Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems
Deep learning has been shown to be an effective tool in solving partial differential equations (PDEs) through physics-informed neural networks (PINNs). PINNs embed the PDE residual into the loss function of the neural network, and have been successfully employed to solve diverse forward and inverse...
Uložené v:
| Vydané v: | Computer methods in applied mechanics and engineering Ročník 393; číslo C; s. 114823 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
01.04.2022
Elsevier BV Elsevier |
| Predmet: | |
| ISSN: | 0045-7825, 1879-2138 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!