Pattern synthesis of sparse linear array by off-grid Bayesian compressive sampling
An off-grid (OG) pattern synthesis algorithm for sparse non-uniform linear arrays is presented. It is based on Bayesian compressive sampling (BCS), and the design of maximally sparse linear arrays for the given reference patterns can be obtained. The proposed algorithm novelly introduces the OG mode...
Gespeichert in:
| Veröffentlicht in: | Electronics letters Jg. 51; H. 25; S. 2141 - 2143 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
The Institution of Engineering and Technology
10.12.2015
|
| Schlagworte: | |
| ISSN: | 0013-5194, 1350-911X, 1350-911X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | An off-grid (OG) pattern synthesis algorithm for sparse non-uniform linear arrays is presented. It is based on Bayesian compressive sampling (BCS), and the design of maximally sparse linear arrays for the given reference patterns can be obtained. The proposed algorithm novelly introduces the OG model into the pattern synthesis problem, and it makes the synthesis more accurate than the conventional BCS algorithm. Moreover, the proposed algorithm has the advantage of high computational efficiency, since the BCS-based algorithms can be realised by the fast relevance vector machine. Numerical experiments show that the proposed algorithm has improved accuracy in terms of normalised mean square error. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0013-5194 1350-911X 1350-911X |
| DOI: | 10.1049/el.2015.2455 |