Preparation of Stable Zein/Poly(γ‐glutamic acid) Nanocomposite Particles for Improved Encapsulation of Curcumin
The aim of this study is to enhance the stability of zein nanoparticles by using poly(γ‐glutamic acid) (γ‐PGA) as a stabilizer. Zein/γ‐PGA nanocomposite particles are produced through a straightforward anti‐solvent precipitation method. The incorporation of γ‐PGA influenced the average particle size...
Uložené v:
| Vydané v: | Advanced materials interfaces Ročník 12; číslo 13 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Weinheim
John Wiley & Sons, Inc
01.07.2025
Wiley-VCH |
| Predmet: | |
| ISSN: | 2196-7350, 2196-7350 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The aim of this study is to enhance the stability of zein nanoparticles by using poly(γ‐glutamic acid) (γ‐PGA) as a stabilizer. Zein/γ‐PGA nanocomposite particles are produced through a straightforward anti‐solvent precipitation method. The incorporation of γ‐PGA influenced the average particle size, zeta potential, and overall stability of the resulting zein/γ‐PGA nanocomposite particles. These particles exhibit greater resistance to aggregation and sedimentation compared to zein nanoparticles across various environmental conditions, including a wide pH range (3.0–9.0), elevated temperatures (80 °C for 120 min), high ionic strength (1000 mm), and prolonged storage at 4 °C (up to 3 months). Fluorescence spectroscopy reveals significant interactions between zein and γ‐PGA. Fourier transform infrared spectroscopy and zeta potential measurements indicate that hydrogen bonding, hydrophobic interactions, and electrostatic attraction are the primary mechanisms driving these interactions. Importantly, the conditions for forming zein/γ‐PGA nanocomposite particles are effectively utilized to encapsulate a hydrophobic bioactive model (curcumin) with high encapsulation efficiency. The encapsulated curcumin demonstrates improved stability and an amorphous structure compared to free curcumin. Based on these results, zein/γ‐PGA nanocomposite particles can serve as a promising vehicle for hydrophobic active ingredients in food, pharmaceuticals, and cosmetics.
Biocompatible zein/poly(γ‐glutamic acid) nanocomposite particles are developed to enhance the stability of zein nanoparticles, which demonstrate excellent stability under a variety of environmental conditions and effective thermal protection for the encapsulated actives. |
|---|---|
| AbstractList | Abstract The aim of this study is to enhance the stability of zein nanoparticles by using poly(γ‐glutamic acid) (γ‐PGA) as a stabilizer. Zein/γ‐PGA nanocomposite particles are produced through a straightforward anti‐solvent precipitation method. The incorporation of γ‐PGA influenced the average particle size, zeta potential, and overall stability of the resulting zein/γ‐PGA nanocomposite particles. These particles exhibit greater resistance to aggregation and sedimentation compared to zein nanoparticles across various environmental conditions, including a wide pH range (3.0–9.0), elevated temperatures (80 °C for 120 min), high ionic strength (1000 mm), and prolonged storage at 4 °C (up to 3 months). Fluorescence spectroscopy reveals significant interactions between zein and γ‐PGA. Fourier transform infrared spectroscopy and zeta potential measurements indicate that hydrogen bonding, hydrophobic interactions, and electrostatic attraction are the primary mechanisms driving these interactions. Importantly, the conditions for forming zein/γ‐PGA nanocomposite particles are effectively utilized to encapsulate a hydrophobic bioactive model (curcumin) with high encapsulation efficiency. The encapsulated curcumin demonstrates improved stability and an amorphous structure compared to free curcumin. Based on these results, zein/γ‐PGA nanocomposite particles can serve as a promising vehicle for hydrophobic active ingredients in food, pharmaceuticals, and cosmetics. The aim of this study is to enhance the stability of zein nanoparticles by using poly(γ‐glutamic acid) (γ‐PGA) as a stabilizer. Zein/γ‐PGA nanocomposite particles are produced through a straightforward anti‐solvent precipitation method. The incorporation of γ‐PGA influenced the average particle size, zeta potential, and overall stability of the resulting zein/γ‐PGA nanocomposite particles. These particles exhibit greater resistance to aggregation and sedimentation compared to zein nanoparticles across various environmental conditions, including a wide pH range (3.0–9.0), elevated temperatures (80 °C for 120 min), high ionic strength (1000 mm), and prolonged storage at 4 °C (up to 3 months). Fluorescence spectroscopy reveals significant interactions between zein and γ‐PGA. Fourier transform infrared spectroscopy and zeta potential measurements indicate that hydrogen bonding, hydrophobic interactions, and electrostatic attraction are the primary mechanisms driving these interactions. Importantly, the conditions for forming zein/γ‐PGA nanocomposite particles are effectively utilized to encapsulate a hydrophobic bioactive model (curcumin) with high encapsulation efficiency. The encapsulated curcumin demonstrates improved stability and an amorphous structure compared to free curcumin. Based on these results, zein/γ‐PGA nanocomposite particles can serve as a promising vehicle for hydrophobic active ingredients in food, pharmaceuticals, and cosmetics. Biocompatible zein/poly(γ‐glutamic acid) nanocomposite particles are developed to enhance the stability of zein nanoparticles, which demonstrate excellent stability under a variety of environmental conditions and effective thermal protection for the encapsulated actives. The aim of this study is to enhance the stability of zein nanoparticles by using poly(γ‐glutamic acid) (γ‐PGA) as a stabilizer. Zein/γ‐PGA nanocomposite particles are produced through a straightforward anti‐solvent precipitation method. The incorporation of γ‐PGA influenced the average particle size, zeta potential, and overall stability of the resulting zein/γ‐PGA nanocomposite particles. These particles exhibit greater resistance to aggregation and sedimentation compared to zein nanoparticles across various environmental conditions, including a wide pH range (3.0–9.0), elevated temperatures (80 °C for 120 min), high ionic strength (1000 mm), and prolonged storage at 4 °C (up to 3 months). Fluorescence spectroscopy reveals significant interactions between zein and γ‐PGA. Fourier transform infrared spectroscopy and zeta potential measurements indicate that hydrogen bonding, hydrophobic interactions, and electrostatic attraction are the primary mechanisms driving these interactions. Importantly, the conditions for forming zein/γ‐PGA nanocomposite particles are effectively utilized to encapsulate a hydrophobic bioactive model (curcumin) with high encapsulation efficiency. The encapsulated curcumin demonstrates improved stability and an amorphous structure compared to free curcumin. Based on these results, zein/γ‐PGA nanocomposite particles can serve as a promising vehicle for hydrophobic active ingredients in food, pharmaceuticals, and cosmetics. The aim of this study is to enhance the stability of zein nanoparticles by using poly(γ‐glutamic acid) (γ‐PGA) as a stabilizer. Zein/γ‐PGA nanocomposite particles are produced through a straightforward anti‐solvent precipitation method. The incorporation of γ‐PGA influenced the average particle size, zeta potential, and overall stability of the resulting zein/γ‐PGA nanocomposite particles. These particles exhibit greater resistance to aggregation and sedimentation compared to zein nanoparticles across various environmental conditions, including a wide pH range (3.0–9.0), elevated temperatures (80 °C for 120 min), high ionic strength (1000 m m ), and prolonged storage at 4 °C (up to 3 months). Fluorescence spectroscopy reveals significant interactions between zein and γ‐PGA. Fourier transform infrared spectroscopy and zeta potential measurements indicate that hydrogen bonding, hydrophobic interactions, and electrostatic attraction are the primary mechanisms driving these interactions. Importantly, the conditions for forming zein/γ‐PGA nanocomposite particles are effectively utilized to encapsulate a hydrophobic bioactive model (curcumin) with high encapsulation efficiency. The encapsulated curcumin demonstrates improved stability and an amorphous structure compared to free curcumin. Based on these results, zein/γ‐PGA nanocomposite particles can serve as a promising vehicle for hydrophobic active ingredients in food, pharmaceuticals, and cosmetics. |
| Author | Yang, Cheng Sun, Yajuan Mei, Jie Zhao, Bingtian Li, Yunxing Feng, Yikai Ngai, To |
| Author_xml | – sequence: 1 givenname: Jie surname: Mei fullname: Mei, Jie organization: Jiangnan University – sequence: 2 givenname: Yunxing surname: Li fullname: Li, Yunxing organization: Jiangnan University – sequence: 3 givenname: Yikai surname: Feng fullname: Feng, Yikai organization: Jiangnan University – sequence: 4 givenname: Bingtian surname: Zhao fullname: Zhao, Bingtian organization: Jiangnan University – sequence: 5 givenname: Cheng surname: Yang fullname: Yang, Cheng email: cyang@jiangnan.edu.cn organization: Jiangnan University – sequence: 6 givenname: Yajuan surname: Sun fullname: Sun, Yajuan organization: Jiangnan University – sequence: 7 givenname: To orcidid: 0000-0002-7207-6878 surname: Ngai fullname: Ngai, To email: tongai@cuhk.edu.hk organization: The Chinese University of Hong Kong |
| BookMark | eNqFUcuOEzEQtNAisSx75WyJCxyS9Ws8znEVFoi0QCTgwsXqsdsrRzPjwZ4B5cYn8C_8Bx_BlzAhq4gbp261qqqrVI_JWZ96JOQpZ0vOmLgC38WlYKJiTGrxgJwLvtKLWlbs7J_9EbksZccY41xwYeQ5yduMA2QYY-ppCvTDCE2L9DPG_mqb2v3zXz9_f_9x104jdNFRcNG_oO-gTy51QypxRLqFPEbXYqEhZbrphpy-oqc3vYOhTO1Jej1lN3Wxf0IeBmgLXt7PC_Lp1c3H9ZvF7fvXm_X17cLJWqsFBkQvtam5QA9BNwGYkhqUk3rldQXaKOOCNmalZC1RSxA8KD1jDdRyJS_I5qjrE-zskGMHeW8TRPv3kPKdvXduG624VhIN51Jh4I2uvBKMKe4Rq0bOWs-OWnO4LxOW0e7SlPvZvpVCcmYM4wfU8ohyOZWSMZy-cmYPNdlDTfZU00yojoRvscX9f9D2-uXbDRdsjvsHmHqZKA |
| Cites_doi | 10.1021/jf204194z 10.1021/acs.jafc.8b01046 10.1016/j.foodhyd.2023.108774 10.1021/acs.biomac.6b01362 10.1080/10408398.2021.1922873 10.1016/j.foodhyd.2016.10.031 10.1016/j.tifs.2021.11.009 10.1016/j.foodhyd.2021.107208 10.1016/j.carbpol.2018.08.116 10.1016/j.foodhyd.2012.04.014 10.1016/j.ijpharm.2020.119587 10.1021/acsabm.2c00209 10.1016/j.tifs.2021.12.025 10.4014/jmb.1611.11023 10.1016/j.foodchem.2015.03.128 10.1016/j.colsurfb.2021.111827 10.1007/s10965-018-1488-4 10.1016/j.colsurfb.2011.02.020 10.1016/j.foodhyd.2023.109492 10.1016/S0960-8524(01)00074-8 10.1021/acs.langmuir.8b02882 10.1021/bm2008235 10.1016/j.foodhyd.2024.110024 10.1016/j.foodhyd.2018.08.002 10.1016/j.ijpharm.2023.122754 10.1039/c0sm00800a 10.1016/j.ijbiomac.2025.142884 10.1016/j.progpolymsci.2020.101341 10.1016/j.foodhyd.2022.108368 10.1016/j.cej.2024.154662 10.1016/j.progpolymsci.2018.08.005 10.1016/j.foodhyd.2018.04.037 10.1002/anie.201807804 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). Advanced Materials Interfaces published by Wiley‐VCH GmbH 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). Advanced Materials Interfaces published by Wiley‐VCH GmbH – notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M DOA |
| DOI | 10.1002/admi.202500362 |
| DatabaseName | Wiley Online Library Open Access CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2196-7350 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_b641643e81134ef1b65d420041dee5b3 10_1002_admi_202500362 ADMI12094 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51903108 |
| GroupedDBID | 0R~ 1OC 24P 33P AAESR AAFWJ AAIHA AAMMB AAXRX AAZKR ABCUV ABJCF ACAHQ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFKRA AFPKN AGXDD AIACR AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARAPS ARCSS AVUZU AZVAB BENPR BGLVJ BMXJE BRXPI CCPQU DCZOG DPXWK EBS G-S GODZA GROUPED_DOAJ HCIFZ KB. LATKE LEEKS LITHE LOXES LUTES LYRES M7S MEWTI MY~ M~E O9- P2W PDBOC PHGZM PHGZT PQGLB PTHSS R.K ROL WBKPD WOHZO WXSBR ZZTAW AAYXX ABJNI AFFHD AIURR BFHJK CITATION EJD SUPJJ 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3764-efeed368712edaf6bfa0436a4c369d65a6848cf68894373e63a21f46daf8a7393 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001503579900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2196-7350 |
| IngestDate | Fri Oct 03 12:51:00 EDT 2025 Thu Oct 09 10:10:54 EDT 2025 Sat Nov 29 07:19:01 EST 2025 Fri Jul 18 09:20:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3764-efeed368712edaf6bfa0436a4c369d65a6848cf68894373e63a21f46daf8a7393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7207-6878 |
| OpenAccessLink | https://doaj.org/article/b641643e81134ef1b65d420041dee5b3 |
| PQID | 3231088013 |
| PQPubID | 2034582 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b641643e81134ef1b65d420041dee5b3 proquest_journals_3231088013 crossref_primary_10_1002_admi_202500362 wiley_primary_10_1002_admi_202500362_ADMI12094 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Advanced materials interfaces |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc Wiley-VCH |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
| References | 2012; 60 2015; 185 2017; 64 2024; 148 2023; 142 2017; 27 2019; 35 2018; 201 2021; 204 2019; 58 2011; 12 2018; 83 2024 2020; 586 2022; 119 2016; 17 2018; 66 2018; 87 2018; 25 2022; 120 2021; 113 2022; 5 2022; 62 2019; 87 2013; 30 2011; 85 2023; 137 2024; 153 2024; 497 2024; 235 2023; 635 2001; 79 2025; 309 2010; 6 2022; 124 e_1_2_8_28_1 Wahab M. (e_1_2_8_5_1) 2024 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 Chen C. (e_1_2_8_6_1) 2024; 235 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 6 start-page: 6192 year: 2010 publication-title: Soft Matter – volume: 79 start-page: 207 year: 2001 publication-title: Bioresour. Technol. – volume: 62 start-page: 8028 year: 2022 publication-title: Crit. Rev. Food Sci. Nutr. – volume: 124 year: 2022 publication-title: Food Hydrocolloids – volume: 148 year: 2024 publication-title: Food Hydrocolloids – volume: 87 start-page: 342 year: 2019 publication-title: Food Hydrocolloids – volume: 185 start-page: 261 year: 2015 publication-title: Food Chem. – volume: 201 start-page: 599 year: 2018 publication-title: Carbohydr. Polym. – volume: 64 start-page: 36 year: 2017 publication-title: Food Hydrocolloids – volume: 119 start-page: 1 year: 2022 publication-title: Trends Food Sci. Technol. – volume: 309 year: 2025 publication-title: Int. J. Biol. Macromol. – volume: 35 start-page: 3710 year: 2019 publication-title: Langmuir – volume: 120 start-page: 1 year: 2022 publication-title: Trends Food Sci. Technol. – volume: 85 start-page: 145 year: 2011 publication-title: Colloids Surf., B – volume: 12 start-page: 4183 year: 2011 publication-title: Biomacromolecules – volume: 66 start-page: 7441 year: 2018 publication-title: J. Agric. Food. Chem. – volume: 83 start-page: 25 year: 2018 publication-title: Food Hydrocolloids – volume: 635 year: 2023 publication-title: Int. J. Pharm. – volume: 58 start-page: 1904 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 497 year: 2024 publication-title: Chem. Eng. J. – volume: 60 start-page: 836 year: 2012 publication-title: J. Agric. Food. Chem. – volume: 586 year: 2020 publication-title: Int. J. Pharm. – volume: 25 start-page: 92 year: 2018 publication-title: J. Polym. Res. – volume: 27 start-page: 412 year: 2017 publication-title: J. Microbiol. Biotechnol. – volume: 113 year: 2021 publication-title: Prog. Polym. Sci. – volume: 5 start-page: 1817 year: 2022 publication-title: ACS Appl. Bio Mater. – volume: 153 year: 2024 publication-title: Food Hydrocolloids – volume: 137 year: 2023 publication-title: Food Hydrocolloids – volume: 142 year: 2023 publication-title: Food Hydrocolloids – volume: 87 start-page: 165 year: 2018 publication-title: Prog. Polym. Sci. – volume: 235 start-page: 0616 year: 2024 publication-title: Crit. Rev. Food Sci. Nutr. – volume: 30 start-page: 33 year: 2013 publication-title: Food Hydrocolloids – volume: 204 year: 2021 publication-title: Colloids Surf., B – volume: 17 start-page: 3973 year: 2016 publication-title: Biomacromolecules – start-page: 333 year: 2024 publication-title: Carbohydr. Polym. – ident: e_1_2_8_32_1 doi: 10.1021/jf204194z – ident: e_1_2_8_30_1 doi: 10.1021/acs.jafc.8b01046 – ident: e_1_2_8_26_1 doi: 10.1016/j.foodhyd.2023.108774 – ident: e_1_2_8_27_1 doi: 10.1021/acs.biomac.6b01362 – ident: e_1_2_8_3_1 doi: 10.1080/10408398.2021.1922873 – ident: e_1_2_8_28_1 doi: 10.1016/j.foodhyd.2016.10.031 – start-page: 333 year: 2024 ident: e_1_2_8_5_1 publication-title: Carbohydr. Polym. – ident: e_1_2_8_22_1 doi: 10.1016/j.tifs.2021.11.009 – ident: e_1_2_8_19_1 doi: 10.1016/j.foodhyd.2021.107208 – ident: e_1_2_8_29_1 doi: 10.1016/j.carbpol.2018.08.116 – ident: e_1_2_8_23_1 doi: 10.1016/j.foodhyd.2012.04.014 – ident: e_1_2_8_35_1 doi: 10.1016/j.ijpharm.2020.119587 – ident: e_1_2_8_8_1 doi: 10.1021/acsabm.2c00209 – ident: e_1_2_8_15_1 doi: 10.1016/j.tifs.2021.12.025 – ident: e_1_2_8_33_1 doi: 10.4014/jmb.1611.11023 – ident: e_1_2_8_34_1 doi: 10.1016/j.foodchem.2015.03.128 – ident: e_1_2_8_17_1 doi: 10.1016/j.colsurfb.2021.111827 – ident: e_1_2_8_25_1 doi: 10.1007/s10965-018-1488-4 – ident: e_1_2_8_31_1 doi: 10.1016/j.colsurfb.2011.02.020 – ident: e_1_2_8_7_1 doi: 10.1016/j.foodhyd.2023.109492 – ident: e_1_2_8_20_1 doi: 10.1016/S0960-8524(01)00074-8 – ident: e_1_2_8_10_1 doi: 10.1021/acs.langmuir.8b02882 – ident: e_1_2_8_24_1 doi: 10.1021/bm2008235 – ident: e_1_2_8_18_1 doi: 10.1016/j.foodhyd.2024.110024 – ident: e_1_2_8_13_1 doi: 10.1016/j.foodhyd.2018.08.002 – ident: e_1_2_8_9_1 doi: 10.1016/j.ijpharm.2023.122754 – ident: e_1_2_8_12_1 doi: 10.1039/c0sm00800a – ident: e_1_2_8_16_1 doi: 10.1016/j.ijbiomac.2025.142884 – ident: e_1_2_8_21_1 doi: 10.1016/j.progpolymsci.2020.101341 – ident: e_1_2_8_11_1 doi: 10.1016/j.foodhyd.2022.108368 – ident: e_1_2_8_4_1 doi: 10.1016/j.cej.2024.154662 – volume: 235 start-page: 0616 year: 2024 ident: e_1_2_8_6_1 publication-title: Crit. Rev. Food Sci. Nutr. – ident: e_1_2_8_2_1 doi: 10.1016/j.progpolymsci.2018.08.005 – ident: e_1_2_8_14_1 doi: 10.1016/j.foodhyd.2018.04.037 – ident: e_1_2_8_1_1 doi: 10.1002/anie.201807804 |
| SSID | ssj0001121283 |
| Score | 2.3404636 |
| Snippet | The aim of this study is to enhance the stability of zein nanoparticles by using poly(γ‐glutamic acid) (γ‐PGA) as a stabilizer. Zein/γ‐PGA nanocomposite... Abstract The aim of this study is to enhance the stability of zein nanoparticles by using poly(γ‐glutamic acid) (γ‐PGA) as a stabilizer. Zein/γ‐PGA... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| SubjectTerms | Cosmetics Encapsulation Fourier transforms Glutamic acid High temperature Hydrophobicity Infrared spectroscopy nanocomposite particle Nanocomposites Nanoparticles poly(γ‐glutamic acid) polyphenol Spectrum analysis Stability Zein Zeta potential |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LThwxELUiCFI2kA9RJpDIi0gkixbjT7vdS0JAySJoFkRC2Vj-lNFIQ3fUwyCx4wi5C_fgEJwk5fbMwKyiKFu3bbldH7-yyq8I-QAyVF7zqqijVYWMNZpUYGUxdKL0Q6bBlqEvNlGdnOizs3r06BV_5odYXrgly-j9dTJw66b7D6ShNlyMMb7DIzw74XXGhE7FG7gcPdyyMHTNPRcnWqYqKlEOF8yNQ76_OsXKydQT-K-gzsfYtT98jrf-f9nPyeYceNKDrCkvyBNoXpKNPgHUT1-RbtRBpgFvG9pGiiDUTYD-hBQ4t5Prj3e39ze_z1FPUwF7av04fKLomtuUk54Sv4COFkl2FIEwzbcVEOhR4y2G4pPl1Iezzs8uxs02-XF8dHr4tZjXYyg8uiFZQMQDVSgMsTgEG5WLNhHYW-mFqoMqrdJS-6h04nSvBChhOYtSYV9tE_Pea7LWtA28IVRHzryTDlSNY7h1UmLcpR0CPh6kKgdkbyEL8yvTbphMsMxN2kGz3MEB-ZxEteyV6LL7hrY7N_P_Nk4h7pQCNOqIhMicKoNM_oEFgNKJAdldCNrMbXhqRIK-6N4Yfs4i_ctSzMGX79_SW2T59l8H7JBnqTXnAe-StctuBu_IU391OZ5273ud_gN82vgF priority: 102 providerName: Wiley-Blackwell |
| Title | Preparation of Stable Zein/Poly(γ‐glutamic acid) Nanocomposite Particles for Improved Encapsulation of Curcumin |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202500362 https://www.proquest.com/docview/3231088013 https://doaj.org/article/b641643e81134ef1b65d420041dee5b3 |
| Volume | 12 |
| WOSCitedRecordID | wos001503579900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: P5Z dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: M7S dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: KB. dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: BENPR dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: 24P dateStart: 20230101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbhMxELaggMQF8SsCJfIBCThsG_-s4z02JRUIEa34kapeLP-iSOku2jRIXBCPwLvwHjwET8KMN4nSUy9cfNj1WvaMPfONNfsNIc-jDGOv-bioklWFTBUcqcDKYuRE6UdMR1uGXGxiPJvp09Oq3in1hTlhPT1wL7hDpwAySBE1Y0LGxJwqg0TVshBj6TLPJ6CenWAq364wMMlabFgaR_zQhvM5hIPg8dFmX_JCmaz_EsLcxanZ0ZzcJXfWCJEe9TO7R67F5j65lTM1_fIB6eou9nzdbUPbRAEtukWkZxEj3Hbx_eWf339__voCGworzVPr5-EVBRvaYvI4ZmhFWm-y4SggVtpfK8RAp423EDMvtkMfrzq_Op83D8nnk-mn4zfFunBC4cFeyCIm8HxCQSzEY7BJuWSRad5KL1QVVGmVltonpZF8fSyiEpazJBX01RYp8h6RvaZt4mNCdeLMO-miquAbbp2UECBpB8iMB6nKAXmxEaT52vNjmJ4JmRsUudmKfEAmKOdtL-S1zg9A22a9bnOVtgdkf6Mlsz5sSyMQo4IdYvD6IGvuiqmYo9fv3-JPw_LJ_5jUU3Ibh-6TePfJ3kW3is_ITf_tYr7shuQ6l_WQ3JhMZ_WHYd6m0L6bHAwxz_Qjtj-m0Nbl2T-xB-zz |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQAcGGN2KggBdIwCLq-BHHWZbSqhXtaBZFqthYflYjTROU6SCx4xP4F_6Dj-BLuDfOTJkVQmKb2Fbi-zr36vqYkFdRhsprXhV1sqqQqQaTCqwsxk6Ufsx0tGXoL5uoJhN9dlZPh25CPAuT-SHWBTe0jN5fo4FjQXrnijXUhosZJHgQw7MXvi4h1KCqczm9KrMw8M09GSeYpioqUY5X1I1jvrO5xEZo6hn8N2Dnn-C1jz4Hd__Dd98jdwboSXezrtwn12LzgNzsW0D94iHppl3MROBtQ9tEAYa6eaSfIqbO7fzrm58_fn37fg6ailfYU-tn4S0F59xiVzq2fkU6XbXZUYDCNNcrYqD7jbeQjM_XS-8tO7-8mDWPyMeD_dO9w2K4kaHw4IhkEROEVKEgyeIx2KRcskhhb6UXqg6qtEpL7ZPSyOpeiaiE5SxJBWO1Re69x2SraZv4hFCdOPNOuqhqmMOtkxIyL-0A8vEgVTkir1fCMJ8z8YbJFMvc4A6a9Q6OyDuU1XoUEmb3D9ru3Az_bZwC5ClF1IwJGRNzqgwSPQQLMZZOjMj2StJmsOKFEQh-wcExeJ1l-pdPMbvvT47wNLJ8-q8TXpJbh6cnx-b4aPLhGbmNI3JX8DbZuuyW8Tm54b9czhbdi17BfwNPHvvw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQoYgNb8RAAS-QgEXU8SOOsyxtR1QtoyyoVLGx_LiuRpomVaaDxI5P4F_4Dz6CL-E6yUyZFUJiGz_k-L7Ota6PCXkNMhRe8yIro1WZjCWaVGB5NnYi92Omweahe2yimE712VlZDdWE6S5Mzw-xPnBLltH562TgcBni7jVrqA0XM0zwMIb3XvimzAuWFJvL6vqYhaFv7sg40TRVVoh8vKJuHPPdzSk2QlPH4L8BO_8Er130mdz7D-u-T-4O0JPu9brygNyA-iHZ7kpA_eIRaasWeiLwpqZNpAhD3RzoZ0ipczP_-vbnj1_fvp-jpqYn7Kn1s_COonNuUlV6Kv0CWq3K7ChCYdqfV0Cgh7W3mIzP11PvL1u_vJjVj8np5PDT_odseJEh8-iIZAYRQ6pQmGRxCDYqF22isLfSC1UGlVulpfZR6cTqXghQwnIWpcK-2ibuvSdkq25qeEqojpx5Jx2oEsdw66TEzEs7hHw8SJWPyJuVMMxlT7xheoplbtIOmvUOjsj7JKt1r0SY3X1o2nMz_LdxCpGnFKAZExIicyoPMnkIFgByJ0ZkZyVpM1jxwogEftHBMWzuZfqXpZi9g49H6TayfPavA16R29XBxJwcTY-fkzupQ18UvEO2rtolvCC3_Jer2aJ92en3b_nj-3Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+Stable+Zein%2FPoly%28%CE%B3%E2%80%90glutamic+acid%29+Nanocomposite+Particles+for+Improved+Encapsulation+of+Curcumin&rft.jtitle=Advanced+materials+interfaces&rft.au=Jie+Mei&rft.au=Yunxing+Li&rft.au=Yikai+Feng&rft.au=Bingtian+Zhao&rft.date=2025-07-01&rft.pub=Wiley-VCH&rft.eissn=2196-7350&rft.volume=12&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.202500362&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b641643e81134ef1b65d420041dee5b3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |