An analysis of diversity measures
Diversity among the base classifiers is deemed to be important when constructing a classifier ensemble. Numerous algorithms have been proposed to construct a good classifier ensemble by seeking both the accuracy of the base classifiers and the diversity among them. However, there is no generally acc...
Uloženo v:
| Vydáno v: | Machine learning Ročník 65; číslo 1; s. 247 - 271 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer
01.10.2006
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-6125, 1573-0565 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Diversity among the base classifiers is deemed to be important when constructing a classifier ensemble. Numerous algorithms have been proposed to construct a good classifier ensemble by seeking both the accuracy of the base classifiers and the diversity among them. However, there is no generally accepted definition of diversity, and measuring the diversity explicitly is very difficult. Although researchers have designed several experimental studies to compare different diversity measures, usually confusing results were observed. In this paper, we present a theoretical analysis on six existing diversity measures (namely disagreement measure, double fault measure, KW variance, inter-rater agreement, generalized diversity and measure of difficulty), show underlying relationships between them, and relate them to the concept of margin, which is more explicitly related to the success of ensemble learning algorithms. We illustrate why confusing experimental results were observed and show that the discussed diversity measures are naturally ineffective. Our analysis provides a deeper understanding of the concept of diversity, and hence can help design better ensemble learning algorithms.[PUBLICATION ABSTRACT] |
|---|---|
| AbstractList | Diversity among the base classifiers is deemed to be important when constructing a classifier ensemble. Numerous algorithms have been proposed to construct a good classifier ensemble by seeking both the accuracy of the base classifiers and the diversity among them. However, there is no generally accepted definition of diversity, and measuring the diversity explicitly is very difficult. Although researchers have designed several experimental studies to compare different diversity measures, usually confusing results were observed. In this paper, we present a theoretical analysis on six existing diversity measures (namely disagreement measure, double fault measure, KW variance, inter-rater agreement, generalized diversity and measure of difficulty), show underlying relationships between them, and relate them to the concept of margin, which is more explicitly related to the success of ensemble learning algorithms. We illustrate why confusing experimental results were observed and show that the discussed diversity measures are naturally ineffective. Our analysis provides a deeper understanding of the concept of diversity, and hence can help design better ensemble learning algorithms.[PUBLICATION ABSTRACT] Diversity among the base classifiers is deemed to be important when constructing a classifier ensemble. Numerous algorithms have been proposed to construct a good classifier ensemble by seeking both the accuracy of the base classifiers and the diversity among them. However, there is no generally accepted definition of diversity, and measuring the diversity explicitly is very difficult. Although researchers have designed several experimental studies to compare different diversity measures, usually confusing results were observed. In this paper, we present a theoretical analysis on six existing diversity measures (namely disagreement measure, double fault measure, KW variance, inter-rater agreement, generalized diversity and measure of difficulty), show underlying relationships between them, and relate them to the concept of margin, which is more explicitly related to the success of ensemble learning algorithms. We illustrate why confusing experimental results were observed and show that the discussed diversity measures are naturally ineffective. Our analysis provides a deeper understanding of the concept of diversity, and hence can help design better ensemble learning algorithms. |
| Author | Yao, X. Suganthan, P. N. Tang, E. K. |
| Author_xml | – sequence: 1 givenname: E. K. surname: Tang fullname: Tang, E. K. – sequence: 2 givenname: P. N. surname: Suganthan fullname: Suganthan, P. N. – sequence: 3 givenname: X. surname: Yao fullname: Yao, X. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18207886$$DView record in Pascal Francis |
| BookMark | eNp9kEtLw0AUhQdRsK3-AHdR0F303sk8l6X4goIbXQ_DZAJT0qTOTYX-e1NaELpwdeHwnQP3m7Lzru8iYzcIjwignwjBWlECqNIKYUt-xiYodVWCVPKcTcAYWSrk8pJNiVYAwJVRE3Y77wrf-XZHiYq-Ker0EzOlYVeso6dtjnTFLhrfUrw-3hn7enn-XLyVy4_X98V8WYZKq6HE2lfBCggieB25jVZoVdU1cmgQeDRjWEuAKoZG-EZIURuPKtbKcCUlVjP2cNjd5P57G2lw60Qhtq3vYr8lxy2ghUqM4N0JuOq3efyBnJYaEJHv1-6PkKfg2yb7LiRym5zWPu8cGg7aGDVyeOBC7olybP4QcHuz7mDWjWbd3qzjY0efdEIa_JD6bsg-tf80fwH-5Hxj |
| CitedBy_id | crossref_primary_10_1016_j_patcog_2019_107104 crossref_primary_10_1093_bib_bbac344 crossref_primary_10_1016_j_compind_2018_03_038 crossref_primary_10_1016_j_patcog_2013_04_003 crossref_primary_10_1109_TPAMI_2022_3227370 crossref_primary_10_1016_j_cie_2018_12_021 crossref_primary_10_1016_j_patcog_2011_12_016 crossref_primary_10_1109_TR_2024_3356515 crossref_primary_10_1145_3313778 crossref_primary_10_1016_j_neucom_2008_09_020 crossref_primary_10_1109_TKDE_2020_3025173 crossref_primary_10_1007_s10994_023_06305_0 crossref_primary_10_1016_j_solener_2017_07_052 crossref_primary_10_1109_ACCESS_2019_2899389 crossref_primary_10_1162_evco_a_00203 crossref_primary_10_1002_we_411 crossref_primary_10_1109_TNNLS_2013_2246578 crossref_primary_10_1007_s10618_019_00638_y crossref_primary_10_1016_j_neucom_2008_09_022 crossref_primary_10_1016_j_knosys_2023_111103 crossref_primary_10_3389_fped_2021_759776 crossref_primary_10_1016_j_ejor_2016_02_008 crossref_primary_10_1109_TR_2022_3155183 crossref_primary_10_1109_TASE_2020_2964289 crossref_primary_10_1007_s13042_012_0094_8 crossref_primary_10_1016_j_asoc_2017_10_004 crossref_primary_10_1016_j_dajour_2023_100218 crossref_primary_10_1016_j_neunet_2023_12_025 crossref_primary_10_1142_S0218539325500093 crossref_primary_10_3389_fchem_2022_863838 crossref_primary_10_1007_s11704_018_7151_8 crossref_primary_10_1007_s10994_023_06406_w crossref_primary_10_1007_s10479_016_2328_8 crossref_primary_10_3414_ME16_01_0055 crossref_primary_10_1155_2021_5533777 crossref_primary_10_1016_j_ces_2018_05_037 crossref_primary_10_1007_s10489_017_1027_8 crossref_primary_10_1016_j_eswa_2023_121269 crossref_primary_10_1016_j_inffus_2013_04_006 crossref_primary_10_1109_TETC_2023_3322563 crossref_primary_10_1155_2014_961747 crossref_primary_10_4018_IJAMC_292501 crossref_primary_10_3233_IDA_183934 crossref_primary_10_1016_j_inffus_2013_11_003 crossref_primary_10_1155_2012_850160 crossref_primary_10_1109_TKDE_2011_234 crossref_primary_10_1016_j_inffus_2016_11_006 crossref_primary_10_3103_S014641162570049X crossref_primary_10_3934_bdia_2017005 crossref_primary_10_1016_j_patcog_2010_07_021 crossref_primary_10_1080_00207721_2017_1381283 crossref_primary_10_1016_j_knosys_2013_01_002 crossref_primary_10_1080_01969722_2012_688684 crossref_primary_10_1109_TNNLS_2017_2775225 crossref_primary_10_1016_j_knosys_2022_110067 crossref_primary_10_3233_JIFS_237087 crossref_primary_10_1016_j_neucom_2014_07_065 crossref_primary_10_1109_TNNLS_2018_2878400 crossref_primary_10_1007_s10994_010_5172_0 crossref_primary_10_1016_j_isprsjprs_2010_08_007 crossref_primary_10_1016_j_patcog_2015_07_010 crossref_primary_10_1016_j_patcog_2024_111155 crossref_primary_10_1007_s10796_018_9889_9 crossref_primary_10_1016_j_patcog_2016_03_017 crossref_primary_10_1109_LGRS_2022_3147857 crossref_primary_10_1016_j_ins_2014_07_032 crossref_primary_10_1002_widm_1158 crossref_primary_10_1371_journal_pcbi_1005137 crossref_primary_10_4028_www_scientific_net_AMM_130_134_2077 crossref_primary_10_3233_IDT_190354 crossref_primary_10_3390_informatics7040050 crossref_primary_10_1093_bioinformatics_btn644 crossref_primary_10_1007_s13042_015_0333_x crossref_primary_10_1109_TEVC_2017_2782826 crossref_primary_10_1016_j_engappai_2018_05_006 crossref_primary_10_1016_j_neucom_2016_01_045 crossref_primary_10_1155_2021_8358921 crossref_primary_10_1007_s10489_013_0510_0 crossref_primary_10_1007_s00521_019_04359_7 crossref_primary_10_1016_j_jtbi_2007_10_007 crossref_primary_10_1109_TKDE_2012_219 crossref_primary_10_1016_j_enconman_2024_118471 crossref_primary_10_1007_s42979_020_0119_4 crossref_primary_10_1016_j_patcog_2008_09_036 crossref_primary_10_1016_j_patrec_2016_01_029 crossref_primary_10_1016_j_ymeth_2015_04_006 crossref_primary_10_1111_exsy_12661 crossref_primary_10_1007_s10844_017_0446_7 crossref_primary_10_1109_TKDE_2011_207 crossref_primary_10_1155_2021_4793293 crossref_primary_10_1016_j_eswa_2015_03_028 crossref_primary_10_1016_j_jngse_2015_02_012 crossref_primary_10_1016_j_datak_2023_102232 crossref_primary_10_1016_j_knosys_2014_06_005 crossref_primary_10_1016_j_future_2024_06_051 crossref_primary_10_1007_s13042_015_0366_1 crossref_primary_10_1007_s10489_009_0199_2 crossref_primary_10_1109_MCI_2007_913386 crossref_primary_10_3390_s141223509 crossref_primary_10_1007_s11063_020_10336_2 crossref_primary_10_1007_s11063_017_9703_6 crossref_primary_10_1109_ACCESS_2020_3047057 crossref_primary_10_1007_s10994_024_06604_0 crossref_primary_10_1016_j_neucom_2014_10_086 crossref_primary_10_1109_TNNLS_2017_2784814 crossref_primary_10_3233_JIFS_169685 crossref_primary_10_1109_ACCESS_2023_3280048 crossref_primary_10_1007_s00607_019_00785_6 crossref_primary_10_1007_s42979_022_01063_7 crossref_primary_10_3390_math10111790 crossref_primary_10_1109_TCYB_2021_3053165 crossref_primary_10_1109_TR_2013_2259203 crossref_primary_10_1016_j_eswa_2014_04_010 crossref_primary_10_1109_ACCESS_2021_3060768 crossref_primary_10_1007_s10489_017_1106_x crossref_primary_10_1016_j_neucom_2023_126516 crossref_primary_10_1109_TMC_2023_3328287 crossref_primary_10_1007_s10618_017_0523_0 crossref_primary_10_1016_j_tra_2020_04_005 crossref_primary_10_1109_ACCESS_2019_2917620 crossref_primary_10_1016_j_asoc_2018_09_021 crossref_primary_10_3390_bdcc4040037 crossref_primary_10_1007_s13042_014_0303_8 crossref_primary_10_1016_j_ins_2019_03_067 crossref_primary_10_1109_TCSS_2023_3264594 crossref_primary_10_1145_3342241 crossref_primary_10_1007_s11047_007_9063_7 crossref_primary_10_1016_j_asoc_2014_10_017 crossref_primary_10_1145_3633286 crossref_primary_10_1016_j_compind_2018_04_002 crossref_primary_10_1109_TPAMI_2014_2299812 crossref_primary_10_1016_j_neucom_2014_02_030 crossref_primary_10_1016_j_infsof_2017_03_007 crossref_primary_10_1016_j_patcog_2010_04_013 crossref_primary_10_1007_s00500_015_1927_7 crossref_primary_10_15388_25_INFOR601 crossref_primary_10_1016_j_oceaneng_2017_07_009 crossref_primary_10_1109_ACCESS_2021_3063254 crossref_primary_10_1109_MCI_2015_2471235 crossref_primary_10_1007_s11063_018_9924_3 crossref_primary_10_1007_s11047_020_09791_6 crossref_primary_10_1145_3495164 crossref_primary_10_1007_s11227_020_03196_z crossref_primary_10_1007_s10489_017_0922_3 crossref_primary_10_1080_01691864_2014_909293 crossref_primary_10_3390_app12178654 crossref_primary_10_1016_j_ymeth_2015_08_016 crossref_primary_10_1007_s13748_014_0042_9 crossref_primary_10_1109_TVCG_2025_3567053 crossref_primary_10_1016_j_neucom_2013_07_054 crossref_primary_10_1007_s13042_017_0732_2 crossref_primary_10_1007_s11063_022_10807_8 crossref_primary_10_1007_s10796_023_10395_5 crossref_primary_10_1016_j_is_2017_05_002 crossref_primary_10_1016_j_neucom_2012_04_007 crossref_primary_10_1016_j_neucom_2022_09_009 crossref_primary_10_1109_TCBB_2014_2306838 crossref_primary_10_3390_app9194018 crossref_primary_10_3233_JIFS_169993 crossref_primary_10_1016_j_asoc_2022_109136 crossref_primary_10_1007_s10726_020_09667_1 crossref_primary_10_1038_s41467_024_51433_3 crossref_primary_10_1109_TKDE_2011_58 crossref_primary_10_1016_j_neucom_2016_08_013 crossref_primary_10_1109_TCSVT_2018_2881842 crossref_primary_10_1007_s12559_024_10257_5 crossref_primary_10_1016_j_eswa_2017_08_002 crossref_primary_10_1017_S0140525X23002212 crossref_primary_10_1007_s10462_020_09922_6 crossref_primary_10_1007_s10994_023_06429_3 crossref_primary_10_1016_j_inffus_2014_05_006 crossref_primary_10_1016_j_knosys_2016_07_016 crossref_primary_10_1155_2017_3405463 crossref_primary_10_1080_03081079_2017_1314276 crossref_primary_10_1016_j_eswa_2023_119845 crossref_primary_10_1016_j_asoc_2021_107689 crossref_primary_10_1016_j_ins_2010_12_004 crossref_primary_10_1007_s10479_022_04599_2 crossref_primary_10_1016_j_asoc_2015_12_016 crossref_primary_10_1007_s00500_021_05671_y crossref_primary_10_1109_TSMCC_2013_2247595 crossref_primary_10_1109_TIM_2025_3529050 crossref_primary_10_1109_TKDE_2009_156 crossref_primary_10_1016_j_patcog_2014_03_021 crossref_primary_10_3390_s19163468 crossref_primary_10_1016_j_bdr_2017_07_003 crossref_primary_10_1016_j_compag_2020_105675 crossref_primary_10_1109_TPAMI_2019_2943860 crossref_primary_10_1016_j_knosys_2022_108505 crossref_primary_10_4028_www_scientific_net_AMR_532_533_1548 crossref_primary_10_1016_j_neucom_2020_05_029 crossref_primary_10_1016_j_ijar_2011_12_011 crossref_primary_10_1109_TNNLS_2019_2945116 crossref_primary_10_4028_www_scientific_net_AMM_380_384_1593 crossref_primary_10_1109_TEVC_2013_2293393 crossref_primary_10_1109_TGRS_2025_3574343 crossref_primary_10_1016_j_knosys_2020_106517 crossref_primary_10_1007_s12065_020_00519_0 |
| Cites_doi | 10.1142/5089 10.1007/3-540-49097-3_1 10.1023/A:1009715923555 10.1016/S0950-5849(97)00023-2 10.1109/34.58871 10.1007/978-1-4757-2440-0 10.1023/A:1007607513941 10.1023/A:1007618119488 10.1016/S0262-8856(01)00045-2 10.1023/A:1022859003006 10.1016/S0925-2312(02)00603-3 10.1023/A:1010933404324 10.1023/A:1007515423169 10.1006/inco.1995.1136 10.1023/A:1007697429651 10.1007/3-540-45164-1_41 10.1109/4235.887237 10.1109/72.737507 10.1109/34.709601 10.1007/978-3-540-44871-6_130 10.1214/aos/1024691352 |
| ContentType | Journal Article |
| Copyright | 2007 INIST-CNRS Springer Science + Business Media, LLC 2006 |
| Copyright_xml | – notice: 2007 INIST-CNRS – notice: Springer Science + Business Media, LLC 2006 |
| DBID | AAYXX CITATION IQODW 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s10994-006-9449-2 |
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (UHCL Subscription) ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1573-0565 |
| EndPage | 271 |
| ExternalDocumentID | 2157424691 18207886 10_1007_s10994_006_9449_2 |
| Genre | Feature |
| GroupedDBID | -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PHGZM PHGZT PQGLB PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WK8 YLTOR Z45 Z8Z ZMTXR AAYZH AESKC IQODW RIG XJT 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U PUEGO |
| ID | FETCH-LOGICAL-c376t-1da3c940c4ca7e29e94763dd120f102e87e2d5003ecf4af454d8a16ed68265513 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 308 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000240797500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6125 |
| IngestDate | Wed Oct 01 13:51:18 EDT 2025 Tue Nov 04 17:15:38 EST 2025 Mon Jul 21 09:13:23 EDT 2025 Sat Nov 29 01:43:24 EST 2025 Tue Nov 18 22:27:58 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Diversity measures, Margin distribution, Majority vote Interrater agreement Experimental design Classification Generalized diversity, Measure of difficulty, Entropy measure, Coincident failure diversity Classifier ensemble Disagreement measure, Double fault measure Learning algorithm Artificial intelligence KW variance Variance Aggregate model |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c376t-1da3c940c4ca7e29e94763dd120f102e87e2d5003ecf4af454d8a16ed68265513 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10994-006-9449-2.pdf |
| PQID | 757011121 |
| PQPubID | 54194 |
| PageCount | 25 |
| ParticipantIDs | proquest_miscellaneous_29019034 proquest_journals_757011121 pascalfrancis_primary_18207886 crossref_primary_10_1007_s10994_006_9449_2 crossref_citationtrail_10_1007_s10994_006_9449_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2006-10-01 |
| PublicationDateYYYYMMDD | 2006-10-01 |
| PublicationDate_xml | – month: 10 year: 2006 text: 2006-10-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationYear | 2006 |
| Publisher | Springer Springer Nature B.V |
| Publisher_xml | – name: Springer – name: Springer Nature B.V |
| References | 9449_CR17 Y. Liu (9449_CR19) 2000; 4 9449_CR18 9449_CR14 9449_CR15 9449_CR10 9449_CR11 D. Patridge (9449_CR22) 1997; 39 R. E. Schapire (9449_CR24) 1998; 26 P. N. Suganthan (9449_CR27) 1999; 10 A. S. Atukorale (9449_CR1) 2003; 51 G. Rätsch (9449_CR23) 2001; 42 C. J. C. Burges (9449_CR6) 1998; 2 L. Breiman (9449_CR4) 2001; 45 Y. Freund (9449_CR9) 1995; 121 9449_CR28 9449_CR29 T. Ho (9449_CR13) 1998; 20 T. Dietterich (9449_CR7) 2000; 40 9449_CR25 9449_CR26 9449_CR20 V. Vapnik (9449_CR30) 1995 L. Breiman (9449_CR3) 1996; 24 L. Kuncheva (9449_CR16) 2003a; 51 G. Brown (9449_CR5) 2004; 6 9449_CR2 9449_CR8 L. Mason (9449_CR21) 2000; 38 L. Hansen (9449_CR12) 1990; 12 |
| References_xml | – ident: 9449_CR28 doi: 10.1142/5089 – ident: 9449_CR25 doi: 10.1007/3-540-49097-3_1 – volume: 2 start-page: 121 issue: 2 year: 1998 ident: 9449_CR6 publication-title: Data Mining and Knowledge Discovery doi: 10.1023/A:1009715923555 – ident: 9449_CR26 – volume: 39 start-page: 707 year: 1997 ident: 9449_CR22 publication-title: Information & Software Technology doi: 10.1016/S0950-5849(97)00023-2 – volume: 12 start-page: 993 issue: 10 year: 1990 ident: 9449_CR12 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.58871 – volume-title: The Nature of Statistical Learning Theory year: 1995 ident: 9449_CR30 doi: 10.1007/978-1-4757-2440-0 – ident: 9449_CR20 – volume: 40 start-page: 1 issue: 2 year: 2000 ident: 9449_CR7 publication-title: Machine Learning doi: 10.1023/A:1007607513941 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 9449_CR3 publication-title: Machine Learning – volume: 42 start-page: 287 issue: 3 year: 2001 ident: 9449_CR23 publication-title: Machine Learning doi: 10.1023/A:1007618119488 – ident: 9449_CR11 doi: 10.1016/S0262-8856(01)00045-2 – volume: 51 start-page: 181 year: 2003a ident: 9449_CR16 publication-title: Machine Learning doi: 10.1023/A:1022859003006 – volume: 51 start-page: 75 year: 2003 ident: 9449_CR1 publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00603-3 – volume: 45 start-page: 5 year: 2001 ident: 9449_CR4 publication-title: Machine Learning doi: 10.1023/A:1010933404324 – ident: 9449_CR15 – ident: 9449_CR2 doi: 10.1023/A:1007515423169 – volume: 121 start-page: 256 issue: 2 year: 1995 ident: 9449_CR9 publication-title: Information and Computation doi: 10.1006/inco.1995.1136 – volume: 38 start-page: 243 issue: 3 year: 2000 ident: 9449_CR21 publication-title: Machine Learning doi: 10.1023/A:1007697429651 – ident: 9449_CR29 doi: 10.1007/3-540-45164-1_41 – volume: 4 start-page: 380 year: 2000 ident: 9449_CR19 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.887237 – volume: 6 start-page: 5 issue: 1 year: 2004 ident: 9449_CR5 publication-title: Information Fusion Journal (Special issue on Diversity in Multiple Classifier Systems) – ident: 9449_CR8 – volume: 10 start-page: 193 issue: 1 year: 1999 ident: 9449_CR27 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.737507 – ident: 9449_CR18 – ident: 9449_CR14 – volume: 20 start-page: 832 issue: 8 year: 1998 ident: 9449_CR13 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.709601 – ident: 9449_CR17 doi: 10.1007/978-3-540-44871-6_130 – ident: 9449_CR10 – volume: 26 start-page: 1651 issue: 5 year: 1998 ident: 9449_CR24 publication-title: Annals of Statistics doi: 10.1214/aos/1024691352 |
| SSID | ssj0002686 |
| Score | 2.3691614 |
| Snippet | Diversity among the base classifiers is deemed to be important when constructing a classifier ensemble. Numerous algorithms have been proposed to construct a... |
| SourceID | proquest pascalfrancis crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 247 |
| SubjectTerms | Applied sciences Artificial intelligence Computer science; control theory; systems Exact sciences and technology Studies |
| Title | An analysis of diversity measures |
| URI | https://www.proquest.com/docview/757011121 https://www.proquest.com/docview/29019034 |
| Volume | 65 |
| WOSCitedRecordID | wos000240797500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (ProQuest) customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HQTxLa6rawVPQnCTpo-cZJUVQVyKL8RLiUkKgnbX7ervd9KmXRZhL17m0DZQZjKPzEzmAziVLJaCUUPQOyubulFExoKRTFPfGJS5LyqwiWgwiF9eROJ6cwrXVlnbxNJQ66GyOfLzKIgsLDqjF6MvYkGjbHHVIWgswjJljNptfhuRxhCzsAR6RD0KiHXkdVGzujlXzsTF47TgXBA245bWRrJADmUVtMUfK126nuuNf_70Jqy7mNPrVZtkCxZMvg0bNZ6D59R7B056uSfdkBJvmHm67tnwPqtMYrELT9f9x6sb4iAUiELLMSFUS18J3lVcycgwYQRHg6I1Zd0MQwsT40MdoGYblXGZ8YDrWNLQ6BCPHRb7ZQ-W8mFu9sGLjGYqkDx6yxgPfIGKH0quMp--qcAo0YJuzcFUufniFubiI51ORrZMT20nnWV6ylpw1iwZVcM15n3cmRHLdAUGMXiQD1vQroWQOkUs0kYCLThu3qIG2bKIzM3wu0htJVl0fX4wd30bVsvsS9nHdwhLk_G3OYIV9TN5L8YdWL7sD5L7TrkBkd6xBGkSvCK9f3j-BZBg4W0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB58gYJYn1irbQS9CIvNZvPYg0jxgdJaeqhQvMR1dwOCptVUxR_lf3Q2j5Yi9NaD1yQbQr557czsfABHggaCU1sT9M7SpG4kEQGnJFK2ozVi7vCMbMJvt4Nej3fm4Kc4C2PaKgubmBpq1ZcmR37qu76hRaf2-eCNGNIoU1wtGDQyqWjq7y_csSVnt5cI7zGl11fdixuSkwoQibo0JLYSjuSsLpkUvqZcc4YqppRN6xE6Wx3gReWirGsZMRExl6lA2J5WHgbihg0F3zsPi4zhXgnVp-M-jAw_9VJiSdRbl5jAoSiiZif10hm8uH3njHFCJ9zg6kAkiEiUUWn88Qqpq7su_bOftA5reUxtNTIl2IA5HW9CqeCrsHLztQWHjdgS-RAWqx9ZquhJsV6zTGmyDfcz-dAdWIj7sd4Fy9eKSlcw_ymizHU4GjZPMBk59pN0teRlqBeIhTKfn25oPF7C8eRnA3JoOgUNyCEtw8loySAbHjLt4eqEGIxXYJDmB4FXhkoBepgbmiQcIV6G2uguWghT9hGx7n8koamU87rD9qaur8HyTfeuFbZu280KrKSZprRncR8Whu8f-gCW5OfwOXmvpkJvweOsBegX8ks5Mg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8NAFH64IYK4i3GNoBdhaDKZLHMQEbVYKqUHBfESx1lA0KSaqvjT_He-yVIRwZsHr0leCHn7Mu8D2BM0EZz6mqB3lrZ0I4lIOCVG-YHWyPOAV2ATca-XXF_z_hh8NGdh7FhlYxNLQ61yaWvkrTiMLSw69Vumnoron7aPBk_EAkjZRmuDplFJSFe_v2H2Vhx2TpHV-5S2zy5PzkkNMEAk6tWQ-EoEkjNPMiliTbnmDNVNKZ96Bh2vTvCiClHutTRMGBYylQg_0irCoNwio-B7x2EyxhTT5n398GbkBGhUgkyiDofEBhFNQ7U6tVfu48VUnjPGCf3mEmcHokDumApW44eHKN1ee_4f_7AFmKtjbfe4Uo5FGNPZEsw3OBZubdaWYfc4c0W9nMXNjauaWRX3saqgFitw9ScfugoTWZ7pNXBjragMBYvvDGVhwNHgRYJJE_h3MtSSO-A13EtlvVfdwns8pF8boS3DUztBaBmeUgcORiSDaqnIbw9vfxOJLwoM3uIkiRzYaAQgrQ1QkY6478DO6C5aDtsOEpnOX4rUdtC5F7D1X-l3YBrlJr3o9LobMFMWoMpRxk2YGD6_6C2Ykq_D--J5u5R_F27_Wn4-AQupQgY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+analysis+of+diversity+measures&rft.jtitle=Machine+learning&rft.au=Tang%2C+E.+K.&rft.au=Suganthan%2C+P.+N.&rft.au=Yao%2C+X.&rft.date=2006-10-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=65&rft.issue=1&rft.spage=247&rft.epage=271&rft_id=info:doi/10.1007%2Fs10994-006-9449-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_006_9449_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |