"Information carried by population spike times in the whisker sensory cortex can be decoded without knowledge of stimulus time "
Computational analyses have revealed that precisely timed spikes emitted by somatosensory cortical neuronal populations encode basic stimulus features in the rat's whisker sensory system. Efficient spike time based decoding schemes both for the spatial location of a stimulus and for the kinetic...
Uložené v:
| Vydané v: | Frontiers in synaptic neuroscience Ročník 2; s. 17 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
Frontiers Research Foundation
2010
Frontiers Media S.A |
| Predmet: | |
| ISSN: | 1663-3563, 1663-3563 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Computational analyses have revealed that precisely timed spikes emitted by somatosensory cortical neuronal populations encode basic stimulus features in the rat's whisker sensory system. Efficient spike time based decoding schemes both for the spatial location of a stimulus and for the kinetic features of complex whisker movements have been defined. To date, these decoding schemes have been based upon spike times referenced to an external temporal frame - the time of the stimulus itself. Such schemes are limited by the requirement of precise knowledge of the stimulus time signal, and it is not clear whether stimulus times are known to rats making sensory judgments. Here, we first review studies of the information obtained from spike timing referenced to the stimulus time. Then we explore new methods for extracting spike train information independently of any external temporal reference frame. These proposed methods are based on the detection of stimulus-dependent differences in the firing time within a neuronal population. We apply them to a data set using single-whisker stimulation in anesthetized rats and find that stimulus site can be decoded based on the millisecond-range relative differences in spike times even without knowledge of stimulus time. If spike counts alone are measured over tens or hundreds of milliseconds rather than milliseconds, such decoders are much less effective. These results suggest that decoding schemes based on millisecond-precise spike times are likely to subserve robust and information-rich transmission of information in the somatosensory system. |
|---|---|
| AbstractList | Computational analyses have revealed that precisely timed spikes emitted by somatosensory cortical neuronal populations encode basic stimulus features in the rat's whisker sensory system. Efficient spike time based decoding schemes both for the spatial location of a stimulus and for the kinetic features of complex whisker movements have been defined. To date, these decoding schemes have been based upon spike times referenced to an external temporal frame - the time of the stimulus itself. Such schemes are limited by the requirement of precise knowledge of the stimulus time signal, and it is not clear whether stimulus times are known to rats making sensory judgments. Here, we first review studies of the information obtained from spike timing referenced to the stimulus time. Then we explore new methods for extracting spike train information independently of any external temporal reference frame. These proposed methods are based on the detection of stimulus-dependent differences in the firing time within a neuronal population. We apply them to a data set using single-whisker stimulation in anesthetized rats and find that stimulus site can be decoded based on the millisecond-range relative differences in spike times even without knowledge of stimulus time. If spike counts alone are measured over tens or hundreds of milliseconds rather than milliseconds, such decoders are much less effective. These results suggest that decoding schemes based on millisecond-precise spike times are likely to subserve robust and information-rich transmission of information in the somatosensory system. Computational analyses have revealed that precisely timed spikes emitted by somatosensory cortical neuronal populations encode basic stimulus features in the rat's whisker sensory system. Efficient spike time based decoding schemes both for the spatial location of a stimulus and for the kinetic features of complex whisker movements have been defined. To date, these decoding schemes have been based upon spike times referenced to an external temporal frame - the time of the stimulus itself. Such schemes are limited by the requirement of precise knowledge of the stimulus time signal, and it is not clear whether stimulus times are known to rats making sensory judgments. Here, we first review studies of the information obtained from spike timing referenced to the stimulus time. Then we explore new methods for extracting spike train information independently of any external temporal reference frame. These proposed methods are based on the detection of stimulus-dependent differences in the firing time within a neuronal population. We apply them to a data set using single-whisker stimulation in anesthetized rats and find that stimulus site can be decoded based on the millisecond-range relative differences in spike times even without knowledge of stimulus time. If spike counts alone are measured over tens or hundreds of milliseconds rather than milliseconds, such decoders are much less effective. These results suggest that decoding schemes based on millisecond-precise spike times are likely to subserve robust and information-rich transmission of information in the somatosensory system.Computational analyses have revealed that precisely timed spikes emitted by somatosensory cortical neuronal populations encode basic stimulus features in the rat's whisker sensory system. Efficient spike time based decoding schemes both for the spatial location of a stimulus and for the kinetic features of complex whisker movements have been defined. To date, these decoding schemes have been based upon spike times referenced to an external temporal frame - the time of the stimulus itself. Such schemes are limited by the requirement of precise knowledge of the stimulus time signal, and it is not clear whether stimulus times are known to rats making sensory judgments. Here, we first review studies of the information obtained from spike timing referenced to the stimulus time. Then we explore new methods for extracting spike train information independently of any external temporal reference frame. These proposed methods are based on the detection of stimulus-dependent differences in the firing time within a neuronal population. We apply them to a data set using single-whisker stimulation in anesthetized rats and find that stimulus site can be decoded based on the millisecond-range relative differences in spike times even without knowledge of stimulus time. If spike counts alone are measured over tens or hundreds of milliseconds rather than milliseconds, such decoders are much less effective. These results suggest that decoding schemes based on millisecond-precise spike times are likely to subserve robust and information-rich transmission of information in the somatosensory system. |
| Author | Panzeri, Stefano |
| AuthorAffiliation | 3 Italian Institute of Technology- SISSA Unit Trieste, Italy 1 Robotics, Brain and Cognitive Sciences Department, Italian Institute of Technology Genova, Italy 2 Cognitive Neuroscience Sector, International School for Advanced Studies Trieste, Italy |
| AuthorAffiliation_xml | – name: 3 Italian Institute of Technology- SISSA Unit Trieste, Italy – name: 2 Cognitive Neuroscience Sector, International School for Advanced Studies Trieste, Italy – name: 1 Robotics, Brain and Cognitive Sciences Department, Italian Institute of Technology Genova, Italy |
| Author_xml | – sequence: 1 givenname: Stefano surname: Panzeri fullname: Panzeri, Stefano |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21423503$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kjtvFDEUhS0UREJIT4WsNFQb_JgZzzRIKOKxUiQaqC2vfb3r7Iw92B6W7fLT451NUIJEZfv6nO8U97xGJz54QOgtJVect90H69PeXzFS3oQQKl6gM9o0fMHrhp88uZ-ii5Rui4RUhBHCX6FTRivGa8LP0N3l0tsQB5Vd8FirGB0YvNrjMYxTf5ym0W0BZzdAws7jvAG827i0hYgT-BTiHusQM_wpfo9XgA3oYApm5_ImTBlvfdj1YNaAg8WpgKZ-SjMQX75BL63qE1w8nOfo55fPP66_LW6-f11ef7pZaC4asWhqwYzW1HbQgDKkaVVX16zmnAERtmopXQHrDCeiEuZwKkUUEa2ilgkj-DlaHrkmqFs5RjeouJdBOTkPQlxLFbPTPchCZraEtpTZilKmuFCWcTBCqAoMFNbHI2ucVgMYDT5H1T-DPv_xbiPX4bfkpO6ati2A9w-AGH5NkLIcXNLQ98pDmJJs65a1rOK0KN89jfqb8bjBImiOAh1DShGs1C7PeyvJrpeUyENb5NwWeWiLnNtSjOQf4yP7v5Z7vOPFLw |
| CitedBy_id | crossref_primary_10_1186_1471_2202_12_32 crossref_primary_10_3389_fncom_2018_00074 crossref_primary_10_1088_1741_2552_ac1c88 crossref_primary_10_1007_s10827_012_0408_6 crossref_primary_10_3389_fnint_2022_900715 crossref_primary_10_1093_cercor_bhaf073 crossref_primary_10_1007_s00429_015_1169_6 crossref_primary_10_1016_j_jtbi_2020_110509 crossref_primary_10_3389_fnins_2022_838054 crossref_primary_10_1103_9bcy_g5sx crossref_primary_10_7554_eLife_06213 crossref_primary_10_3389_fncom_2016_00107 |
| ContentType | Journal Article |
| Copyright | Copyright © 2010 Panzeri and Diamond. 2010 |
| Copyright_xml | – notice: Copyright © 2010 Panzeri and Diamond. 2010 |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3389/fnsyn.2010.00017 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1663-3563 |
| ExternalDocumentID | oai_doaj_org_article_a952f767812f4112a37af23ed77a4ede PMC3059688 21423503 10_3389_fnsyn_2010_00017 |
| Genre | Journal Article |
| GroupedDBID | --- 53G 5VS 9T4 AAFWJ AAYXX ACGFO ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE IPNFZ KQ8 M48 M~E O5R O5S OK1 P6G PGMZT RIG RNS RPM TR2 ACXDI NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c3767-6572dcc1f9e6ead068a95525332e07f4811be29d30747d9d30aa0a078a1f27d73 |
| IEDL.DBID | DOA |
| ISSN | 1663-3563 |
| IngestDate | Fri Oct 03 12:48:14 EDT 2025 Thu Aug 21 18:24:20 EDT 2025 Wed Oct 01 14:38:36 EDT 2025 Thu Apr 03 07:03:39 EDT 2025 Sat Nov 29 06:45:45 EST 2025 Tue Nov 18 22:15:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | somatosensation information theory decoding spike patterns neural coding population coding |
| Language | English |
| License | This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3767-6572dcc1f9e6ead068a95525332e07f4811be29d30747d9d30aa0a078a1f27d73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Guglielmo Foffani, Hospital Nacional de Parapléjicos, Spain; Drexel University, USA; Miguel Maravall, Universidad Miguel Hernández, Spain; Demetris Soteropoulos, Newcastle University, UK Edited by: Per Jesper Sjöström, University College London, UK |
| OpenAccessLink | https://doaj.org/article/a952f767812f4112a37af23ed77a4ede |
| PMID | 21423503 |
| PQID | 858282431 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a952f767812f4112a37af23ed77a4ede pubmedcentral_primary_oai_pubmedcentral_nih_gov_3059688 proquest_miscellaneous_858282431 pubmed_primary_21423503 crossref_citationtrail_10_3389_fnsyn_2010_00017 crossref_primary_10_3389_fnsyn_2010_00017 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-00-00 |
| PublicationDateYYYYMMDD | 2010-01-01 |
| PublicationDate_xml | – year: 2010 text: 2010-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in synaptic neuroscience |
| PublicationTitleAlternate | Front Synaptic Neurosci |
| PublicationYear | 2010 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | 10504193 - J Neurobiol. 1999 Oct;41(1):64-8 19081382 - Neuron. 2008 Dec 10;60(5):890-903 11119685 - Brain Res. 2000 Dec 15;886(1-2):33-46 15065813 - Neuroscientist. 2003 Jun;9(3):175-80 17227143 - PLoS Biol. 2007 Feb;5(2):e15 18425123 - Nat Neurosci. 2008 May;11(5):603-8 10639392 - Cereb Cortex. 2000 Jan;10(1):23-31 11709160 - Neuron. 2001 Nov 8;32(3):503-14 8521284 - J Comput Neurosci. 1995 Jun;2(2):149-62 11395773 - Nature. 2001 Jun 7;411(6838):698-701 11886439 - Eur J Neurosci. 2002 Feb;15(4):744-52 10648726 - J Neurosci. 2000 Feb 1;20(3):1216-28 19606267 - Biol Theory. 2006;1(3):302-316 14730306 - Nat Neurosci. 2004 Feb;7(2):170-7 17287502 - J Neurosci. 2007 Feb 7;27(6):1271-84 12459298 - Biosystems. 2002 Oct-Dec;67(1-3):187-93 19420262 - J Neurosci. 2009 May 6;29(18):5964-73 11283308 - Annu Rev Neurosci. 2001;24:139-66 9751660 - Curr Opin Neurobiol. 1998 Aug;8(4):488-93 11387046 - Neural Comput. 2001 Jun;13(6):1255-83 8871243 - J Neurophysiol. 1996 Aug;76(2):1356-60 18167538 - PLoS One. 2008;3(1):e1377 19553442 - J Neurosci. 2009 Jun 24;29(25):8022-31 19189120 - Biol Cybern. 2009 Jun;100(6):427-46 8985014 - Science. 1997 Jan 10;275(5297):213-5 11976706 - Nat Neurosci. 2002 May;5(5):463-71 18641667 - Nat Rev Neurosci. 2008 Aug;9(8):601-12 11387048 - Neural Comput. 2001 Jun;13(6):1311-49 19297621 - Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5936-41 19229240 - Nat Rev Neurosci. 2009 Mar;10(3):173-85 19249279 - Neuron. 2009 Feb 26;61(4):597-608 18533813 - Neural Comput. 2008 Nov;20(11):2662-95 19430473 - Nat Neurosci. 2009 Jun;12(6):792-800 17300891 - Hear Res. 2007 Jul;229(1-2):94-105 20045201 - Trends Neurosci. 2010 Mar;33(3):111-20 12466214 - Cereb Cortex. 2003 Jan;13(1):45-52 19864561 - J Neurosci. 2009 Oct 28;29(43):13484-93 11517285 - J Neurosci. 2001 Sep 1;21(17):6978-90 18849984 - Nat Neurosci. 2008 Nov;11(11):1262-3 20147534 - J Neurosci. 2010 Feb 10;30(6):2060-9 18400959 - J Neurophysiol. 2008 Jul;100(1):268-80 16338992 - J Neurophysiol. 2006 Mar;95(3):1792-9 14684857 - J Neurosci. 2003 Dec 17;23(37):11539-53 20188657 - Neuron. 2010 Feb 25;65(4):530-40 12628174 - Neuron. 2003 Mar 6;37(5):843-52 19019976 - J Neurophysiol. 2009 Jan;101(1):402-17 17360369 - Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5175-80 18292344 - Science. 2008 Feb 22;319(5866):1108-11 20371801 - J Neurosci. 2010 Apr 7;30(14):4827-9 7596429 - Nature. 1995 Jul 6;376(6535):33-6 19620125 - Philos Trans A Math Phys Eng Sci. 2009 Aug 28;367(1901):3297-310 18001152 - PLoS Biol. 2007 Nov;5(11):e305 16056223 - Nat Neurosci. 2005 Sep;8(9):1210-9 16957078 - J Neurosci. 2006 Sep 6;26(36):9216-26 10377459 - Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7587-91 19070909 - Trends Neurosci. 2009 Feb;32(2):101-9 17253902 - PLoS Biol. 2007 Feb;5(2):e19 10526332 - Nat Neurosci. 1999 Nov;2(11):947-57 12139993 - Curr Opin Neurobiol. 2002 Aug;12(4):441-7 17615128 - J Neurophysiol. 2007 Sep;98(3):1064-72 11247974 - J Neurophysiol. 2001 Mar;85(3):1039-50 12527017 - Physiol Behav. 2002 Dec;77(4-5):671-5 12802200 - Neuroreport. 2003 May 23;14(7):1045-50 16837190 - Curr Opin Neurobiol. 2006 Aug;16(4):435-44 18799602 - J Neurophysiol. 2008 Nov;100(5):2852-65 11301035 - Neuron. 2001 Mar;29(3):769-77 15660157 - PLoS Biol. 2005 Jan;3(1):e17 12625330 - Neural Comput. 2003 Mar;15(3):539-47 16880130 - Neuron. 2006 Aug 3;51(3):359-68 16672651 - J Neurosci. 2006 May 3;26(18):4785-95 15317852 - J Neurosci. 2004 Aug 18;24(33):7266-71 |
| References_xml | – reference: 18849984 - Nat Neurosci. 2008 Nov;11(11):1262-3 – reference: 16056223 - Nat Neurosci. 2005 Sep;8(9):1210-9 – reference: 18641667 - Nat Rev Neurosci. 2008 Aug;9(8):601-12 – reference: 16837190 - Curr Opin Neurobiol. 2006 Aug;16(4):435-44 – reference: 19606267 - Biol Theory. 2006;1(3):302-316 – reference: 20045201 - Trends Neurosci. 2010 Mar;33(3):111-20 – reference: 11387046 - Neural Comput. 2001 Jun;13(6):1255-83 – reference: 19070909 - Trends Neurosci. 2009 Feb;32(2):101-9 – reference: 20147534 - J Neurosci. 2010 Feb 10;30(6):2060-9 – reference: 11119685 - Brain Res. 2000 Dec 15;886(1-2):33-46 – reference: 19620125 - Philos Trans A Math Phys Eng Sci. 2009 Aug 28;367(1901):3297-310 – reference: 11976706 - Nat Neurosci. 2002 May;5(5):463-71 – reference: 19864561 - J Neurosci. 2009 Oct 28;29(43):13484-93 – reference: 10648726 - J Neurosci. 2000 Feb 1;20(3):1216-28 – reference: 10377459 - Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7587-91 – reference: 18001152 - PLoS Biol. 2007 Nov;5(11):e305 – reference: 12628174 - Neuron. 2003 Mar 6;37(5):843-52 – reference: 12527017 - Physiol Behav. 2002 Dec;77(4-5):671-5 – reference: 11247974 - J Neurophysiol. 2001 Mar;85(3):1039-50 – reference: 7596429 - Nature. 1995 Jul 6;376(6535):33-6 – reference: 10526332 - Nat Neurosci. 1999 Nov;2(11):947-57 – reference: 18533813 - Neural Comput. 2008 Nov;20(11):2662-95 – reference: 12802200 - Neuroreport. 2003 May 23;14(7):1045-50 – reference: 15065813 - Neuroscientist. 2003 Jun;9(3):175-80 – reference: 12466214 - Cereb Cortex. 2003 Jan;13(1):45-52 – reference: 9751660 - Curr Opin Neurobiol. 1998 Aug;8(4):488-93 – reference: 16880130 - Neuron. 2006 Aug 3;51(3):359-68 – reference: 11395773 - Nature. 2001 Jun 7;411(6838):698-701 – reference: 10504193 - J Neurobiol. 1999 Oct;41(1):64-8 – reference: 17287502 - J Neurosci. 2007 Feb 7;27(6):1271-84 – reference: 11283308 - Annu Rev Neurosci. 2001;24:139-66 – reference: 19229240 - Nat Rev Neurosci. 2009 Mar;10(3):173-85 – reference: 12625330 - Neural Comput. 2003 Mar;15(3):539-47 – reference: 20371801 - J Neurosci. 2010 Apr 7;30(14):4827-9 – reference: 19553442 - J Neurosci. 2009 Jun 24;29(25):8022-31 – reference: 19430473 - Nat Neurosci. 2009 Jun;12(6):792-800 – reference: 17227143 - PLoS Biol. 2007 Feb;5(2):e15 – reference: 8985014 - Science. 1997 Jan 10;275(5297):213-5 – reference: 19019976 - J Neurophysiol. 2009 Jan;101(1):402-17 – reference: 18292344 - Science. 2008 Feb 22;319(5866):1108-11 – reference: 17300891 - Hear Res. 2007 Jul;229(1-2):94-105 – reference: 19420262 - J Neurosci. 2009 May 6;29(18):5964-73 – reference: 18400959 - J Neurophysiol. 2008 Jul;100(1):268-80 – reference: 16672651 - J Neurosci. 2006 May 3;26(18):4785-95 – reference: 17615128 - J Neurophysiol. 2007 Sep;98(3):1064-72 – reference: 12459298 - Biosystems. 2002 Oct-Dec;67(1-3):187-93 – reference: 11709160 - Neuron. 2001 Nov 8;32(3):503-14 – reference: 19249279 - Neuron. 2009 Feb 26;61(4):597-608 – reference: 17253902 - PLoS Biol. 2007 Feb;5(2):e19 – reference: 16338992 - J Neurophysiol. 2006 Mar;95(3):1792-9 – reference: 17360369 - Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5175-80 – reference: 10639392 - Cereb Cortex. 2000 Jan;10(1):23-31 – reference: 8521284 - J Comput Neurosci. 1995 Jun;2(2):149-62 – reference: 11387048 - Neural Comput. 2001 Jun;13(6):1311-49 – reference: 15317852 - J Neurosci. 2004 Aug 18;24(33):7266-71 – reference: 19189120 - Biol Cybern. 2009 Jun;100(6):427-46 – reference: 11517285 - J Neurosci. 2001 Sep 1;21(17):6978-90 – reference: 18167538 - PLoS One. 2008;3(1):e1377 – reference: 14730306 - Nat Neurosci. 2004 Feb;7(2):170-7 – reference: 15660157 - PLoS Biol. 2005 Jan;3(1):e17 – reference: 11301035 - Neuron. 2001 Mar;29(3):769-77 – reference: 19081382 - Neuron. 2008 Dec 10;60(5):890-903 – reference: 19297621 - Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5936-41 – reference: 16957078 - J Neurosci. 2006 Sep 6;26(36):9216-26 – reference: 11886439 - Eur J Neurosci. 2002 Feb;15(4):744-52 – reference: 18425123 - Nat Neurosci. 2008 May;11(5):603-8 – reference: 12139993 - Curr Opin Neurobiol. 2002 Aug;12(4):441-7 – reference: 20188657 - Neuron. 2010 Feb 25;65(4):530-40 – reference: 14684857 - J Neurosci. 2003 Dec 17;23(37):11539-53 – reference: 18799602 - J Neurophysiol. 2008 Nov;100(5):2852-65 – reference: 8871243 - J Neurophysiol. 1996 Aug;76(2):1356-60 |
| SSID | ssj0000402003 |
| Score | 2.0238533 |
| Snippet | Computational analyses have revealed that precisely timed spikes emitted by somatosensory cortical neuronal populations encode basic stimulus features in the... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 17 |
| SubjectTerms | Decoding Information Theory Neural coding Neuroscience population coding Somatosensation spike patterns |
| Title | "Information carried by population spike times in the whisker sensory cortex can be decoded without knowledge of stimulus time " |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/21423503 https://www.proquest.com/docview/858282431 https://pubmed.ncbi.nlm.nih.gov/PMC3059688 https://doaj.org/article/a952f767812f4112a37af23ed77a4ede |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1663-3563 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402003 issn: 1663-3563 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1663-3563 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402003 issn: 1663-3563 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagQohLVd6BUs2BC4fVOnayTo5QteLSigNIe4scP9SoJVklG2AP5bcz42TTXYTgwiWR8rQ8E-cbz_j7GHvLfRyrktTLypSmblQ5KxGFzBYLL7i0eeKtD2IT6vIyWy7zTztSX1QTNtADDx0313kqvMIhNRY-QXCgpdJeSGeV0omzjkZfrvKdYCqMwRQWcTnkJTEKy-e-7jb1tpSLB32yu_9QoOv_E8b8vVRy599zfsQOR9AI74fGPmb3XP2EPbwY0-JP2e24qIg6GYxuMfy1UG5gNalzQbeqrh0EJXmoakDYB9-vqu7atdBhJNu0GzBUd_sD76-hdGAdrXa3QBO1Tb-GafINGg84Lnztb_ouPPAZ-3J-9vn042zUVZgZ4m6hahdhjYl97hboSHyRYSenAoGfcFz5JIvj0oncSiLXt7TXmmvEEjr2Qlkln7ODuqndSwZem9hI7RCl2SRORGl9yq3U-HxfmjSJ2Hzby4UZScdJ--KmwOCD7FIEuxRkl5AHVxF7N92xGgg3_nLtBzLcdB1RZYcD6EDF6EDFvxwoYrA1e4GfFuVLdO2avisySikKRFgRezF4wfQmIqqTKZcRU3v-sdeU_TN1dRXYuyUJHmXZq__R9tfs0VDNQFNCx-xg3fbuDXtgvq2rrj1h99UyOwkfBm4vfp79AnrYFvk |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information+carried+by+population+spike+times+in+the+whisker+sensory+cortex+can+be+decoded+without+knowledge+of+stimulus+time&rft.jtitle=Frontiers+in+synaptic+neuroscience&rft.au=Stefano+Panzeri&rft.au=Mathew+E+Diamond&rft.au=Mathew+E+Diamond&rft.date=2010&rft.pub=Frontiers+Media+S.A&rft.eissn=1663-3563&rft.volume=2&rft_id=info:doi/10.3389%2Ffnsyn.2010.00017&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a952f767812f4112a37af23ed77a4ede |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-3563&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-3563&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-3563&client=summon |