The heterogeneous fleet vehicle routing problem with light loads and overtime: Formulation and population variable neighbourhood search with adaptive memory

•VNS-triggered memory extraction improves method performance up to 5.2%.•Incorporating real life aspects could improve daily total routing cost up to 8%.•Vehicle capacity and working time utilization could be improved by up to 12.5%.•Real life aspects could improve fleet composition at no extra cost...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 114; s. 183 - 195
Hlavní autori: Simeonova, Lina, Wassan, Niaz, Salhi, Said, Nagy, Gábor
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 30.12.2018
Elsevier BV
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •VNS-triggered memory extraction improves method performance up to 5.2%.•Incorporating real life aspects could improve daily total routing cost up to 8%.•Vehicle capacity and working time utilization could be improved by up to 12.5%.•Real life aspects could improve fleet composition at no extra cost.•Interesting managerial insights regarding real life routing trade-offs. In this paper we consider a real life Vehicle Routing Problem inspired by the gas delivery industry in the United Kingdom. The problem is characterized by heterogeneous vehicle fleet, demand-dependent service times, maximum allowable overtime and a special light load requirement. A mathematical formulation of the problem is developed and optimal solutions for small sized instances are found. A new learning-based Population Variable Neighbourhood Search algorithm is designed to address this real life logistic problem. To the best of our knowledge Adaptive Memory has not been hybridized with a classical iterative memoryless method. In this paper we devise and analyse empirically a new and effective hybridization search that considers both memory extraction and exploitation. In terms of practical implications, we show that on a daily basis up to 8% cost savings on average can be achieved when overtime and light load requirements are considered in the decision making process. Moreover, accommodating for allowable overtime has shown to yield 12% better average utilization of the driver's working hours and 12.5% better average utilization of the vehicle load, without a significant increase in running costs. We also further discuss some managerial insights and trade-offs.
AbstractList •VNS-triggered memory extraction improves method performance up to 5.2%.•Incorporating real life aspects could improve daily total routing cost up to 8%.•Vehicle capacity and working time utilization could be improved by up to 12.5%.•Real life aspects could improve fleet composition at no extra cost.•Interesting managerial insights regarding real life routing trade-offs. In this paper we consider a real life Vehicle Routing Problem inspired by the gas delivery industry in the United Kingdom. The problem is characterized by heterogeneous vehicle fleet, demand-dependent service times, maximum allowable overtime and a special light load requirement. A mathematical formulation of the problem is developed and optimal solutions for small sized instances are found. A new learning-based Population Variable Neighbourhood Search algorithm is designed to address this real life logistic problem. To the best of our knowledge Adaptive Memory has not been hybridized with a classical iterative memoryless method. In this paper we devise and analyse empirically a new and effective hybridization search that considers both memory extraction and exploitation. In terms of practical implications, we show that on a daily basis up to 8% cost savings on average can be achieved when overtime and light load requirements are considered in the decision making process. Moreover, accommodating for allowable overtime has shown to yield 12% better average utilization of the driver's working hours and 12.5% better average utilization of the vehicle load, without a significant increase in running costs. We also further discuss some managerial insights and trade-offs.
In this paper we consider a real life Vehicle Routing Problem inspired by the gas delivery industry in the United Kingdom. The problem is characterized by heterogeneous vehicle fleet, demand-dependent service times, maximum allowable overtime and a special light load requirement. A mathematical formulation of the problem is developed and optimal solutions for small sized instances are found. A new learning-based Population Variable Neighbourhood Search algorithm is designed to address this real life logistic problem. To the best of our knowledge Adaptive Memory has not been hybridized with a classical iterative memoryless method. In this paper we devise and analyse empirically a new and effective hybridization search that considers both memory extraction and exploitation. In terms of practical implications, we show that on a daily basis up to 8% cost savings on average can be achieved when overtime and light load requirements are considered in the decision making process. Moreover, accommodating for allowable overtime has shown to yield 12% better average utilization of the driver's working hours and 12.5% better average utilization of the vehicle load, without a significant increase in running costs. We also further discuss some managerial insights and trade-offs.
Author Wassan, Niaz
Simeonova, Lina
Nagy, Gábor
Salhi, Said
Author_xml – sequence: 1
  givenname: Lina
  surname: Simeonova
  fullname: Simeonova, Lina
  email: ls444@kentforlife.net
– sequence: 2
  givenname: Niaz
  surname: Wassan
  fullname: Wassan, Niaz
  email: N.A.Wassan@kent.ac.uk
– sequence: 3
  givenname: Said
  orcidid: 0000-0002-3384-5240
  surname: Salhi
  fullname: Salhi, Said
  email: S.Salhi@kent.ac.uk
– sequence: 4
  givenname: Gábor
  surname: Nagy
  fullname: Nagy, Gábor
  email: G.Nagy@kent.ac.uk
BookMark eNp9kcFq3DAQhkVIIZu0L9CTIGe7kmVbduilhKYtBHpJz2IsjddabMmVZIe8Sx623t320kNOwzDz_TM__zW5dN4hIR85yznj9adDjvEZ8oLxJmcyZ6K8IDveSJHVshWXZMfaSmYll-UVuY7xwBiXjMkdeX0akA6YMPg9OvRLpP2ImOiKg9Uj0uCXZN2ezsF3I0702aaBjnY_JDp6MJGCM9SvGJKd8I4--DAtIyTr3Wky-_lfu0KwsGlQhxve-SUM3hsaEYIezrpgYE52RTrh5MPLe_KuhzHih7_1hvx6-Pp0_z17_Pntx_2Xx0wLWaeMF0b0FUADdSPLqqx6URkJLedgtEFe1p02NStEC7IQfYt1rSuhdSl503WiFDfk9qy7mfy9YEzqsH3ntpOq4IXgdcNks2015y0dfIwBe6VtOllLAeyoOFPHLNRBHbNQxywUk4qdDhT_oXOwE4SXt6HPZwg366vFoKK26DQaG1AnZbx9C_8D9mWpyg
CitedBy_id crossref_primary_10_1016_j_asoc_2022_108746
crossref_primary_10_1016_j_eswa_2020_114304
crossref_primary_10_1016_j_aei_2019_101006
crossref_primary_10_1016_j_eswa_2020_113302
crossref_primary_10_1016_j_eswa_2020_113444
crossref_primary_10_3390_logistics9020070
crossref_primary_10_3390_su14095329
crossref_primary_10_1080_23249935_2022_2087787
crossref_primary_10_1016_j_eswa_2019_113158
crossref_primary_10_1016_j_eswa_2018_10_031
crossref_primary_10_1016_j_knosys_2024_112173
crossref_primary_10_1007_s10479_022_04701_8
crossref_primary_10_1016_j_cor_2024_106531
crossref_primary_10_1016_j_tre_2019_08_004
crossref_primary_10_1016_j_eswa_2024_125183
crossref_primary_10_1111_jbl_12318
crossref_primary_10_1007_s40032_020_00588_1
crossref_primary_10_1109_ACCESS_2025_3569578
crossref_primary_10_1016_j_asoc_2022_109239
crossref_primary_10_1016_j_eswa_2022_116728
crossref_primary_10_3390_su141811639
crossref_primary_10_1007_s11590_023_01993_y
Cites_doi 10.1016/j.cor.2010.04.008
10.1016/j.trb.2014.11.004
10.1002/net.20330
10.1016/j.ejor.2016.03.049
10.1016/j.neucom.2014.02.074
10.1007/BF02430370
10.1016/j.ejor.2016.04.007
10.1016/S0305-0548(97)00031-2
10.1016/j.eswa.2016.08.060
10.1016/j.cor.2005.08.002
10.1016/j.cor.2007.02.021
10.1016/j.ejor.2012.03.016
10.1016/j.eswa.2016.09.017
10.1007/s10732-011-9186-y
10.1016/j.cor.2004.03.005
10.1016/j.tre.2011.08.001
10.1016/j.cor.2014.08.007
10.1016/j.cor.2007.11.007
10.1016/j.eswa.2011.07.025
10.1108/09600030610656459
10.1016/0305-0548(84)90007-8
10.1016/j.trb.2017.04.003
10.1016/j.ejor.2014.07.048
10.1016/j.ejor.2005.06.003
10.1016/j.cor.2005.10.015
10.1016/j.ejor.2006.12.065
10.1287/trsc.1110.0396
10.1155/2013/824961
10.1287/opre.22.2.340
10.1007/s10951-012-0296-7
10.1016/j.cor.2015.12.017
10.1023/A:1021157406318
10.1016/j.eswa.2012.05.081
10.1007/s10107-008-0218-9
10.1016/j.tre.2010.02.004
10.1016/j.ejor.2009.03.035
10.1016/j.cor.2011.05.027
10.1016/j.cor.2009.02.008
10.1016/j.ejor.2007.05.059
10.1016/j.tre.2008.10.003
10.1016/j.cor.2010.01.016
10.1016/j.ejor.2008.07.022
10.1016/j.ejor.2013.09.045
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Dec 30, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 30, 2018
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2018.07.034
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 195
ExternalDocumentID 10_1016_j_eswa_2018_07_034
S0957417418304585
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c376t-12d3f5aa8a6874545f35d7a911adcde146bcd60239a723f9e66c53cc4718bb343
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446949300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Fri Jul 25 04:30:09 EDT 2025
Tue Nov 18 22:15:31 EST 2025
Sat Nov 29 07:09:29 EST 2025
Fri Feb 23 02:45:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Real life vehicle routing
Managerial Insights
Adaptive Memory
Population Variable Neighbourhood Search
MIP Formulation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-12d3f5aa8a6874545f35d7a911adcde146bcd60239a723f9e66c53cc4718bb343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3384-5240
PQID 2123168078
PQPubID 2045477
PageCount 13
ParticipantIDs proquest_journals_2123168078
crossref_citationtrail_10_1016_j_eswa_2018_07_034
crossref_primary_10_1016_j_eswa_2018_07_034
elsevier_sciencedirect_doi_10_1016_j_eswa_2018_07_034
PublicationCentury 2000
PublicationDate 2018-12-30
PublicationDateYYYYMMDD 2018-12-30
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-30
  day: 30
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Seixas, Mendes (bib0034) 2013; 8
Sze, Salhi, Wassan (bib0037) 2016; 65
Li, Leung, Tian (bib0020) 2012; 39
Subramanian, Penna, Uchoa, Ochi (bib0036) 2012; 221
Oppen, Loketangen (bib0028) 2008; 35
Mladenovic, Salhi, Hanafi, Brimberg (bib0024) 2016; 52
Naji-Azimi, Salari, Renaud, Ruiz (bib0026) 2016; 255
Stenger, Vigo, Enz, Schwind (bib0035) 2013; 47
Gillet, Miller (bib0009) 1974; 22
Gribkovskaia, Gullberg, Hovden, Wallace (bib0012) 2006; 36
Mladenovic, Hansen (bib0023) 1997; 24
Moon, Lee, Seong (bib0025) 2012; 39
Imran, Salhi, Wassan (bib0014) 2009; 197
Lahyani, Khemakhem, Semet (bib0017) 2015; 241
Liu, Huang, Ma (bib0021) 2009; 45
Archetti, Savelsbergh, Speranza (bib0001) 2016; 254
Erdogan, Miller-Hooks (bib0008) 2012; 48
Salhi (bib0033) 2017
Wassan, Wassan, Nagy, Salhi (bib0042) 2017; 78
Yin, Glover, Laguna (bib0043) 2010; 201
Brandão (bib0004) 2009; 195
Tarantillis (bib0040) 2005; 32
Goel, Gruhn (bib0010) 2008; 191
Kok, Hans, Schutten (bib0016) 2012; 39
Nagy, Wassan, Salhi (bib0027) 2013; 16
Tarantillis, Kiranoudis (bib0039) 2002; 115
Vidal, Crainic, Gendreau, Prins (bib0041) 2014; 234
Li, Golden, Wasil (bib0018) 2007; 34
Ren, Y., Dessouky, M., & Ordonez, F. (2010). The multi-shift vehicle routing problem with overtime Computers & Operations Research 11, 1987–1998.
Golden, Assad, Levy, Gheysens (bib0011) 1984; 11
Li, Tian, Aneja (bib0019) 2010; 46
Matei, Pop, Sas, Chira (bib0022) 2015; 150
Baldacci, Mingozzi (bib0002) 2009; 120
Penna, Subramanian, Ochi (bib0030) 2011; 19
Choi, Tcha (bib0006) 2007; 34
Sze, Salhi, Wassan (bib0038) 2017; 101
Pessoa, Uchoa, Poggi de Aragão (bib0031) 2009; 54
Cornillier, Laporte, Boctor, Renaud (bib0007) 2009; 36
Brandão (bib0005) 2011; 38
Kalayci, Kaya (bib0015) 2016; 66
Rochat, Taillard (bib0032) 1995; 1
Zachariadis, Tarantilis, Kiranoudis (bib0044) 2015; 71
Hasle, Løkketangen, Martello (bib0013) 2006; 175
Battarra, Monaci, Vigo (bib0003) 2009; 36
Naji-Azimi (10.1016/j.eswa.2018.07.034_bib0026) 2016; 255
Brandão (10.1016/j.eswa.2018.07.034_bib0005) 2011; 38
Imran (10.1016/j.eswa.2018.07.034_bib0014) 2009; 197
Choi (10.1016/j.eswa.2018.07.034_bib0006) 2007; 34
Lahyani (10.1016/j.eswa.2018.07.034_bib0017) 2015; 241
Sze (10.1016/j.eswa.2018.07.034_bib0037) 2016; 65
Penna (10.1016/j.eswa.2018.07.034_bib0030) 2011; 19
Pessoa (10.1016/j.eswa.2018.07.034_bib0031) 2009; 54
Stenger (10.1016/j.eswa.2018.07.034_bib0035) 2013; 47
10.1016/j.eswa.2018.07.034_bib0029
Golden (10.1016/j.eswa.2018.07.034_bib0011) 1984; 11
Yin (10.1016/j.eswa.2018.07.034_bib0043) 2010; 201
Rochat (10.1016/j.eswa.2018.07.034_bib0032) 1995; 1
Li (10.1016/j.eswa.2018.07.034_bib0020) 2012; 39
Goel (10.1016/j.eswa.2018.07.034_bib0010) 2008; 191
Li (10.1016/j.eswa.2018.07.034_bib0019) 2010; 46
Liu (10.1016/j.eswa.2018.07.034_bib0021) 2009; 45
Zachariadis (10.1016/j.eswa.2018.07.034_bib0044) 2015; 71
Moon (10.1016/j.eswa.2018.07.034_bib0025) 2012; 39
Nagy (10.1016/j.eswa.2018.07.034_bib0027) 2013; 16
Kalayci (10.1016/j.eswa.2018.07.034_bib0015) 2016; 66
Wassan (10.1016/j.eswa.2018.07.034_bib0042) 2017; 78
Kok (10.1016/j.eswa.2018.07.034_bib0016) 2012; 39
Vidal (10.1016/j.eswa.2018.07.034_bib0041) 2014; 234
Hasle (10.1016/j.eswa.2018.07.034_bib0013) 2006; 175
Gribkovskaia (10.1016/j.eswa.2018.07.034_bib0012) 2006; 36
Mladenovic (10.1016/j.eswa.2018.07.034_bib0024) 2016; 52
Oppen (10.1016/j.eswa.2018.07.034_bib0028) 2008; 35
Brandão (10.1016/j.eswa.2018.07.034_bib0004) 2009; 195
Cornillier (10.1016/j.eswa.2018.07.034_bib0007) 2009; 36
Li (10.1016/j.eswa.2018.07.034_bib0018) 2007; 34
Seixas (10.1016/j.eswa.2018.07.034_bib0034) 2013; 8
Tarantillis (10.1016/j.eswa.2018.07.034_bib0040) 2005; 32
Subramanian (10.1016/j.eswa.2018.07.034_bib0036) 2012; 221
Sze (10.1016/j.eswa.2018.07.034_bib0038) 2017; 101
Erdogan (10.1016/j.eswa.2018.07.034_bib0008) 2012; 48
Matei (10.1016/j.eswa.2018.07.034_bib0022) 2015; 150
Salhi (10.1016/j.eswa.2018.07.034_bib0033) 2017
Tarantillis (10.1016/j.eswa.2018.07.034_bib0039) 2002; 115
Battarra (10.1016/j.eswa.2018.07.034_bib0003) 2009; 36
Gillet (10.1016/j.eswa.2018.07.034_bib0009) 1974; 22
Archetti (10.1016/j.eswa.2018.07.034_bib0001) 2016; 254
Mladenovic (10.1016/j.eswa.2018.07.034_bib0023) 1997; 24
Baldacci (10.1016/j.eswa.2018.07.034_bib0002) 2009; 120
References_xml – volume: 39
  start-page: 365
  year: 2012
  end-page: 374
  ident: bib0020
  article-title: A multistart adaptive memory-based tabu search algorithm for the heterogeneous fixed fleet open vehicle routing problem
  publication-title: Expert Systems with Applications
– volume: 150
  start-page: 58
  year: 2015
  end-page: 66
  ident: bib0022
  article-title: An improved immigration memetic algorithm for solving the heterogeneous fixed fleet vehicle routing problem
  publication-title: Neurocomputing
– volume: 16
  start-page: 199
  year: 2013
  end-page: 213
  ident: bib0027
  article-title: The vehicle routing problem with restricted mixing of deliveries and pickups
  publication-title: Journal of Scheduling
– volume: 46
  start-page: 1111
  year: 2010
  end-page: 1127
  ident: bib0019
  article-title: An Adaptive Memory programming metaheuristic for the heterogeneous fixed fleet Vehicle Routing Problem
  publication-title: Transportation Research Part E
– year: 2017
  ident: bib0033
  article-title: Heuristic search: the emerging science of problem solving
– volume: 38
  start-page: 140
  year: 2011
  end-page: 151
  ident: bib0005
  article-title: A tabu search algorithm for the heterogeneous fixed fleet vehicle routing problem,
  publication-title: Computers & Operations Research
– volume: 35
  start-page: 3213
  year: 2008
  end-page: 3229
  ident: bib0028
  article-title: A tabu search approach for the livestock collection problem
  publication-title: Computers & Operations Research
– volume: 8
  start-page: 1
  year: 2013
  end-page: 13
  ident: bib0034
  article-title: Column generation for a multitrip vehicle routing problem with time-windows, driver work hours, and heterogeneous fleet
  publication-title: Mathematical Problems in Engineering
– reference: Ren, Y., Dessouky, M., & Ordonez, F. (2010). The multi-shift vehicle routing problem with overtime Computers & Operations Research 11, 1987–1998.
– volume: 221
  start-page: 285
  year: 2012
  end-page: 295
  ident: bib0036
  article-title: A hybrid algorithm for the heterogeneous fleet vehicle routing problem
  publication-title: European Journal of Operational Research
– volume: 65
  start-page: 383
  year: 2016
  end-page: 397
  ident: bib0037
  article-title: A hybridisation of adaptive variable neighbourhood search and large neighbourhood search: Application to the vehicle routing problem
  publication-title: Expert Systems with Applications
– volume: 71
  start-page: 158
  year: 2015
  end-page: 181
  ident: bib0044
  article-title: The load-dependent vehicle routing problem and its pick-up and delivery extension
  publication-title: Transportation Research Part B
– volume: 195
  start-page: 716
  year: 2009
  end-page: 728
  ident: bib0004
  article-title: A deterministic tabu search algorithm for the fleet size and mix vehicle routing problem
  publication-title: European Journal of Operational Research
– volume: 48
  start-page: 100
  year: 2012
  end-page: 114
  ident: bib0008
  article-title: A green vehicle routing problem
  publication-title: Transportation Research Part E: Logistics and Transportation Review
– volume: 24
  start-page: 1097
  year: 1997
  end-page: 1100
  ident: bib0023
  article-title: Variable neighbourhood search
  publication-title: Computers & Operations Research
– volume: 11
  start-page: 49
  year: 1984
  end-page: 66
  ident: bib0011
  article-title: The fleet size and mix vehicle routing problem,
  publication-title: Computers & Operations Research
– volume: 175
  start-page: 1752
  year: 2006
  end-page: 1753
  ident: bib0013
  article-title: Rich models in discrete optimization: Formulation and resolution
  publication-title: European Journal of Operational Research
– volume: 45
  start-page: 434
  year: 2009
  end-page: 445
  ident: bib0021
  article-title: An effective genetic algorithm for the fleet size and mix Vehicle Routing Problem
  publication-title: Transportation Research Part E
– volume: 39
  start-page: 910
  year: 2012
  end-page: 918
  ident: bib0016
  article-title: Vehicle routing under time-dependent travel times: The impact of congestion avoidance
  publication-title: Computers & Operations Research
– volume: 36
  start-page: 919
  year: 2009
  end-page: 935
  ident: bib0007
  article-title: The petrol station replenishment problem with time windows
  publication-title: Computers & Operations Research
– volume: 34
  start-page: 2080
  year: 2007
  end-page: 2095
  ident: bib0006
  article-title: A column generation approach to the heterogeneous fleet Vehicle Routing Problem
  publication-title: Computational Operations Research
– volume: 36
  start-page: 3041
  year: 2009
  end-page: 3050
  ident: bib0003
  article-title: An adaptive guidance approach for the heuristic solution of a minimum multiple trip Vehicle Routing Problem
  publication-title: Computers & Operations Research
– volume: 191
  start-page: 650
  year: 2008
  end-page: 660
  ident: bib0010
  article-title: A general vehicle routing problem
  publication-title: European Journal of Operational Research
– volume: 254
  start-page: 472
  year: 2016
  end-page: 480
  ident: bib0001
  article-title: The vehicle routing problem with occasional drivers
  publication-title: European Journal of Operational Research
– volume: 22
  start-page: 340
  year: 1974
  end-page: 349
  ident: bib0009
  article-title: A heuristic algorithm for the vehicle dispatch problem
  publication-title: Operations Research
– volume: 197
  start-page: 509
  year: 2009
  end-page: 518
  ident: bib0014
  article-title: A variable neighborhood-based heuristic for the heterogeneous fleet vehicle routing problem
  publication-title: European Journal of Operational Research
– volume: 34
  start-page: 2734
  year: 2007
  end-page: 2742
  ident: bib0018
  article-title: A record-to-record travel algorithm for solving the heterogeneous fleet vehicle routing problem
  publication-title: Computers & Operations Research
– volume: 52
  start-page: 147
  year: 2016
  end-page: 148
  ident: bib0024
  article-title: Recent advances in variable neighbourhood search
  publication-title: Computers & Operations Research
– volume: 39
  start-page: 13202
  year: 2012
  end-page: 13213
  ident: bib0025
  article-title: Vehicle Routing Problem with time windows considering overtime and outsourcing vehicles
  publication-title: Expert Systems with Applications
– volume: 66
  start-page: 163
  year: 2016
  end-page: 175
  ident: bib0015
  article-title: An ant colony system empowered variable neighborhood search algorithm for the vehicle routing problem with simultaneous pickup and delivery
  publication-title: Expert Systems with Applications
– volume: 241
  start-page: 1
  year: 2015
  end-page: 14
  ident: bib0017
  article-title: Rich vehicle routing problems: From a taxonomy to a definition
  publication-title: European Journal of Operational Research
– volume: 19
  start-page: 201
  year: 2011
  end-page: 232
  ident: bib0030
  article-title: An iterated Local Search heuristic for the Heterogeneous Fleet Vehicle Routing Problem
  publication-title: Journal of Heuristics
– volume: 47
  start-page: 64
  year: 2013
  end-page: 80
  ident: bib0035
  article-title: An adaptive variable neighbourhood search algorithm for a vehicle routing problem arising in small package shipping
  publication-title: Transportation Science
– volume: 32
  start-page: 2309
  year: 2005
  end-page: 2327
  ident: bib0040
  article-title: Solving the vehicle routing problem with adaptive memory programming methodology
  publication-title: Computers & Operations Research
– volume: 54
  start-page: 167
  year: 2009
  end-page: 177
  ident: bib0031
  article-title: A robust branch-cut-and-price algorithm for the heterogeneous fleet Vehicle Routing Problem
  publication-title: Networks
– volume: 36
  start-page: 136
  year: 2006
  end-page: 152
  ident: bib0012
  article-title: Optimization model for a livestock collection problem
  publication-title: International Journal of Physical Distribution & Logistics Management
– volume: 101
  start-page: 162
  year: 2017
  end-page: 184
  ident: bib0038
  article-title: The cumulative capacitated vehicle routing problem with min-sum and min-max objectives: An effective hybridisation of adaptive variable neighbourhood search and large neighbourhood search
  publication-title: Transportation Research Part B
– volume: 120
  start-page: 347
  year: 2009
  end-page: 380
  ident: bib0002
  article-title: A unified exact method for solving different classes of Vehicle Routing Problems
  publication-title: Mathematical Programming
– volume: 78
  start-page: 454
  year: 2017
  end-page: 467
  ident: bib0042
  article-title: The multiple trip vehicle routing problem with backhauls: Formulation and a two-level variable neighbourhood search
  publication-title: Computers & Operations Research
– volume: 255
  start-page: 58
  year: 2016
  end-page: 67
  ident: bib0026
  article-title: A practical vehicle routing problem with desynchronized arrivals to depot
  publication-title: European Journal of Operational Research
– volume: 115
  start-page: 227
  year: 2002
  end-page: 241
  ident: bib0039
  article-title: BoneRoute: An adaptive memory-based method for effective fleet management
  publication-title: Annals of Operations Research
– volume: 201
  start-page: 377
  year: 2010
  end-page: 389
  ident: bib0043
  article-title: Cyber swarm algorithms – improving particle swarm optimization using adaptive memory strategies
  publication-title: European Journal of Operational Research
– volume: 1
  start-page: 147
  year: 1995
  end-page: 167
  ident: bib0032
  article-title: Probabilistic diversification and intensification in local search for vehicle routing
  publication-title: Journal of Heuristics
– volume: 234
  start-page: 658
  year: 2014
  end-page: 673
  ident: bib0041
  article-title: A unified solution framework for multi-attribute vehicle routing problems
  publication-title: European Journal of Operational Research
– volume: 38
  start-page: 140
  year: 2011
  ident: 10.1016/j.eswa.2018.07.034_bib0005
  article-title: A tabu search algorithm for the heterogeneous fixed fleet vehicle routing problem,
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2010.04.008
– volume: 71
  start-page: 158
  year: 2015
  ident: 10.1016/j.eswa.2018.07.034_bib0044
  article-title: The load-dependent vehicle routing problem and its pick-up and delivery extension
  publication-title: Transportation Research Part B
  doi: 10.1016/j.trb.2014.11.004
– volume: 54
  start-page: 167
  year: 2009
  ident: 10.1016/j.eswa.2018.07.034_bib0031
  article-title: A robust branch-cut-and-price algorithm for the heterogeneous fleet Vehicle Routing Problem
  publication-title: Networks
  doi: 10.1002/net.20330
– volume: 254
  start-page: 472
  year: 2016
  ident: 10.1016/j.eswa.2018.07.034_bib0001
  article-title: The vehicle routing problem with occasional drivers
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.03.049
– volume: 150
  start-page: 58
  year: 2015
  ident: 10.1016/j.eswa.2018.07.034_bib0022
  article-title: An improved immigration memetic algorithm for solving the heterogeneous fixed fleet vehicle routing problem
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.02.074
– volume: 1
  start-page: 147
  year: 1995
  ident: 10.1016/j.eswa.2018.07.034_bib0032
  article-title: Probabilistic diversification and intensification in local search for vehicle routing
  publication-title: Journal of Heuristics
  doi: 10.1007/BF02430370
– volume: 255
  start-page: 58
  year: 2016
  ident: 10.1016/j.eswa.2018.07.034_bib0026
  article-title: A practical vehicle routing problem with desynchronized arrivals to depot
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.04.007
– volume: 24
  start-page: 1097
  year: 1997
  ident: 10.1016/j.eswa.2018.07.034_bib0023
  article-title: Variable neighbourhood search
  publication-title: Computers & Operations Research
  doi: 10.1016/S0305-0548(97)00031-2
– volume: 65
  start-page: 383
  year: 2016
  ident: 10.1016/j.eswa.2018.07.034_bib0037
  article-title: A hybridisation of adaptive variable neighbourhood search and large neighbourhood search: Application to the vehicle routing problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.08.060
– volume: 34
  start-page: 2080
  year: 2007
  ident: 10.1016/j.eswa.2018.07.034_bib0006
  article-title: A column generation approach to the heterogeneous fleet Vehicle Routing Problem
  publication-title: Computational Operations Research
  doi: 10.1016/j.cor.2005.08.002
– volume: 35
  start-page: 3213
  year: 2008
  ident: 10.1016/j.eswa.2018.07.034_bib0028
  article-title: A tabu search approach for the livestock collection problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2007.02.021
– volume: 221
  start-page: 285
  year: 2012
  ident: 10.1016/j.eswa.2018.07.034_bib0036
  article-title: A hybrid algorithm for the heterogeneous fleet vehicle routing problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.03.016
– volume: 66
  start-page: 163
  year: 2016
  ident: 10.1016/j.eswa.2018.07.034_bib0015
  article-title: An ant colony system empowered variable neighborhood search algorithm for the vehicle routing problem with simultaneous pickup and delivery
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.09.017
– volume: 19
  start-page: 201
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2018.07.034_bib0030
  article-title: An iterated Local Search heuristic for the Heterogeneous Fleet Vehicle Routing Problem
  publication-title: Journal of Heuristics
  doi: 10.1007/s10732-011-9186-y
– volume: 32
  start-page: 2309
  year: 2005
  ident: 10.1016/j.eswa.2018.07.034_bib0040
  article-title: Solving the vehicle routing problem with adaptive memory programming methodology
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2004.03.005
– volume: 48
  start-page: 100
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2018.07.034_bib0008
  article-title: A green vehicle routing problem
  publication-title: Transportation Research Part E: Logistics and Transportation Review
  doi: 10.1016/j.tre.2011.08.001
– volume: 52
  start-page: 147
  year: 2016
  ident: 10.1016/j.eswa.2018.07.034_bib0024
  article-title: Recent advances in variable neighbourhood search
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2014.08.007
– volume: 36
  start-page: 919
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2018.07.034_bib0007
  article-title: The petrol station replenishment problem with time windows
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2007.11.007
– volume: 39
  start-page: 365
  year: 2012
  ident: 10.1016/j.eswa.2018.07.034_bib0020
  article-title: A multistart adaptive memory-based tabu search algorithm for the heterogeneous fixed fleet open vehicle routing problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.07.025
– year: 2017
  ident: 10.1016/j.eswa.2018.07.034_bib0033
– volume: 36
  start-page: 136
  year: 2006
  ident: 10.1016/j.eswa.2018.07.034_bib0012
  article-title: Optimization model for a livestock collection problem
  publication-title: International Journal of Physical Distribution & Logistics Management
  doi: 10.1108/09600030610656459
– volume: 11
  start-page: 49
  year: 1984
  ident: 10.1016/j.eswa.2018.07.034_bib0011
  article-title: The fleet size and mix vehicle routing problem,
  publication-title: Computers & Operations Research
  doi: 10.1016/0305-0548(84)90007-8
– volume: 101
  start-page: 162
  year: 2017
  ident: 10.1016/j.eswa.2018.07.034_bib0038
  article-title: The cumulative capacitated vehicle routing problem with min-sum and min-max objectives: An effective hybridisation of adaptive variable neighbourhood search and large neighbourhood search
  publication-title: Transportation Research Part B
  doi: 10.1016/j.trb.2017.04.003
– volume: 241
  start-page: 1
  year: 2015
  ident: 10.1016/j.eswa.2018.07.034_bib0017
  article-title: Rich vehicle routing problems: From a taxonomy to a definition
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.07.048
– volume: 175
  start-page: 1752
  year: 2006
  ident: 10.1016/j.eswa.2018.07.034_bib0013
  article-title: Rich models in discrete optimization: Formulation and resolution
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.06.003
– volume: 34
  start-page: 2734
  year: 2007
  ident: 10.1016/j.eswa.2018.07.034_bib0018
  article-title: A record-to-record travel algorithm for solving the heterogeneous fleet vehicle routing problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2005.10.015
– volume: 191
  start-page: 650
  year: 2008
  ident: 10.1016/j.eswa.2018.07.034_bib0010
  article-title: A general vehicle routing problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.12.065
– volume: 47
  start-page: 64
  year: 2013
  ident: 10.1016/j.eswa.2018.07.034_bib0035
  article-title: An adaptive variable neighbourhood search algorithm for a vehicle routing problem arising in small package shipping
  publication-title: Transportation Science
  doi: 10.1287/trsc.1110.0396
– volume: 8
  start-page: 1
  year: 2013
  ident: 10.1016/j.eswa.2018.07.034_bib0034
  article-title: Column generation for a multitrip vehicle routing problem with time-windows, driver work hours, and heterogeneous fleet
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2013/824961
– volume: 22
  start-page: 340
  year: 1974
  ident: 10.1016/j.eswa.2018.07.034_bib0009
  article-title: A heuristic algorithm for the vehicle dispatch problem
  publication-title: Operations Research
  doi: 10.1287/opre.22.2.340
– volume: 16
  start-page: 199
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2018.07.034_bib0027
  article-title: The vehicle routing problem with restricted mixing of deliveries and pickups
  publication-title: Journal of Scheduling
  doi: 10.1007/s10951-012-0296-7
– volume: 78
  start-page: 454
  year: 2017
  ident: 10.1016/j.eswa.2018.07.034_bib0042
  article-title: The multiple trip vehicle routing problem with backhauls: Formulation and a two-level variable neighbourhood search
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2015.12.017
– volume: 115
  start-page: 227
  year: 2002
  ident: 10.1016/j.eswa.2018.07.034_bib0039
  article-title: BoneRoute: An adaptive memory-based method for effective fleet management
  publication-title: Annals of Operations Research
  doi: 10.1023/A:1021157406318
– volume: 39
  start-page: 13202
  year: 2012
  ident: 10.1016/j.eswa.2018.07.034_bib0025
  article-title: Vehicle Routing Problem with time windows considering overtime and outsourcing vehicles
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.05.081
– volume: 120
  start-page: 347
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2018.07.034_bib0002
  article-title: A unified exact method for solving different classes of Vehicle Routing Problems
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-008-0218-9
– volume: 46
  start-page: 1111
  year: 2010
  ident: 10.1016/j.eswa.2018.07.034_bib0019
  article-title: An Adaptive Memory programming metaheuristic for the heterogeneous fixed fleet Vehicle Routing Problem
  publication-title: Transportation Research Part E
  doi: 10.1016/j.tre.2010.02.004
– volume: 201
  start-page: 377
  year: 2010
  ident: 10.1016/j.eswa.2018.07.034_bib0043
  article-title: Cyber swarm algorithms – improving particle swarm optimization using adaptive memory strategies
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2009.03.035
– volume: 39
  start-page: 910
  year: 2012
  ident: 10.1016/j.eswa.2018.07.034_bib0016
  article-title: Vehicle routing under time-dependent travel times: The impact of congestion avoidance
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2011.05.027
– volume: 36
  start-page: 3041
  year: 2009
  ident: 10.1016/j.eswa.2018.07.034_bib0003
  article-title: An adaptive guidance approach for the heuristic solution of a minimum multiple trip Vehicle Routing Problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2009.02.008
– volume: 195
  start-page: 716
  year: 2009
  ident: 10.1016/j.eswa.2018.07.034_bib0004
  article-title: A deterministic tabu search algorithm for the fleet size and mix vehicle routing problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2007.05.059
– volume: 45
  start-page: 434
  year: 2009
  ident: 10.1016/j.eswa.2018.07.034_bib0021
  article-title: An effective genetic algorithm for the fleet size and mix Vehicle Routing Problem
  publication-title: Transportation Research Part E
  doi: 10.1016/j.tre.2008.10.003
– ident: 10.1016/j.eswa.2018.07.034_bib0029
  doi: 10.1016/j.cor.2010.01.016
– volume: 197
  start-page: 509
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2018.07.034_bib0014
  article-title: A variable neighborhood-based heuristic for the heterogeneous fleet vehicle routing problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2008.07.022
– volume: 234
  start-page: 658
  year: 2014
  ident: 10.1016/j.eswa.2018.07.034_bib0041
  article-title: A unified solution framework for multi-attribute vehicle routing problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2013.09.045
SSID ssj0017007
Score 2.414596
Snippet •VNS-triggered memory extraction improves method performance up to 5.2%.•Incorporating real life aspects could improve daily total routing cost up to...
In this paper we consider a real life Vehicle Routing Problem inspired by the gas delivery industry in the United Kingdom. The problem is characterized by...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 183
SubjectTerms Adaptive Memory
Adaptive search techniques
Decision making
Expert systems
Iterative methods
Machine learning
Managerial Insights
Mathematical analysis
MIP Formulation
Motor vehicle fleets
Population Variable Neighbourhood Search
Real life vehicle routing
Route optimization
Route planning
Search algorithms
Transportation problem (Operations research)
Vehicle routing
Working hours
Title The heterogeneous fleet vehicle routing problem with light loads and overtime: Formulation and population variable neighbourhood search with adaptive memory
URI https://dx.doi.org/10.1016/j.eswa.2018.07.034
https://www.proquest.com/docview/2123168078
Volume 114
WOSCitedRecordID wos000446949300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2FlAUb3qiFgmaB2ESu4nrssZFYVCgRoCogkaLsRmPPWG3l2iEvKr6F7-J7uHceTlJEBAs2VmSPHSv3ZObOuY9DyEuY8xOVKRWkTLOAZf08yEqWBEyB_yyj4zTpKyM2wUejdDLJPnU6P30tzKridZ1eX2fT_2pqOAfGxtLZfzB3-1A4AZ_B6HAEs8Pxrw1_jkkuDQzRmOFaVhh4XulzHNqbNcuFLUE3UjKWia1wj96rGqlsz-bGyDRfmcL1Ibi1TuTLthVoNb96K9hpm9qrGhlWJEhNl2RHpdi6OSWnJj3pCnN6t4LIps3ywjWT9mV2GwH1lv2BF2lQvNWRCOuVBDx_S-COLuT3drisjFJx77P06frLNyPpanJMZkCYN7NNviNMTVfF_pqEawtxvmyRmTxgodX7OdJ2Kk95FCTc6i-2c33INmbr0Gro_LaKWELj8kjPv2FrqjA1_V0d6brVsnv0UQzPTk_FeDAZv5p-DVDNDKP-TtrlFtk75nGWdsneyfvB5EMb3-J9W8jv39uVc9nMw5tf-yeX6YbzYDyi8X1y121l6ImF4APS0fVDcs_LhFC3ajwiPwCRdAuR1CCSOkRSh0jqEEkRCNQgkhpEUkAd9Yh8TTfwaK6s8Ug9HukWHqnFo32uxyO1eHxMzoaD8dt3gRMFCQpYCxeABhWVsZSpTFCpgcVlFCsuYc2WqlAaFv68UAmWbEt-HJWZTpIijooCnbA8j1j0hHTrptb7mNUX6yLKuc4SxWRYZKHiLMe4O8_TMssOSOh_d1G4jvko3FIJnxp5KdBWAm0l-lyArQ5Ir71navvF7Bwde3MK5_FaT1YAFHfed-htL9zUMxfohIYJ6kc83X35Gbmz_mMdku5ittTPye1itbiYz144qP4CJ3HdWg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+heterogeneous+fleet+vehicle+routing+problem+with+light+loads+and+overtime%3A+Formulation+and+population+variable+neighbourhood+search+with+adaptive+memory&rft.jtitle=Expert+systems+with+applications&rft.au=Simeonova%2C+Lina&rft.au=Wassan%2C+Niaz&rft.au=Salhi%2C+Said&rft.au=Nagy%2C+G%C3%A1bor&rft.date=2018-12-30&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=114&rft.spage=183&rft_id=info:doi/10.1016%2Fj.eswa.2018.07.034&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon