859003006
10.1016/S0925-2312(02)00603-3
10.1023/A:1010933404324
10.1023/A:1007515423169
10.1006/inco.1995.1136
10.1023/A:1007697429651
10.1007/3-540-45164-1_41
10.1109/4235.887237
10.1109/72.737507
10.1109/34.709601
10.1007/978-3-540-44871-6_130
10.1214/aos/1024691352
ContentType Journal Article
Copyright 2007 INIST-CNRS
Springer Science + Business Media, LLC 2006
Copyright_xml – notice: 2007 INIST-CNRS
– notice: Springer Science + Business Media, LLC 2006
DBID AAYXX
CITATION
IQODW
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-006-9449-2
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (UHCL Subscription)
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1573-0565
EndPage 271
ExternalDocumentID 2157424691
18207886
10_1007_s10994_006_9449_2
Genre Feature
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WK8
YLTOR
Z45
Z8Z
ZMTXR
AAYZH
AESKC
IQODW
RIG
XJT
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c376t-1da3c940c4ca7e29e94763dd120f102e87e2d5003ecf4af454d8a16ed68265513
IEDL.DBID K7-
ISICitedReferencesCount 308
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000240797500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Wed Oct 01 13:51:18 EDT 2025
Tue Nov 04 17:15:38 EST 2025
Mon Jul 21 09:13:23 EDT 2025
Sat Nov 29 01:43:24 EST 2025
Tue Nov 18 22:27:58 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Diversity measures, Margin distribution, Majority vote
Interrater agreement
Experimental design
Classification
Generalized diversity, Measure of difficulty, Entropy measure, Coincident failure diversity
Classifier ensemble
Disagreement measure, Double fault measure
Learning algorithm
Artificial intelligence
KW variance
Variance
Aggregate model
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-1da3c940c4ca7e29e94763dd120f102e87e2d5003ecf4af454d8a16ed68265513
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10994-006-9449-2.pdf
PQID 757011121
PQPubID 54194
PageCount 25
ParticipantIDs proquest_miscellaneous_29019034
proquest_journals_757011121
pascalfrancis_primary_18207886
crossref_primary_10_1007_s10994_006_9449_2
crossref_citationtrail_10_1007_s10994_006_9449_2
PublicationCentury 2000
PublicationDate 2006-10-01
PublicationDateYYYYMMDD 2006-10-01
PublicationDate_xml – month: 10
  year: 2006
  text: 2006-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Machine learning
PublicationYear 2006
Publisher Springer
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer Nature B.V
References 9449_CR17
Y. Liu (9449_CR19) 2000; 4
9449_CR18
9449_CR14
9449_CR15
9449_CR10
9449_CR11
D. Patridge (9449_CR22) 1997; 39
R. E. Schapire (9449_CR24) 1998; 26
P. N. Suganthan (9449_CR27) 1999; 10
A. S. Atukorale (9449_CR1) 2003; 51
G. Rätsch (9449_CR23) 2001; 42
C. J. C. Burges (9449_CR6) 1998; 2
L. Breiman (9449_CR4) 2001; 45
Y. Freund (9449_CR9) 1995; 121
9449_CR28
9449_CR29
T. Ho (9449_CR13) 1998; 20
T. Dietterich (9449_CR7) 2000; 40
9449_CR25
9449_CR26
9449_CR20
V. Vapnik (9449_CR30) 1995
L. Breiman (9449_CR3) 1996; 24
L. Kuncheva (9449_CR16) 2003a; 51
G. Brown (9449_CR5) 2004; 6
9449_CR2
9449_CR8
L. Mason (9449_CR21) 2000; 38
L. Hansen (9449_CR12) 1990; 12
References_xml – ident: 9449_CR28
  doi: 10.1142/5089
– ident: 9449_CR25
  doi: 10.1007/3-540-49097-3_1
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: 9449_CR6
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1009715923555
– ident: 9449_CR26
– volume: 39
  start-page: 707
  year: 1997
  ident: 9449_CR22
  publication-title: Information & Software Technology
  doi: 10.1016/S0950-5849(97)00023-2
– volume: 12
  start-page: 993
  issue: 10
  year: 1990
  ident: 9449_CR12
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.58871
– volume-title: The Nature of Statistical Learning Theory
  year: 1995
  ident: 9449_CR30
  doi: 10.1007/978-1-4757-2440-0
– ident: 9449_CR20
– volume: 40
  start-page: 1
  issue: 2
  year: 2000
  ident: 9449_CR7
  publication-title: Machine Learning
  doi: 10.1023/A:1007607513941
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 9449_CR3
  publication-title: Machine Learning
– volume: 42
  start-page: 287
  issue: 3
  year: 2001
  ident: 9449_CR23
  publication-title: Machine Learning
  doi: 10.1023/A:1007618119488
– ident: 9449_CR11
  doi: 10.1016/S0262-8856(01)00045-2
– volume: 51
  start-page: 181
  year: 2003a
  ident: 9449_CR16
  publication-title: Machine Learning
  doi: 10.1023/A:1022859003006
– volume: 51
  start-page: 75
  year: 2003
  ident: 9449_CR1
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00603-3
– volume: 45
  start-page: 5
  year: 2001
  ident: 9449_CR4
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– ident: 9449_CR15
– ident: 9449_CR2
  doi: 10.1023/A:1007515423169
– volume: 121
  start-page: 256
  issue: 2
  year: 1995
  ident: 9449_CR9
  publication-title: Information and Computation
  doi: 10.1006/inco.1995.1136
– volume: 38
  start-page: 243
  issue: 3
  year: 2000
  ident: 9449_CR21
  publication-title: Machine Learning
  doi: 10.1023/A:1007697429651
– ident: 9449_CR29
  doi: 10.1007/3-540-45164-1_41
– volume: 4
  start-page: 380
  year: 2000
  ident: 9449_CR19
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.887237
– volume: 6
  start-page: 5
  issue: 1
  year: 2004
  ident: 9449_CR5
  publication-title: Information Fusion Journal (Special issue on Diversity in Multiple Classifier Systems)
– ident: 9449_CR8
– volume: 10
  start-page: 193
  issue: 1
  year: 1999
  ident: 9449_CR27
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.737507
– ident: 9449_CR18
– ident: 9449_CR14
– volume: 20
  start-page: 832
  issue: 8
  year: 1998
  ident: 9449_CR13
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.709601
– ident: 9449_CR17
  doi: 10.1007/978-3-540-44871-6_130
– ident: 9449_CR10
– volume: 26
  start-page: 1651
  issue: 5
  year: 1998
  ident: 9449_CR24
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1024691352
SSID ssj0002686
Score 2.3691614
Snippet Diversity among the base classifiers is deemed to be important when constructing a classifier ensemble. Numerous algorithms have been proposed to construct a...
SourceID proquest
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 247
SubjectTerms Applied sciences
Artificial intelligence
Computer science; control theory; systems
Exact sciences and technology
Studies
Title An analysis of diversity measures
URI https://www.proquest.com/docview/757011121
https://www.proquest.com/docview/29019034
Volume 65
WOSCitedRecordID wos000240797500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (ProQuest)
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HQTxLa6rawVPQnCTpo-cZJUVQVyKL8RLiUkKgnbX7ervd9KmXRZhL17m0DZQZjKPzEzmAziVLJaCUUPQOyubulFExoKRTFPfGJS5LyqwiWgwiF9eROJ6cwrXVlnbxNJQ66GyOfLzKIgsLDqjF6MvYkGjbHHVIWgswjJljNptfhuRxhCzsAR6RD0KiHXkdVGzujlXzsTF47TgXBA245bWRrJADmUVtMUfK126nuuNf_70Jqy7mNPrVZtkCxZMvg0bNZ6D59R7B056uSfdkBJvmHm67tnwPqtMYrELT9f9x6sb4iAUiELLMSFUS18J3lVcycgwYQRHg6I1Zd0MQwsT40MdoGYblXGZ8YDrWNLQ6BCPHRb7ZQ-W8mFu9sGLjGYqkDx6yxgPfIGKH0quMp--qcAo0YJuzcFUufniFubiI51ORrZMT20nnWV6ylpw1iwZVcM15n3cmRHLdAUGMXiQD1vQroWQOkUs0kYCLThu3qIG2bKIzM3wu0htJVl0fX4wd30bVsvsS9nHdwhLk_G3OYIV9TN5L8YdWL7sD5L7TrkBkd6xBGkSvCK9f3j-BZBg4W0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB58gYJYn1irbQS9CIvNZvPYg0jxgdJaeqhQvMR1dwOCptVUxR_lf3Q2j5Yi9NaD1yQbQr557czsfABHggaCU1sT9M7SpG4kEQGnJFK2ozVi7vCMbMJvt4Nej3fm4Kc4C2PaKgubmBpq1ZcmR37qu76hRaf2-eCNGNIoU1wtGDQyqWjq7y_csSVnt5cI7zGl11fdixuSkwoQibo0JLYSjuSsLpkUvqZcc4YqppRN6xE6Wx3gReWirGsZMRExl6lA2J5WHgbihg0F3zsPi4zhXgnVp-M-jAw_9VJiSdRbl5jAoSiiZif10hm8uH3njHFCJ9zg6kAkiEiUUWn88Qqpq7su_bOftA5reUxtNTIl2IA5HW9CqeCrsHLztQWHjdgS-RAWqx9ZquhJsV6zTGmyDfcz-dAdWIj7sd4Fy9eKSlcw_ymizHU4GjZPMBk59pN0teRlqBeIhTKfn25oPF7C8eRnA3JoOgUNyCEtw8loySAbHjLt4eqEGIxXYJDmB4FXhkoBepgbmiQcIV6G2uguWghT9hGx7n8koamU87rD9qaur8HyTfeuFbZu280KrKSZprRncR8Whu8f-gCW5OfwOXmvpkJvweOsBegX8ks5Mg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8NAFH64IYK4i3GNoBdhaDKZLHMQEbVYKqUHBfESx1lA0KSaqvjT_He-yVIRwZsHr0leCHn7Mu8D2BM0EZz6mqB3lrZ0I4lIOCVG-YHWyPOAV2ATca-XXF_z_hh8NGdh7FhlYxNLQ61yaWvkrTiMLSw69Vumnoron7aPBk_EAkjZRmuDplFJSFe_v2H2Vhx2TpHV-5S2zy5PzkkNMEAk6tWQ-EoEkjNPMiliTbnmDNVNKZ96Bh2vTvCiClHutTRMGBYylQg_0irCoNwio-B7x2EyxhTT5n398GbkBGhUgkyiDofEBhFNQ7U6tVfu48VUnjPGCf3mEmcHokDumApW44eHKN1ee_4f_7AFmKtjbfe4Uo5FGNPZEsw3OBZubdaWYfc4c0W9nMXNjauaWRX3saqgFitw9ScfugoTWZ7pNXBjragMBYvvDGVhwNHgRYJJE_h3MtSSO-A13EtlvVfdwns8pF8boS3DUztBaBmeUgcORiSDaqnIbw9vfxOJLwoM3uIkiRzYaAQgrQ1QkY6478DO6C5aDtsOEpnOX4rUdtC5F7D1X-l3YBrlJr3o9LobMFMWoMpRxk2YGD6_6C2Ykq_D--J5u5R_F27_Wn4-AQupQgY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+analysis+of+diversity+measures&rft.jtitle=Machine+learning&rft.au=Tang%2C+E.+K.&rft.au=Suganthan%2C+P.+N.&rft.au=Yao%2C+X.&rft.date=2006-10-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=65&rft.issue=1&rft.spage=247&rft.epage=271&rft_id=info:doi/10.1007%2Fs10994-006-9449-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_006_9449_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon