Preparation of Stable Zein/Poly(γ‐glutamic acid) Nanocomposite Particles for Improved Encapsulation of Curcumin

The aim of this study is to enhance the stability of zein nanoparticles by using poly(γ‐glutamic acid) (γ‐PGA) as a stabilizer. Zein/γ‐PGA nanocomposite particles are produced through a straightforward anti‐solvent precipitation method. The incorporation of γ‐PGA influenced the average particle size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces Jg. 12; H. 13
Hauptverfasser: Mei, Jie, Li, Yunxing, Feng, Yikai, Zhao, Bingtian, Yang, Cheng, Sun, Yajuan, Ngai, To
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Weinheim John Wiley & Sons, Inc 01.07.2025
Wiley-VCH
Schlagworte:
ISSN:2196-7350, 2196-7350
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The aim of this study is to enhance the stability of zein nanoparticles by using poly(γ‐glutamic acid) (γ‐PGA) as a stabilizer. Zein/γ‐PGA nanocomposite particles are produced through a straightforward anti‐solvent precipitation method. The incorporation of γ‐PGA influenced the average particle size, zeta potential, and overall stability of the resulting zein/γ‐PGA nanocomposite particles. These particles exhibit greater resistance to aggregation and sedimentation compared to zein nanoparticles across various environmental conditions, including a wide pH range (3.0–9.0), elevated temperatures (80 °C for 120 min), high ionic strength (1000 mm), and prolonged storage at 4 °C (up to 3 months). Fluorescence spectroscopy reveals significant interactions between zein and γ‐PGA. Fourier transform infrared spectroscopy and zeta potential measurements indicate that hydrogen bonding, hydrophobic interactions, and electrostatic attraction are the primary mechanisms driving these interactions. Importantly, the conditions for forming zein/γ‐PGA nanocomposite particles are effectively utilized to encapsulate a hydrophobic bioactive model (curcumin) with high encapsulation efficiency. The encapsulated curcumin demonstrates improved stability and an amorphous structure compared to free curcumin. Based on these results, zein/γ‐PGA nanocomposite particles can serve as a promising vehicle for hydrophobic active ingredients in food, pharmaceuticals, and cosmetics. Biocompatible zein/poly(γ‐glutamic acid) nanocomposite particles are developed to enhance the stability of zein nanoparticles, which demonstrate excellent stability under a variety of environmental conditions and effective thermal protection for the encapsulated actives.
AbstractList Abstract The aim of this study is to enhance the stability of zein nanoparticles by using poly(γ‐glutamic acid) (γ‐PGA) as a stabilizer. Zein/γ‐PGA nanocomposite particles are produced through a straightforward anti‐solvent precipitation method. The incorporation of γ‐PGA influenced the average particle size, zeta potential, and overall stability of the resulting zein/γ‐PGA nanocomposite particles. These particles exhibit greater resistance to aggregation and sedimentation compared to zein nanoparticles across various environmental conditions, including a wide pH range (3.0–9.0), elevated temperatures (80 °C for 120 min), high ionic strength (1000 mm), and prolonged storage at 4 °C (up to 3 months). Fluorescence spectroscopy reveals significant interactions between zein and γ‐PGA. Fourier transform infrared spectroscopy and zeta potential measurements indicate that hydrogen bonding, hydrophobic interactions, and electrostatic attraction are the primary mechanisms driving these interactions. Importantly, the conditions for forming zein/γ‐PGA nanocomposite particles are effectively utilized to encapsulate a hydrophobic bioactive model (curcumin) with high encapsulation efficiency. The encapsulated curcumin demonstrates improved stability and an amorphous structure compared to free curcumin. Based on these results, zein/γ‐PGA nanocomposite particles can serve as a promising vehicle for hydrophobic active ingredients in food, pharmaceuticals, and cosmetics.
The aim of this study is to enhance the stability of zein nanoparticles by using poly(γ‐glutamic acid) (γ‐PGA) as a stabilizer. Zein/γ‐PGA nanocomposite particles are produced through a straightforward anti‐solvent precipitation method. The incorporation of γ‐PGA influenced the average particle size, zeta potential, and overall stability of the resulting zein/γ‐PGA nanocomposite particles. These particles exhibit greater resistance to aggregation and sedimentation compared to zein nanoparticles across various environmental conditions, including a wide pH range (3.0–9.0), elevated temperatures (80 °C for 120 min), high ionic strength (1000 mm), and prolonged storage at 4 °C (up to 3 months). Fluorescence spectroscopy reveals significant interactions between zein and γ‐PGA. Fourier transform infrared spectroscopy and zeta potential measurements indicate that hydrogen bonding, hydrophobic interactions, and electrostatic attraction are the primary mechanisms driving these interactions. Importantly, the conditions for forming zein/γ‐PGA nanocomposite particles are effectively utilized to encapsulate a hydrophobic bioactive model (curcumin) with high encapsulation efficiency. The encapsulated curcumin demonstrates improved stability and an amorphous structure compared to free curcumin. Based on these results, zein/γ‐PGA nanocomposite particles can serve as a promising vehicle for hydrophobic active ingredients in food, pharmaceuticals, and cosmetics. Biocompatible zein/poly(γ‐glutamic acid) nanocomposite particles are developed to enhance the stability of zein nanoparticles, which demonstrate excellent stability under a variety of environmental conditions and effective thermal protection for the encapsulated actives.
The aim of this study is to enhance the stability of zein nanoparticles by using poly(γ‐glutamic acid) (γ‐PGA) as a stabilizer. Zein/γ‐PGA nanocomposite particles are produced through a straightforward anti‐solvent precipitation method. The incorporation of γ‐PGA influenced the average particle size, zeta potential, and overall stability of the resulting zein/γ‐PGA nanocomposite particles. These particles exhibit greater resistance to aggregation and sedimentation compared to zein nanoparticles across various environmental conditions, including a wide pH range (3.0–9.0), elevated temperatures (80 °C for 120 min), high ionic strength (1000 mm), and prolonged storage at 4 °C (up to 3 months). Fluorescence spectroscopy reveals significant interactions between zein and γ‐PGA. Fourier transform infrared spectroscopy and zeta potential measurements indicate that hydrogen bonding, hydrophobic interactions, and electrostatic attraction are the primary mechanisms driving these interactions. Importantly, the conditions for forming zein/γ‐PGA nanocomposite particles are effectively utilized to encapsulate a hydrophobic bioactive model (curcumin) with high encapsulation efficiency. The encapsulated curcumin demonstrates improved stability and an amorphous structure compared to free curcumin. Based on these results, zein/γ‐PGA nanocomposite particles can serve as a promising vehicle for hydrophobic active ingredients in food, pharmaceuticals, and cosmetics.
The aim of this study is to enhance the stability of zein nanoparticles by using poly(γ‐glutamic acid) (γ‐PGA) as a stabilizer. Zein/γ‐PGA nanocomposite particles are produced through a straightforward anti‐solvent precipitation method. The incorporation of γ‐PGA influenced the average particle size, zeta potential, and overall stability of the resulting zein/γ‐PGA nanocomposite particles. These particles exhibit greater resistance to aggregation and sedimentation compared to zein nanoparticles across various environmental conditions, including a wide pH range (3.0–9.0), elevated temperatures (80 °C for 120 min), high ionic strength (1000 m m ), and prolonged storage at 4 °C (up to 3 months). Fluorescence spectroscopy reveals significant interactions between zein and γ‐PGA. Fourier transform infrared spectroscopy and zeta potential measurements indicate that hydrogen bonding, hydrophobic interactions, and electrostatic attraction are the primary mechanisms driving these interactions. Importantly, the conditions for forming zein/γ‐PGA nanocomposite particles are effectively utilized to encapsulate a hydrophobic bioactive model (curcumin) with high encapsulation efficiency. The encapsulated curcumin demonstrates improved stability and an amorphous structure compared to free curcumin. Based on these results, zein/γ‐PGA nanocomposite particles can serve as a promising vehicle for hydrophobic active ingredients in food, pharmaceuticals, and cosmetics.
Author Yang, Cheng
Sun, Yajuan
Mei, Jie
Zhao, Bingtian
Li, Yunxing
Feng, Yikai
Ngai, To
Author_xml – sequence: 1
  givenname: Jie
  surname: Mei
  fullname: Mei, Jie
  organization: Jiangnan University
– sequence: 2
  givenname: Yunxing
  surname: Li
  fullname: Li, Yunxing
  organization: Jiangnan University
– sequence: 3
  givenname: Yikai
  surname: Feng
  fullname: Feng, Yikai
  organization: Jiangnan University
– sequence: 4
  givenname: Bingtian
  surname: Zhao
  fullname: Zhao, Bingtian
  organization: Jiangnan University
– sequence: 5
  givenname: Cheng
  surname: Yang
  fullname: Yang, Cheng
  email: cyang@jiangnan.edu.cn
  organization: Jiangnan University
– sequence: 6
  givenname: Yajuan
  surname: Sun
  fullname: Sun, Yajuan
  organization: Jiangnan University
– sequence: 7
  givenname: To
  orcidid: 0000-0002-7207-6878
  surname: Ngai
  fullname: Ngai, To
  email: tongai@cuhk.edu.hk
  organization: The Chinese University of Hong Kong
BookMark eNqFUcuOEzEQtNAisSx75WyJCxyS9Ws8znEVFoi0QCTgwsXqsdsrRzPjwZ4B5cYn8C_8Bx_BlzAhq4gbp261qqqrVI_JWZ96JOQpZ0vOmLgC38WlYKJiTGrxgJwLvtKLWlbs7J_9EbksZccY41xwYeQ5yduMA2QYY-ppCvTDCE2L9DPG_mqb2v3zXz9_f_9x104jdNFRcNG_oO-gTy51QypxRLqFPEbXYqEhZbrphpy-oqc3vYOhTO1Jej1lN3Wxf0IeBmgLXt7PC_Lp1c3H9ZvF7fvXm_X17cLJWqsFBkQvtam5QA9BNwGYkhqUk3rldQXaKOOCNmalZC1RSxA8KD1jDdRyJS_I5qjrE-zskGMHeW8TRPv3kPKdvXduG624VhIN51Jh4I2uvBKMKe4Rq0bOWs-OWnO4LxOW0e7SlPvZvpVCcmYM4wfU8ohyOZWSMZy-cmYPNdlDTfZU00yojoRvscX9f9D2-uXbDRdsjvsHmHqZKA
Cites_doi 10.1021/jf204194z
10.1021/acs.jafc.8b01046
10.1016/j.foodhyd.2023.108774
10.1021/acs.biomac.6b01362
10.1080/10408398.2021.1922873
10.1016/j.foodhyd.2016.10.031
10.1016/j.tifs.2021.11.009
10.1016/j.foodhyd.2021.107208
10.1016/j.carbpol.2018.08.116
10.1016/j.foodhyd.2012.04.014
10.1016/j.ijpharm.2020.119587
10.1021/acsabm.2c00209
10.1016/j.tifs.2021.12.025
10.4014/jmb.1611.11023
10.1016/j.foodchem.2015.03.128
10.1016/j.colsurfb.2021.111827
10.1007/s10965-018-1488-4
10.1016/j.colsurfb.2011.02.020
10.1016/j.foodhyd.2023.109492
10.1016/S0960-8524(01)00074-8
10.1021/acs.langmuir.8b02882
10.1021/bm2008235
10.1016/j.foodhyd.2024.110024
10.1016/j.foodhyd.2018.08.002
10.1016/j.ijpharm.2023.122754
10.1039/c0sm00800a
10.1016/j.ijbiomac.2025.142884
10.1016/j.progpolymsci.2020.101341
10.1016/j.foodhyd.2022.108368
10.1016/j.cej.2024.154662
10.1016/j.progpolymsci.2018.08.005
10.1016/j.foodhyd.2018.04.037
10.1002/anie.201807804
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Materials Interfaces published by Wiley‐VCH GmbH
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Advanced Materials Interfaces published by Wiley‐VCH GmbH
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOA
DOI 10.1002/admi.202500362
DatabaseName Wiley Online Library Open Access
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID oai_doaj_org_article_b641643e81134ef1b65d420041dee5b3
10_1002_admi_202500362
ADMI12094
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51903108
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAFWJ
AAIHA
AAMMB
AAXRX
AAZKR
ABCUV
ABJCF
ACAHQ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFKRA
AFPKN
AGXDD
AIACR
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARAPS
ARCSS
AVUZU
AZVAB
BENPR
BGLVJ
BMXJE
BRXPI
CCPQU
DCZOG
DPXWK
EBS
G-S
GODZA
GROUPED_DOAJ
HCIFZ
KB.
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M7S
MEWTI
MY~
M~E
O9-
P2W
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
R.K
ROL
WBKPD
WOHZO
WXSBR
ZZTAW
AAYXX
ABJNI
AFFHD
AIURR
BFHJK
CITATION
EJD
SUPJJ
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3764-efeed368712edaf6bfa0436a4c369d65a6848cf68894373e63a21f46daf8a7393
IEDL.DBID 24P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001503579900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2196-7350
IngestDate Fri Oct 03 12:51:00 EDT 2025
Thu Oct 09 10:10:54 EDT 2025
Sat Nov 29 07:19:01 EST 2025
Fri Jul 18 09:20:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3764-efeed368712edaf6bfa0436a4c369d65a6848cf68894373e63a21f46daf8a7393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7207-6878
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202500362
PQID 3231088013
PQPubID 2034582
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_b641643e81134ef1b65d420041dee5b3
proquest_journals_3231088013
crossref_primary_10_1002_admi_202500362
wiley_primary_10_1002_admi_202500362_ADMI12094
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2012; 60
2015; 185
2017; 64
2024; 148
2023; 142
2017; 27
2019; 35
2018; 201
2021; 204
2019; 58
2011; 12
2018; 83
2024
2020; 586
2022; 119
2016; 17
2018; 66
2018; 87
2018; 25
2022; 120
2021; 113
2022; 5
2022; 62
2019; 87
2013; 30
2011; 85
2023; 137
2024; 153
2024; 497
2024; 235
2023; 635
2001; 79
2025; 309
2010; 6
2022; 124
e_1_2_8_28_1
Wahab M. (e_1_2_8_5_1) 2024
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
Chen C. (e_1_2_8_6_1) 2024; 235
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 6
  start-page: 6192
  year: 2010
  publication-title: Soft Matter
– volume: 79
  start-page: 207
  year: 2001
  publication-title: Bioresour. Technol.
– volume: 62
  start-page: 8028
  year: 2022
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 124
  year: 2022
  publication-title: Food Hydrocolloids
– volume: 148
  year: 2024
  publication-title: Food Hydrocolloids
– volume: 87
  start-page: 342
  year: 2019
  publication-title: Food Hydrocolloids
– volume: 185
  start-page: 261
  year: 2015
  publication-title: Food Chem.
– volume: 201
  start-page: 599
  year: 2018
  publication-title: Carbohydr. Polym.
– volume: 64
  start-page: 36
  year: 2017
  publication-title: Food Hydrocolloids
– volume: 119
  start-page: 1
  year: 2022
  publication-title: Trends Food Sci. Technol.
– volume: 309
  year: 2025
  publication-title: Int. J. Biol. Macromol.
– volume: 35
  start-page: 3710
  year: 2019
  publication-title: Langmuir
– volume: 120
  start-page: 1
  year: 2022
  publication-title: Trends Food Sci. Technol.
– volume: 85
  start-page: 145
  year: 2011
  publication-title: Colloids Surf., B
– volume: 12
  start-page: 4183
  year: 2011
  publication-title: Biomacromolecules
– volume: 66
  start-page: 7441
  year: 2018
  publication-title: J. Agric. Food. Chem.
– volume: 83
  start-page: 25
  year: 2018
  publication-title: Food Hydrocolloids
– volume: 635
  year: 2023
  publication-title: Int. J. Pharm.
– volume: 58
  start-page: 1904
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 497
  year: 2024
  publication-title: Chem. Eng. J.
– volume: 60
  start-page: 836
  year: 2012
  publication-title: J. Agric. Food. Chem.
– volume: 586
  year: 2020
  publication-title: Int. J. Pharm.
– volume: 25
  start-page: 92
  year: 2018
  publication-title: J. Polym. Res.
– volume: 27
  start-page: 412
  year: 2017
  publication-title: J. Microbiol. Biotechnol.
– volume: 113
  year: 2021
  publication-title: Prog. Polym. Sci.
– volume: 5
  start-page: 1817
  year: 2022
  publication-title: ACS Appl. Bio Mater.
– volume: 153
  year: 2024
  publication-title: Food Hydrocolloids
– volume: 137
  year: 2023
  publication-title: Food Hydrocolloids
– volume: 142
  year: 2023
  publication-title: Food Hydrocolloids
– volume: 87
  start-page: 165
  year: 2018
  publication-title: Prog. Polym. Sci.
– volume: 235
  start-page: 0616
  year: 2024
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 30
  start-page: 33
  year: 2013
  publication-title: Food Hydrocolloids
– volume: 204
  year: 2021
  publication-title: Colloids Surf., B
– volume: 17
  start-page: 3973
  year: 2016
  publication-title: Biomacromolecules
– start-page: 333
  year: 2024
  publication-title: Carbohydr. Polym.
– ident: e_1_2_8_32_1
  doi: 10.1021/jf204194z
– ident: e_1_2_8_30_1
  doi: 10.1021/acs.jafc.8b01046
– ident: e_1_2_8_26_1
  doi: 10.1016/j.foodhyd.2023.108774
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.biomac.6b01362
– ident: e_1_2_8_3_1
  doi: 10.1080/10408398.2021.1922873
– ident: e_1_2_8_28_1
  doi: 10.1016/j.foodhyd.2016.10.031
– start-page: 333
  year: 2024
  ident: e_1_2_8_5_1
  publication-title: Carbohydr. Polym.
– ident: e_1_2_8_22_1
  doi: 10.1016/j.tifs.2021.11.009
– ident: e_1_2_8_19_1
  doi: 10.1016/j.foodhyd.2021.107208
– ident: e_1_2_8_29_1
  doi: 10.1016/j.carbpol.2018.08.116
– ident: e_1_2_8_23_1
  doi: 10.1016/j.foodhyd.2012.04.014
– ident: e_1_2_8_35_1
  doi: 10.1016/j.ijpharm.2020.119587
– ident: e_1_2_8_8_1
  doi: 10.1021/acsabm.2c00209
– ident: e_1_2_8_15_1
  doi: 10.1016/j.tifs.2021.12.025
– ident: e_1_2_8_33_1
  doi: 10.4014/jmb.1611.11023
– ident: e_1_2_8_34_1
  doi: 10.1016/j.foodchem.2015.03.128
– ident: e_1_2_8_17_1
  doi: 10.1016/j.colsurfb.2021.111827
– ident: e_1_2_8_25_1
  doi: 10.1007/s10965-018-1488-4
– ident: e_1_2_8_31_1
  doi: 10.1016/j.colsurfb.2011.02.020
– ident: e_1_2_8_7_1
  doi: 10.1016/j.foodhyd.2023.109492
– ident: e_1_2_8_20_1
  doi: 10.1016/S0960-8524(01)00074-8
– ident: e_1_2_8_10_1
  doi: 10.1021/acs.langmuir.8b02882
– ident: e_1_2_8_24_1
  doi: 10.1021/bm2008235
– ident: e_1_2_8_18_1
  doi: 10.1016/j.foodhyd.2024.110024
– ident: e_1_2_8_13_1
  doi: 10.1016/j.foodhyd.2018.08.002
– ident: e_1_2_8_9_1
  doi: 10.1016/j.ijpharm.2023.122754
– ident: e_1_2_8_12_1
  doi: 10.1039/c0sm00800a
– ident: e_1_2_8_16_1
  doi: 10.1016/j.ijbiomac.2025.142884
– ident: e_1_2_8_21_1
  doi: 10.1016/j.progpolymsci.2020.101341
– ident: e_1_2_8_11_1
  doi: 10.1016/j.foodhyd.2022.108368
– ident: e_1_2_8_4_1
  doi: 10.1016/j.cej.2024.154662
– volume: 235
  start-page: 0616
  year: 2024
  ident: e_1_2_8_6_1
  publication-title: Crit. Rev. Food Sci. Nutr.
– ident: e_1_2_8_2_1
  doi: 10.1016/j.progpolymsci.2018.08.005
– ident: e_1_2_8_14_1
  doi: 10.1016/j.foodhyd.2018.04.037
– ident: e_1_2_8_1_1
  doi: 10.1002/anie.201807804
SSID ssj0001121283
Score 2.3404636
Snippet The aim of this study is to enhance the stability of zein nanoparticles by using poly(γ‐glutamic acid) (γ‐PGA) as a stabilizer. Zein/γ‐PGA nanocomposite...
Abstract The aim of this study is to enhance the stability of zein nanoparticles by using poly(γ‐glutamic acid) (γ‐PGA) as a stabilizer. Zein/γ‐PGA...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Cosmetics
Encapsulation
Fourier transforms
Glutamic acid
High temperature
Hydrophobicity
Infrared spectroscopy
nanocomposite particle
Nanocomposites
Nanoparticles
poly(γ‐glutamic acid)
polyphenol
Spectrum analysis
Stability
Zein
Zeta potential
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELaqqkhcEJQiFkrlQyXaQ2gdO45z7K_aA9UeQKq4WP4Zo5W2Ccp2kbjxCLwL78FD8CTMOLur7akXrok1msw4M99Y428Y23dOe6CT-1qiG1Q0vvCNaIqmCplxDWod87CJ-ubG3N4247VRX9QTNtADD4Y78hohg5JghJAKkvC6iopcKyJA5TPPJ6KetWIqn64IDMlGLlkaj8sjF-8mWA5ixqeY_SALZbL-BwhzHafmRHP5nD1bIER-Mmj2gm1Au82e5E7NMHvJ-nEPA1931_IucUSLfgr8C1CF201_HPz5_ffnr6-4oWjSPHdhEg85xtCOmsepQwv4eNkNxxGx8uFYASK_aIPDmnm6En0278P8btLusM-XF5_OrorF4IQiYLxQBSTMfFJjLVRCdEn75Ihp3qkgdRN15bRRJiRtiHy9lqClK0VSGtcaRxR5r9hm27XwmvEkq8anMpWxVqoU0AhvFFTHAcVUqlQj9n5pSPtt4MewAxNyacnkdmXyETslO69WEa91foDetovvto95e8R2l16yi59tZiVhVIxDAl9_yJ57RBV7cv7xmi4Nqzf_Q6m37CmJHpp4d9nmfT-Hd2wrfL-fzPq9vDH_AR965kY
  priority: 102
  providerName: Directory of Open Access Journals
Title Preparation of Stable Zein/Poly(γ‐glutamic acid) Nanocomposite Particles for Improved Encapsulation of Curcumin
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202500362
https://www.proquest.com/docview/3231088013
https://doaj.org/article/b641643e81134ef1b65d420041dee5b3
Volume 12
WOSCitedRecordID wos001503579900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: KB.
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: 24P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQCxIX_lEXysoHJOAQuo4dJzl2y1YgxCriR6p6ifwzrlbaJijbReKCeATehffgIXgSZpzdbfeEEBcfEsdyPP-j8TeMPTVGW6DMfS6RDMoXNrGlKJMycxFxDXLtY7OJfDotTk7K6sot_h4fYpNwI8mI-poE3NjFwSVoqPHnM4zv0IT3SnhXCFlQ84ZUVZdZFoGqOWJxomRq3FA2WiM3jtKD7SW2LFME8N_yOq_6rtH4HN_-_23fYbdWjic_7DnlLrsGzT12IxaAusV91lUd9DDgbcPbwNEJtXPgp0CBczv_-vzXz9_ff5whn1IDe27czL_gqJpbqkmnwi_g1brIjqMjzPtsBXg-aZzBUHy-Wfpo2bnl-ax5wD4dTz4evU5W_RgSh2pIJRDQoEqNIVYK3gRtgyEAe6Oc1KXXmdGFKlzQBWG65xK0NKkISuPcwhDy3kO207QN7DEeZFbakIbU50qlAkphCwXZyOEymUrVgD1b06L-3MNu1D3AclrTCdabExywMZFqM4vgsuODtjurV_9dW41-p5JQII8oCMLqzCvSD8IDZFYO2P6a0PVKhhe1JNcX1ZvA1z1J_7KV-vDVuzd0F1k9-tcPHrOb9LSvA95nOxfdEp6w6-7LxWzRDSNPD9nueDKt3g9j2gDHt-OXQypV_UDjtwmOVXb6B8U-_mI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQAcGFf8RCAR-QgEPUdew4ybGUVq1oV3soUsXF8s-4WmmboGwXiRuPwLvwHjwET8KMk92yJ4TENXEsx_P3zWj8mbFX1moHVLkvJYpBhcplrhZ1Vhc-Ma5BqUO6bKKcTKqzs3o6dBPSWZieH2JdcCPLSP6aDJwK0jtXrKE2XMwwwcMY3nvh6wpDDal6rqZXZRaBvjmRcaJpalxRMV5RN47znc0pNkJTYvDfgJ1_gtcUfQ7u_od132N3BujJd3tduc-uQfOA3UwtoH7xkHXTDnoi8LbhbeQIQ90c-Ceg1Lmdf33z88evb9_PUVPpCntu_Sy85eicW-pKp9Yv4NNVmx1HKMz7egUEvt94i8n4fD313rLzy4tZ84h9PNg_3TvMhhsZMo-OSGUQMaRKjUlWDsFG7aIlCnurvNR10IXVlap81BWxupcStLS5iErj2MoS995jttW0DTxhPMqidjGPeSiVygXUwlUKirHHaQqVqxF7vRKG-dwTb5ieYjk3tINmvYMj9o5ktR5FhNnpQdudm-G_jdOIPJWESgipIAqni6DIQ4gAUDg5YtsrSZvBihdGEvhFByfwdS_TvyzF7L4_OaLTyOrpv37wkt06PD05NsdHkw_P2G0a0XcFb7Oty24Jz9kN_-VytuheJAX_DU5t-7k
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQoYgL_4iFAj4gAYeo69hxkmNpu6JqWeVApYqL5Z9xtdI2qbJdJG48Au_Ce_AQPAkzSXbLnhAS18SxHM_MNz8af2bstbXaAVXuc4liUKFwiStFmZSZ7xjXINehu2win06Ls7OyGroJ6SxMzw-xLriRZXR4TQYOlyHuXrOG2nAxwwQPfXiPwjdVlgtS7FRV12UWgdjckXGiaWpcUTZeUTeO093NKTZcU8fgvxF2_hm8dt5ncu8_rPs-uzuEnnyv15UH7AbUD9l21wLqF49YW7XQE4E3NW8ixzDUzYF_Bkqdm_nXtz9__Pr2_Rw1la6w59bPwjuO4NxQVzq1fgGvVm12HENh3tcrIPDD2ltMxufrqfeXrV9ezOrH7HRy-Gn_QzLcyJB4BCKVQESXKjUmWSkEG7WLlijsrfJSl0FnVheq8FEXxOqeS9DSpiIqjWMLS9x7T9hW3dTwlPEos9LFNKYhVyoVUApXKMjGHqfJVKpG7M1KGOayJ94wPcVyamgHzXoHR-w9yWo9igizuwdNe26G_zZOY-SpJBRCSAVROJ0FRQghAkDm5IjtrCRtBiteGEnBLwKcwNe9TP-yFLN38PGITiOrZ__6wSt2uzqYmJOj6fFzdocG9E3BO2zrql3CC3bLf7maLdqXnX7_Bvlp-z0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+Stable+Zein%2FPoly%28%CE%B3%E2%80%90glutamic+acid%29+Nanocomposite+Particles+for+Improved+Encapsulation+of+Curcumin&rft.jtitle=Advanced+materials+interfaces&rft.au=Mei%2C+Jie&rft.au=Li%2C+Yunxing&rft.au=Feng%2C+Yikai&rft.au=Zhao%2C+Bingtian&rft.date=2025-07-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=12&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.202500362&rft.externalDBID=10.1002%252Fadmi.202500362&rft.externalDocID=ADMI12094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon