Application of classification machine learning algorithms for characterizing nutrient transport in a clay plain agricultural watershed
Excess nutrients in surface water and groundwater can lead to water quality deterioration in available water resources. Thus, the classification of nutrient concentrations in water resources has gained significant attention during recent decades. Machine learning (ML) algorithms are considered an ef...
Uloženo v:
| Vydáno v: | Journal of environmental management Ročník 345; s. 118924 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.11.2023
|
| Témata: | |
| ISSN: | 0301-4797, 1095-8630, 1095-8630 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Excess nutrients in surface water and groundwater can lead to water quality deterioration in available water resources. Thus, the classification of nutrient concentrations in water resources has gained significant attention during recent decades. Machine learning (ML) algorithms are considered an efficient tool to describe nutrient loss from agricultural land to surface water and groundwater. Previous studies have applied regression and classification ML algorithms to predict nutrient concentrations in surface water and/or groundwater, or to categorize an output variable using a limited number of input variables. However, there have been no studies that examined the application of different ML classification algorithms in agricultural settings to classify various output variables using a wide range of input variables. In this study, twenty-four ML classification algorithms were implemented on a dataset from three locations within the Upper Parkhill watershed, an agricultural watershed in southern Ontario, Canada. Nutrient concentrations in surface water were classified using geochemical and physical water parameters of surface water and groundwater (e.g., pH), climate and field conditions as the input variables. The performance of these algorithms was evaluated using four evaluation metrics (e.g., classification accuracy) to identify the optimal algorithm for classifying the output variables. Ensemble bagged trees was found to be the optimal ML algorithm for classifying nitrate concentration in surface water (accuracy of 90.9%), while the weighted KNN was the most appropriate algorithm for categorizing the total phosphorus concentration (accuracy of 87%). The ensemble subspace discriminant algorithm gave the highest overall classification accuracy for the concentration of soluble reactive phosphorus and total dissolved phosphorus in surface water with an accuracy of 79.2% and 77.9%, respectively. This study exemplifies that ML algorithms can be used to signify exceedance of recommended concentrations of nutrients in surface waters in agricultural watersheds. Results are useful for decision makers to develop nutrient management strategies.
[Display omitted]
•Machine learning algorithms were applied on a data from an agricultural watershed.•Output variables were nutrient concentrations in surface water in the watershed.•Performance of algorithms was assessed using four evaluation metrics.•Interdependence between different nutrient transport variables was investigated.•Machine learning results can be used for nutrient management and decision making. |
|---|---|
| AbstractList | Excess nutrients in surface water and groundwater can lead to water quality deterioration in available water resources. Thus, the classification of nutrient concentrations in water resources has gained significant attention during recent decades. Machine learning (ML) algorithms are considered an efficient tool to describe nutrient loss from agricultural land to surface water and groundwater. Previous studies have applied regression and classification ML algorithms to predict nutrient concentrations in surface water and/or groundwater, or to categorize an output variable using a limited number of input variables. However, there have been no studies that examined the application of different ML classification algorithms in agricultural settings to classify various output variables using a wide range of input variables. In this study, twenty-four ML classification algorithms were implemented on a dataset from three locations within the Upper Parkhill watershed, an agricultural watershed in southern Ontario, Canada. Nutrient concentrations in surface water were classified using geochemical and physical water parameters of surface water and groundwater (e.g., pH), climate and field conditions as the input variables. The performance of these algorithms was evaluated using four evaluation metrics (e.g., classification accuracy) to identify the optimal algorithm for classifying the output variables. Ensemble bagged trees was found to be the optimal ML algorithm for classifying nitrate concentration in surface water (accuracy of 90.9%), while the weighted KNN was the most appropriate algorithm for categorizing the total phosphorus concentration (accuracy of 87%). The ensemble subspace discriminant algorithm gave the highest overall classification accuracy for the concentration of soluble reactive phosphorus and total dissolved phosphorus in surface water with an accuracy of 79.2% and 77.9%, respectively. This study exemplifies that ML algorithms can be used to signify exceedance of recommended concentrations of nutrients in surface waters in agricultural watersheds. Results are useful for decision makers to develop nutrient management strategies. Excess nutrients in surface water and groundwater can lead to water quality deterioration in available water resources. Thus, the classification of nutrient concentrations in water resources has gained significant attention during recent decades. Machine learning (ML) algorithms are considered an efficient tool to describe nutrient loss from agricultural land to surface water and groundwater. Previous studies have applied regression and classification ML algorithms to predict nutrient concentrations in surface water and/or groundwater, or to categorize an output variable using a limited number of input variables. However, there have been no studies that examined the application of different ML classification algorithms in agricultural settings to classify various output variables using a wide range of input variables. In this study, twenty-four ML classification algorithms were implemented on a dataset from three locations within the Upper Parkhill watershed, an agricultural watershed in southern Ontario, Canada. Nutrient concentrations in surface water were classified using geochemical and physical water parameters of surface water and groundwater (e.g., pH), climate and field conditions as the input variables. The performance of these algorithms was evaluated using four evaluation metrics (e.g., classification accuracy) to identify the optimal algorithm for classifying the output variables. Ensemble bagged trees was found to be the optimal ML algorithm for classifying nitrate concentration in surface water (accuracy of 90.9%), while the weighted KNN was the most appropriate algorithm for categorizing the total phosphorus concentration (accuracy of 87%). The ensemble subspace discriminant algorithm gave the highest overall classification accuracy for the concentration of soluble reactive phosphorus and total dissolved phosphorus in surface water with an accuracy of 79.2% and 77.9%, respectively. This study exemplifies that ML algorithms can be used to signify exceedance of recommended concentrations of nutrients in surface waters in agricultural watersheds. Results are useful for decision makers to develop nutrient management strategies. [Display omitted] •Machine learning algorithms were applied on a data from an agricultural watershed.•Output variables were nutrient concentrations in surface water in the watershed.•Performance of algorithms was assessed using four evaluation metrics.•Interdependence between different nutrient transport variables was investigated.•Machine learning results can be used for nutrient management and decision making. Excess nutrients in surface water and groundwater can lead to water quality deterioration in available water resources. Thus, the classification of nutrient concentrations in water resources has gained significant attention during recent decades. Machine learning (ML) algorithms are considered an efficient tool to describe nutrient loss from agricultural land to surface water and groundwater. Previous studies have applied regression and classification ML algorithms to predict nutrient concentrations in surface water and/or groundwater, or to categorize an output variable using a limited number of input variables. However, there have been no studies that examined the application of different ML classification algorithms in agricultural settings to classify various output variables using a wide range of input variables. In this study, twenty-four ML classification algorithms were implemented on a dataset from three locations within the Upper Parkhill watershed, an agricultural watershed in southern Ontario, Canada. Nutrient concentrations in surface water were classified using geochemical and physical water parameters of surface water and groundwater (e.g., pH), climate and field conditions as the input variables. The performance of these algorithms was evaluated using four evaluation metrics (e.g., classification accuracy) to identify the optimal algorithm for classifying the output variables. Ensemble bagged trees was found to be the optimal ML algorithm for classifying nitrate concentration in surface water (accuracy of 90.9%), while the weighted KNN was the most appropriate algorithm for categorizing the total phosphorus concentration (accuracy of 87%). The ensemble subspace discriminant algorithm gave the highest overall classification accuracy for the concentration of soluble reactive phosphorus and total dissolved phosphorus in surface water with an accuracy of 79.2% and 77.9%, respectively. This study exemplifies that ML algorithms can be used to signify exceedance of recommended concentrations of nutrients in surface waters in agricultural watersheds. Results are useful for decision makers to develop nutrient management strategies.Excess nutrients in surface water and groundwater can lead to water quality deterioration in available water resources. Thus, the classification of nutrient concentrations in water resources has gained significant attention during recent decades. Machine learning (ML) algorithms are considered an efficient tool to describe nutrient loss from agricultural land to surface water and groundwater. Previous studies have applied regression and classification ML algorithms to predict nutrient concentrations in surface water and/or groundwater, or to categorize an output variable using a limited number of input variables. However, there have been no studies that examined the application of different ML classification algorithms in agricultural settings to classify various output variables using a wide range of input variables. In this study, twenty-four ML classification algorithms were implemented on a dataset from three locations within the Upper Parkhill watershed, an agricultural watershed in southern Ontario, Canada. Nutrient concentrations in surface water were classified using geochemical and physical water parameters of surface water and groundwater (e.g., pH), climate and field conditions as the input variables. The performance of these algorithms was evaluated using four evaluation metrics (e.g., classification accuracy) to identify the optimal algorithm for classifying the output variables. Ensemble bagged trees was found to be the optimal ML algorithm for classifying nitrate concentration in surface water (accuracy of 90.9%), while the weighted KNN was the most appropriate algorithm for categorizing the total phosphorus concentration (accuracy of 87%). The ensemble subspace discriminant algorithm gave the highest overall classification accuracy for the concentration of soluble reactive phosphorus and total dissolved phosphorus in surface water with an accuracy of 79.2% and 77.9%, respectively. This study exemplifies that ML algorithms can be used to signify exceedance of recommended concentrations of nutrients in surface waters in agricultural watersheds. Results are useful for decision makers to develop nutrient management strategies. |
| ArticleNumber | 118924 |
| Author | Levison, Jana Binns, Andrew Rixon, Sarah Goel, Pradeep Elsayed, Ahmed |
| Author_xml | – sequence: 1 givenname: Ahmed surname: Elsayed fullname: Elsayed, Ahmed email: aelsay03@uoguelph.ca organization: School of Engineering, Morwick G360 Groundwater Research Institute, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada – sequence: 2 givenname: Sarah surname: Rixon fullname: Rixon, Sarah organization: School of Engineering, Morwick G360 Groundwater Research Institute, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada – sequence: 3 givenname: Jana orcidid: 0000-0003-3524-1392 surname: Levison fullname: Levison, Jana organization: School of Engineering, Morwick G360 Groundwater Research Institute, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada – sequence: 4 givenname: Andrew surname: Binns fullname: Binns, Andrew organization: School of Engineering, Morwick G360 Groundwater Research Institute, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada – sequence: 5 givenname: Pradeep orcidid: 0000-0002-0695-5321 surname: Goel fullname: Goel, Pradeep organization: Ministry of the Environment, Conservation and Parks (MECP), 125 Resources Road, Etobicoke, Ontario, M9P 3V6, Canada |
| BookMark | eNqFkc1u3CAYRVGVSpkkfYRILLvxlD_DoC6qKOqfFKmbZo0-YzzDCIMLOFX6AH3u2p10082sEHDPXZx7hS5iig6hW0q2lFD57rg9uvg0QtwywviW0p1m4hXaUKLbZic5uUAbwglthNLqEl2VciSEcEbVBv2-m6bgLVSfIk4DtgFK8cO_lxHswUeHg4McfdxjCPuUfT2MBQ8pY3uADLa67H-tv3Gu2btYcc0Qy5RyxT5iWFuf8RRgveyzt3Ooc4aAf8KCloPrb9DrAUJxb17Oa_T46eP3-y_Nw7fPX-_vHhrLVVubYeioI4J3XIHulZJtJ3QP3EqmpKAWtJKyF67vQEkFVAJr5aA7KelOCuj5NXp76p1y-jG7Us3oi3UhQHRpLoYTsdQLtuNno2wxy7QmXC7R9hS1OZWS3WCm7EfIz4YSs05kjuZlIrNOZE4TLdz7_zjr61_xiz8fztIfTrRbhD15l02xi3zrep-draZP_kzDH5vAtis |
| CitedBy_id | crossref_primary_10_1080_08839514_2024_2426377 crossref_primary_10_1016_j_jece_2025_118844 crossref_primary_10_1016_j_jenvman_2024_123305 crossref_primary_10_1016_j_porgcoat_2024_109003 crossref_primary_10_1016_j_jwpe_2024_105932 crossref_primary_10_1016_j_jclepro_2025_146400 crossref_primary_10_3389_fenvs_2025_1543852 crossref_primary_10_1016_j_jwpe_2024_105379 crossref_primary_10_1016_j_jhydrol_2023_130338 crossref_primary_10_1016_j_asoc_2025_113778 crossref_primary_10_1016_j_watres_2024_121262 crossref_primary_10_1016_j_jece_2025_118384 crossref_primary_10_1016_j_ecolind_2025_113974 crossref_primary_10_1002_wer_70059 |
| Cites_doi | 10.1007/s10661-020-08695-3 10.3390/w13020147 10.1007/s10666-015-9468-0 10.1016/j.scitotenv.2020.144459 10.1016/j.aei.2012.03.005 10.1016/j.scitotenv.2022.160979 10.1016/j.jssas.2020.08.001 10.2134/jeq2013.03.0098 10.1016/j.gsd.2017.12.012 10.1016/j.watres.2022.118443 10.1002/hyp.14565 10.1016/j.jglr.2020.11.008 10.1002/hyp.1395 10.1016/j.scitotenv.2018.07.054 10.1016/j.scitotenv.2019.03.045 10.1016/j.scitotenv.2019.136328 10.1016/j.ecolind.2022.108977 10.1016/j.jenvman.2014.12.012 10.1029/2019WR024892 10.5194/hess-25-811-2021 10.1002/2015WR017753 10.1016/S0926-5805(03)00004-9 10.1016/j.aei.2011.06.002 10.3390/su13042054 10.1007/s11356-020-11319-5 10.1016/j.jhydrol.2021.126423 10.1016/j.scitotenv.2012.06.017 10.1007/s10040-020-02156-4 10.1016/j.envres.2022.113554 10.1021/es403160a 10.1016/j.scitotenv.2018.03.162 10.1016/j.agee.2015.09.010 10.1016/S1532-0464(03)00034-0 10.1007/s11269-020-02704-3 10.3390/s20205763 10.1016/j.scitotenv.2018.01.035 10.1016/j.scitotenv.2014.10.009 10.1016/j.jenvman.2022.115412 10.1002/ijc.31306 10.1016/j.jenvman.2021.113040 10.1016/j.jhydrol.2021.126213 10.3390/w13213096 10.3390/w14111799 10.1016/j.psep.2022.01.065 10.1016/j.scitotenv.2020.144057 10.1002/hyp.14619 10.1016/j.scitotenv.2020.138793 10.1016/j.jhydrol.2020.124682 10.1016/j.neucom.2019.10.118 10.1016/j.jhydrol.2021.126266 10.1016/j.jglr.2021.09.011 10.1016/j.jhydrol.2019.124084 10.1016/j.jhydrol.2013.09.048 10.1016/j.jglr.2022.01.021 10.1016/j.egypro.2017.09.007 10.3390/w12102951 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.jenvman.2023.118924 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1095-8630 |
| ExternalDocumentID | 10_1016_j_jenvman_2023_118924 S0301479723017127 |
| GeographicLocations | Ontario |
| GeographicLocations_xml | – name: Ontario |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFRF ABFYP ABJNI ABLST ABMAC ABMMH ACDAQ ACGFO ACGFS ACPRK ACRLP ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFJKZ AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOMHK AVARZ AXJTR BELTK BKOJK BKOMP BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 ROL RPZ RXW SCC SDF SDG SDP SES SPC SPCBC SSB SSJ SSO SSR SSZ T5K TAE TWZ WH7 XSW Y6R YK3 ZCA ZU3 ~02 ~G- ~KM 29K 3EH 53G 9DU AAQXK AATTM AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADXHL AEUPX AFPUW AGQPQ AI. AIDBO AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CAG CITATION COF D-I EFKBS EFLBG EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW UHS UQL VH1 WUQ XPP YV5 ZMT ZY4 ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c375t-ffb1e043b37a9d7765b49da3c627641ca9766d4edba767a16a256f9b661864ad3 |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001074018800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0301-4797 1095-8630 |
| IngestDate | Sun Sep 28 04:10:27 EDT 2025 Wed Oct 01 14:32:13 EDT 2025 Tue Nov 18 22:22:16 EST 2025 Sat Nov 29 08:04:36 EST 2025 Sat Mar 22 15:54:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Machine learning classification algorithms Nutrient transport Agricultural watershed Groundwater Monitoring Surface water |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c375t-ffb1e043b37a9d7765b49da3c627641ca9766d4edba767a16a256f9b661864ad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0695-5321 0000-0003-3524-1392 |
| PQID | 2863299036 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3040434283 proquest_miscellaneous_2863299036 crossref_primary_10_1016_j_jenvman_2023_118924 crossref_citationtrail_10_1016_j_jenvman_2023_118924 elsevier_sciencedirect_doi_10_1016_j_jenvman_2023_118924 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 2023-11-00 20231101 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of environmental management |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Elsayed, Siam, El-Dakhakhni (bib29) 2022; 159 Khan, Baharudin, Lee, Khan (bib43) 2010; 1 Behrouz, Yazdi, Sample (bib10) 2022; 317 Zhang, Bostic, Sabo (bib83) 2022; 218 Gardner, Levison, Parker, Martin (bib31) 2020; 28 Gardner, Nguyen, Sattolo, May, Binns, Levison (bib32) 2022; 48 Kuzmanovski, Trajanov, Leprince, Džeroski, Debeljak (bib47) 2015; 505 Perović, Šenk, Tarjan, Obradović, Dimkić (bib64) 2020; 1 Steele, Veliz (bib75) 2007 Balson, Ward (bib7) 2022; 36 Desai, Joshi (bib22) 2010 Imani, Hasan, Bittencourt, McClymont, Kapelan (bib39) 2021; 768 Amor, Benferhat, Elouedi (bib3) 2004 Elsayed, Hurdle, Kim (bib27) 2021; 40 Kumar, Makkar (bib46) 2020 Sharpley, Jarvie, Buda, May, Spears, Kleinman (bib74) 2013; 42 Varadharajan, Appling, Arora, Christianson, Hendrix, Kumar, Lima, Müller, Oliver, Ombadi, Perciano, Sadler, Weierbach, Willard, Xu, Zwart (bib76) 2022; 36 Ouyang, Huang, Hao, Shan, Guo (bib63) 2012; 432 Najah Ahmed, Binti Othman, Abdulmohsin Afan, Khaleel Ibrahim, Ming Fai, Shabbir Hossain, Ehteram, Elshafie (bib59) 2019; 578 Han, Karypis, Kumar (bib37) 1999 Wang, Wang, Wang, Wang (bib79) 2022; 141 Bedi, Samal, Ray, Snow (bib9) 2020; 192 Dreiseitl, Ohno-Machado (bib24) 2002; 35 Cervantes, Garcia-Lamont, Rodríguez-Mazahua, Lopez (bib17) 2020; 408 Wells, Gilmore, Nelson, Mittelstet, Böhlke (bib80) 2021; 25 Melesse, Khosravi, Tiefenbacher, Heddam, Kim, Mosavi, Pham (bib53) 2020; 12 Arabgol, Sartaj, Asghari (bib4) 2016; 21 Band, Janizadeh, Pal, Chowdhuri, Siabi, Norouzi, Melesse, Shokri, Mosavi (bib8) 2020; 20 Elsayed, Yu, Lee, Kim (bib28) 2022; 212 Mackie, Levison, Binns, O'Halloran (bib49) 2021; 47 Schilling, Streeter, Isenhart, Beck, Tomer, Cole, Kovar (bib71) 2018; 625 Knoll, Breuer, Bach (bib45) 2019; 668 (bib61) 1994 May, Rixon, Gardner, Goel, Levison, Binns (bib52) 2023; 864 Chi, Suk, Kang, Mulva (bib19) 2012; 26 Mosavi, Hosseini, Choubin, Taromideh, Ghodsi, Nazari, Dineva (bib56) 2021; 28 Chiogna, Marcolini, Liu, Pérez Ciria, Tuo (bib20) 2018; 633 Gong, Caldas, Gordon (bib34) 2011; 25 Orihel, Baulch, Casson, North, Parsons, Seckar, Venkiteswaran (bib62) 2017; 2029 Kavzoglu, Colkesen (bib42) 2009; 11 (bib16) 2012 El-Khoury, Seidou, Lapen, Que, Mohammadian, Sunohara, Bahram (bib26) 2015; 151 Martin, Aquilina, Gascuel-Odoux, Molenat, Faucheux, Ruiz (bib51) 2004; 18 Moeini, Shojaeizadeh, Geza (bib55) 2021; 13 Schullehner, Hansen, Thygesen, Pedersen, Sigsgaard (bib73) 2018; 143 Ha, Nguyen, Truong, Le, Thai, Pham (bib36) 2020; 192 Kim, Yang, Gao, Zhang, Ding, Wen, Gourley, Hong (bib44) 2021; 598 Feofilovs, Romagnoli (bib30) 2017; 128 DeSimone, McMahon, Rosen (bib23) 2014; 1360 Wang, Kim, Li (bib78) 2021; 761 Caldas, Soibelman (bib14) 2003; 12 Aggarwal (bib1) 2016 Boehmke, Greenwell (bib12) 2019 Jarvie, Sharpley, Spears, Buda, May, Kleinman (bib40) 2013; 47 El Bilali, Taleb (bib25) 2020; 19 Bhattarai, Dhakal, Gautam, Bhattarai (bib11) 2021; 13 Sajedi-Hosseini, Malekian, Choubin, Rahmati, Cipullo, Coulon, Pradhan (bib70) 2018; 644 Liang, Jiang, Qi, Fuller, Nyiraneza, Meng (bib48) 2020; 729 Motarjemi, Møller, Plauborg, Iversen (bib58) 2021; 36 Cho, Jacobs, Jia, Kraatz (bib21) 2019; 55 Gorgoglione, Castro, Iacobellis, Gioia (bib35) 2021; 13 (bib15) 2011 Hastie, Tibshirani, Friedman (bib38) 2009; vol. 27 Miller, Tesoriero, Capel, Pellerin, Hyer, Burns (bib54) 2016; 52 Zhang, Huang, Duan, Huang, Cai, Bian (bib82) 2022; 140 Mosavi, Hosseini, Choubin, Goodarzi, Dineva, Sardooi (bib57) 2021; 35 Wu, Lin, Weng (bib81) 2004; 5 Avand, Khiavi, Khazaei, Tiefenbacher (bib6) 2021; 295 Portuguez‐maurtua, Arumi, Lagos, Stehr, Arquiñigo (bib66) 2022; 14 Rankinen, Keinänen, Cano Bernal (bib68) 2016; 216 Wagh, Panaskar, Muley, Mukate, Gaikwad (bib77) 2018; 7 Ashari, Paryudi, Tjoa (bib5) 2013; 4 Gianfagna, Johnson, Chandler, Hofmann (bib33) 2015; 4 Ahmed, Lin (bib2) 2021; 597 Zounemat-Kermani, Batelaan, Fadaee, Hinkelmann (bib84) 2021; 598 MacRitchie (bib50) 2011 Persaud, Levison, MacRitchie, Berg, Erler, Parker, Sudicky (bib65) 2020; 584 Ng, Jordan (bib60) 2002 Boy-Roura, Nolan, Menció, Mas-Pla (bib13) 2013; 505 Jung, Ahn, Sheng, Ayana, Srinivasan, Yeganantham (bib41) 2021 Chang, Garcia, Tang, Vlahos, Wanik, Yan, Bash, Astitha (bib18) 2021; 47 Rixon, Levison, Binns, Persaud (bib69) 2020; 714 Qun’ou, Lidan, Siyang, Meilin, Huijie (bib67) 2021; 124 Scholkopf, Smola (bib72) 2001 Boehmke (10.1016/j.jenvman.2023.118924_bib12) 2019 El-Khoury (10.1016/j.jenvman.2023.118924_bib26) 2015; 151 Martin (10.1016/j.jenvman.2023.118924_bib51) 2004; 18 Behrouz (10.1016/j.jenvman.2023.118924_bib10) 2022; 317 May (10.1016/j.jenvman.2023.118924_bib52) 2023; 864 Schilling (10.1016/j.jenvman.2023.118924_bib71) 2018; 625 Motarjemi (10.1016/j.jenvman.2023.118924_bib58) 2021; 36 Bedi (10.1016/j.jenvman.2023.118924_bib9) 2020; 192 MacRitchie (10.1016/j.jenvman.2023.118924_bib50) 2011 (10.1016/j.jenvman.2023.118924_bib15) 2011 Desai (10.1016/j.jenvman.2023.118924_bib22) 2010 Mackie (10.1016/j.jenvman.2023.118924_bib49) 2021; 47 Mosavi (10.1016/j.jenvman.2023.118924_bib56) 2021; 28 Ng (10.1016/j.jenvman.2023.118924_bib60) 2002 Sajedi-Hosseini (10.1016/j.jenvman.2023.118924_bib70) 2018; 644 Kumar (10.1016/j.jenvman.2023.118924_bib46) 2020 Band (10.1016/j.jenvman.2023.118924_bib8) 2020; 20 Moeini (10.1016/j.jenvman.2023.118924_bib55) 2021; 13 (10.1016/j.jenvman.2023.118924_bib61) 1994 El Bilali (10.1016/j.jenvman.2023.118924_bib25) 2020; 19 Najah Ahmed (10.1016/j.jenvman.2023.118924_bib59) 2019; 578 Feofilovs (10.1016/j.jenvman.2023.118924_bib30) 2017; 128 Elsayed (10.1016/j.jenvman.2023.118924_bib27) 2021; 40 Amor (10.1016/j.jenvman.2023.118924_bib3) 2004 Kuzmanovski (10.1016/j.jenvman.2023.118924_bib47) 2015; 505 Ouyang (10.1016/j.jenvman.2023.118924_bib63) 2012; 432 Ahmed (10.1016/j.jenvman.2023.118924_bib2) 2021; 597 Jung (10.1016/j.jenvman.2023.118924_bib41) 2021 Zounemat-Kermani (10.1016/j.jenvman.2023.118924_bib84) 2021; 598 (10.1016/j.jenvman.2023.118924_bib16) 2012 Liang (10.1016/j.jenvman.2023.118924_bib48) 2020; 729 Wu (10.1016/j.jenvman.2023.118924_bib81) 2004; 5 Qun’ou (10.1016/j.jenvman.2023.118924_bib67) 2021; 124 Mosavi (10.1016/j.jenvman.2023.118924_bib57) 2021; 35 Elsayed (10.1016/j.jenvman.2023.118924_bib28) 2022; 212 Zhang (10.1016/j.jenvman.2023.118924_bib82) 2022; 140 Portuguez‐maurtua (10.1016/j.jenvman.2023.118924_bib66) 2022; 14 Balson (10.1016/j.jenvman.2023.118924_bib7) 2022; 36 Steele (10.1016/j.jenvman.2023.118924_bib75) 2007 Perović (10.1016/j.jenvman.2023.118924_bib64) 2020; 1 Varadharajan (10.1016/j.jenvman.2023.118924_bib76) 2022; 36 Knoll (10.1016/j.jenvman.2023.118924_bib45) 2019; 668 Aggarwal (10.1016/j.jenvman.2023.118924_bib1) 2016 Scholkopf (10.1016/j.jenvman.2023.118924_bib72) 2001 Jarvie (10.1016/j.jenvman.2023.118924_bib40) 2013; 47 Chang (10.1016/j.jenvman.2023.118924_bib18) 2021; 47 Sharpley (10.1016/j.jenvman.2023.118924_bib74) 2013; 42 Wells (10.1016/j.jenvman.2023.118924_bib80) 2021; 25 Caldas (10.1016/j.jenvman.2023.118924_bib14) 2003; 12 Chiogna (10.1016/j.jenvman.2023.118924_bib20) 2018; 633 Wang (10.1016/j.jenvman.2023.118924_bib79) 2022; 141 Zhang (10.1016/j.jenvman.2023.118924_bib83) 2022; 218 Gong (10.1016/j.jenvman.2023.118924_bib34) 2011; 25 Kim (10.1016/j.jenvman.2023.118924_bib44) 2021; 598 Ashari (10.1016/j.jenvman.2023.118924_bib5) 2013; 4 Rankinen (10.1016/j.jenvman.2023.118924_bib68) 2016; 216 Schullehner (10.1016/j.jenvman.2023.118924_bib73) 2018; 143 Cho (10.1016/j.jenvman.2023.118924_bib21) 2019; 55 Dreiseitl (10.1016/j.jenvman.2023.118924_bib24) 2002; 35 Khan (10.1016/j.jenvman.2023.118924_bib43) 2010; 1 Kavzoglu (10.1016/j.jenvman.2023.118924_bib42) 2009; 11 Bhattarai (10.1016/j.jenvman.2023.118924_bib11) 2021; 13 Gorgoglione (10.1016/j.jenvman.2023.118924_bib35) 2021; 13 Orihel (10.1016/j.jenvman.2023.118924_bib62) 2017; 2029 Imani (10.1016/j.jenvman.2023.118924_bib39) 2021; 768 Han (10.1016/j.jenvman.2023.118924_bib37) 1999 Arabgol (10.1016/j.jenvman.2023.118924_bib4) 2016; 21 Wagh (10.1016/j.jenvman.2023.118924_bib77) 2018; 7 Gianfagna (10.1016/j.jenvman.2023.118924_bib33) 2015; 4 Boy-Roura (10.1016/j.jenvman.2023.118924_bib13) 2013; 505 Rixon (10.1016/j.jenvman.2023.118924_bib69) 2020; 714 Cervantes (10.1016/j.jenvman.2023.118924_bib17) 2020; 408 Wang (10.1016/j.jenvman.2023.118924_bib78) 2021; 761 Persaud (10.1016/j.jenvman.2023.118924_bib65) 2020; 584 Miller (10.1016/j.jenvman.2023.118924_bib54) 2016; 52 Ha (10.1016/j.jenvman.2023.118924_bib36) 2020; 192 DeSimone (10.1016/j.jenvman.2023.118924_bib23) 2014; 1360 Chi (10.1016/j.jenvman.2023.118924_bib19) 2012; 26 Gardner (10.1016/j.jenvman.2023.118924_bib31) 2020; 28 Elsayed (10.1016/j.jenvman.2023.118924_bib29) 2022; 159 Gardner (10.1016/j.jenvman.2023.118924_bib32) 2022; 48 Hastie (10.1016/j.jenvman.2023.118924_bib38) 2009; vol. 27 Melesse (10.1016/j.jenvman.2023.118924_bib53) 2020; 12 Avand (10.1016/j.jenvman.2023.118924_bib6) 2021; 295 |
| References_xml | – volume: 598 year: 2021 ident: bib44 article-title: Can artificial intelligence and data-driven machine learning models match or even replace process-driven hydrologic models for streamflow simulation?: a case study of four watersheds with different hydro-climatic regions across the CONUS publication-title: J. Hydrol. – volume: 36 year: 2021 ident: bib58 article-title: Predicting national-scale tile drainage discharge in Denmark using machine learning algorithms publication-title: J. Hydrol.: Reg. Stud. – volume: 128 start-page: 17 year: 2017 end-page: 23 ident: bib30 article-title: Resilience of critical infrastructures: probabilistic case study of a district heating pipeline network in municipality of Latvia publication-title: Energy Proc. – volume: 42 start-page: 1308 year: 2013 ident: bib74 article-title: Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment publication-title: J. Environ. Qual. – volume: 7 start-page: 436 year: 2018 end-page: 445 ident: bib77 article-title: Neural network modelling for nitrate concentration in groundwater of Kadava River basin, Nashik, Maharashtra, India publication-title: Groundwater for Sustainable Development – volume: 505 start-page: 390 year: 2015 end-page: 401 ident: bib47 article-title: Modeling water outflow from tile-drained agricultural fields publication-title: Sci. Total Environ. – volume: 761 year: 2021 ident: bib78 article-title: Predicting stream water quality under different urban development pattern scenarios with an interpretable machine learning approach publication-title: Sci. Total Environ. – volume: 35 start-page: 352 year: 2002 end-page: 359 ident: bib24 article-title: Logistic regression and artificial neural network classification models: a methodology review publication-title: J. Biomed. Inf. – year: 2019 ident: bib12 article-title: Hands-On Machine Learning with R – volume: 55 start-page: 8028 year: 2019 end-page: 8045 ident: bib21 article-title: Identifying subsurface drainage using satellite big data and machine learning via google earth engine publication-title: Water Resour. Res. – year: 2001 ident: bib72 article-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond – volume: 408 start-page: 189 year: 2020 end-page: 215 ident: bib17 article-title: A comprehensive survey on support vector machine classification: applications, challenges and trends publication-title: Neurocomputing – volume: 1 start-page: 1 year: 2020 end-page: 17 ident: bib64 article-title: Machine learning models for predicting the ammonium concentration in alluvial groundwaters publication-title: Environ. Model. Assess. – year: 2004 ident: bib3 article-title: Naive Bayes vs decision trees in intrusion detection systems publication-title: Proc., 2004 ACM Symp. On Applied Computing, 420–424 – volume: 768 year: 2021 ident: bib39 article-title: A novel machine learning application: water quality resilience prediction Model publication-title: Sci. Total Environ. – volume: 13 start-page: 1 year: 2021 end-page: 19 ident: bib35 article-title: A comparison of linear and non-linear machine learning techniques (PCA and SOM) for characterizing urban nutrient runoff publication-title: Sustainability – volume: 18 start-page: 1237 year: 2004 end-page: 1254 ident: bib51 article-title: Seasonal and interannual variations of nitrate and chloride in stream waters related to spatial and temporal patterns of groundwater concentrations in agricultural catchments publication-title: Hydrol. Process. – volume: 14 year: 2022 ident: bib66 article-title: Filling gaps in daily precipitation series using regression and machine learning in inter‐andean watersheds publication-title: Water – volume: 25 start-page: 771 year: 2011 end-page: 782 ident: bib34 article-title: Learning and classifying actions of construction workers and equipment using Bag-of-Video-Feature-Words and Bayesian network models publication-title: Adv. Eng. Inf. – year: 2011 ident: bib15 article-title: Selected Tools to Evaluate Water Monitoring Networks for Climate Change Adaptation – volume: 28 start-page: 10804 year: 2021 end-page: 10817 ident: bib56 article-title: Susceptibility mapping of groundwater salinity using machine learning models publication-title: Environ. Sci. Pollut. Control Ser. – start-page: 841 year: 2002 end-page: 848 ident: bib60 article-title: On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes publication-title: Adv. Neural Inf. Process. Syst. – volume: 20 start-page: 1 year: 2020 end-page: 23 ident: bib8 article-title: Comparative analysis of artificial intelligence models for accurate estimation of groundwater nitrate concentration publication-title: Sensors – year: 2011 ident: bib50 article-title: Assessment of Water Monitoring Networks for Climate Change – volume: 140 year: 2022 ident: bib82 article-title: Use of interpretable machine learning to identify the factors influencing the nonlinear linkage between land use and river water quality in the Chesapeake Bay watershed publication-title: Ecol. Indicat. – year: 1994 ident: bib61 article-title: Water Management - Policies, Guidelines, Provincial Water Quality Objective – year: 2012 ident: bib16 article-title: Canadian Water Quality Guidelines for the Protection of Aquatic Life: Nitrate – volume: 317 year: 2022 ident: bib10 article-title: Using Random Forest, a machine learning approach to predict nitrogen, phosphorus, and sediment event mean concentrations in urban runoff publication-title: J. Environ. Manag. – volume: 47 start-page: 145 year: 2021 end-page: 159 ident: bib49 article-title: Groundwater-surface water interactions and agricultural nutrient transport in a Great Lakes clay plain system publication-title: J. Great Lake. Res. – volume: 192 year: 2020 ident: bib36 article-title: Estimation of nitrogen and phosphorus concentrations from water quality surrogates using machine learning in the Tri an Reservoir publication-title: Vietnam. Environmental Monitoring and Assessment – volume: 47 start-page: 8997 year: 2013 end-page: 8998 ident: bib40 article-title: Water quality remediation faces unprecedented challenges from “legacy phosphorus.” publication-title: Environ. Sci. Technol. – volume: vol. 27 year: 2009 ident: bib38 publication-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction – volume: 668 start-page: 1317 year: 2019 end-page: 1327 ident: bib45 article-title: Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning publication-title: Sci. Total Environ. – volume: 47 start-page: 1656 year: 2021 end-page: 1670 ident: bib18 article-title: Linking multi-media modeling with machine learning to assess and predict lake chlorophyll a concentrations publication-title: J. Great Lake. Res. – volume: 141 year: 2022 ident: bib79 article-title: Assessment of influencing factors on non-point source pollution critical source areas in an agricultural watershed publication-title: Ecol. Indicat. – volume: 295 year: 2021 ident: bib6 article-title: Determination of flood probability and prioritization of sub-watersheds: a comparison of game theory to machine learning publication-title: J. Environ. Manag. – year: 2021 ident: bib41 article-title: Evaluate river water salinity in a semi-arid agricultural watershed by coupling ensemble machine learning technique with SWAT model publication-title: J. Am. Water Resour. Assoc. – volume: 864 year: 2023 ident: bib52 article-title: Investigating relationships between climate controls and nutrient flux in surface waters, sediments, and subsurface pathways in an agricultural clay catchment of the Great Lakes Basin publication-title: Sci. Total Environ. – volume: 4 start-page: 583 year: 2015 end-page: 594 ident: bib33 article-title: Watershed area ratio accurately predicts daily streamflow in nested catchments in the Catskills, New York publication-title: J. Hydrol.: Reg. Stud. – volume: 218 year: 2022 ident: bib83 article-title: Regional patterns and drivers of total nitrogen trends in the Chesapeake Bay watershed: insights from machine learning approaches and management implications publication-title: Water Res. – volume: 143 start-page: 73 year: 2018 end-page: 79 ident: bib73 article-title: Nitrate in drinking water and colorectal cancer risk: a nationwide population-based cohort study publication-title: Int. J. Cancer – volume: 40 year: 2021 ident: bib27 article-title: Comprehensive model applications for better understanding of pilot-scale membrane-aerated biofilm reactor performance publication-title: J. Water Proc. Eng. – volume: 48 start-page: 455 year: 2022 end-page: 467 ident: bib32 article-title: Characterizing stream planform geometry using a novel application of spectral analysis publication-title: J. Great Lake. Res. – volume: 714 year: 2020 ident: bib69 article-title: Spatiotemporal variations of nitrogen and phosphorus in a clay plain hydrological system in the Great Lakes Basin publication-title: Sci. Total Environ. – volume: 13 year: 2021 ident: bib11 article-title: Prediction of nitrate and phosphorus concentrations using machine learning algorithms in watersheds with different land use publication-title: Water – volume: 12 start-page: 395 year: 2003 end-page: 406 ident: bib14 article-title: Automating hierarchical document classification for construction management information systems publication-title: Autom. ConStruct. – volume: 36 start-page: 1 year: 2022 end-page: 22 ident: bib76 article-title: Can machine learning accelerate process understanding and decision relevant predictions of river water quality? publication-title: Hydrol. Process. – volume: 633 start-page: 220 year: 2018 end-page: 229 ident: bib20 article-title: Coupling hydrological modeling and support vector regression to model hydropeaking in alpine catchments publication-title: Sci. Total Environ. – start-page: 285 year: 2016 end-page: 426 ident: bib1 article-title: Data Mining: the Textbook – volume: 598 year: 2021 ident: bib84 article-title: Ensemble machine learning paradigms in hydrology: a review publication-title: J. Hydrol. – volume: 584 year: 2020 ident: bib65 article-title: Integrated modelling to assess climate change impacts on groundwater and surface water in the Great Lakes Basin using diverse climate forcing publication-title: J. Hydrol. – start-page: 145 year: 2020 end-page: 160 ident: bib46 article-title: Different machine learning models publication-title: Machine Learning in Cognitive IoT – volume: 4 start-page: 33 year: 2013 end-page: 39 ident: bib5 article-title: Performance comparison between naïve Bayes, decision tree and k-nearest neighbor in searching alternative design in an energy simulation tool publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 644 start-page: 954 year: 2018 end-page: 962 ident: bib70 article-title: A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination publication-title: Sci. Total Environ. – volume: 151 start-page: 76 year: 2015 end-page: 86 ident: bib26 article-title: Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin publication-title: J. Environ. Manag. – start-page: 304 year: 2010 end-page: 313 ident: bib22 article-title: Application of decision tree technique to analyze construction project data publication-title: Proc., Int. Conf. On Information Systems – year: 1999 ident: bib37 article-title: Text Categorization Using Weighted Adjusted K-Nearest Neighbor Classification – volume: 159 start-page: 1224 year: 2022 end-page: 1235 ident: bib29 article-title: Machine learning classification algorithms for inadequate wastewater treatment risk mitigation publication-title: Process Saf. Environ. Protect. – volume: 578 year: 2019 ident: bib59 article-title: Machine learning methods for better water quality prediction publication-title: J. Hydrol. – volume: 28 start-page: 1891 year: 2020 end-page: 1908 ident: bib31 article-title: Groundwater nitrate in three distinct hydrogeologic and land-use settings in southwestern Ontario, Canada publication-title: Hydrogeol. J. – volume: 26 start-page: 574 year: 2012 end-page: 581 ident: bib19 article-title: Development of a data mining-based analysis framework for multi-attribute construction project information publication-title: Adv. Eng. Inf. – volume: 597 year: 2021 ident: bib2 article-title: Dissolved oxygen concentration predictions for running waters with different land use land cover using a quantile regression forest machine learning technique publication-title: J. Hydrol. – volume: 36 start-page: 1 year: 2022 end-page: 15 ident: bib7 article-title: A machine learning approach to water quality forecasts and sensor network expansion: case study in the Wabash River Basin, United States publication-title: Hydrol. Process. – year: 2007 ident: bib75 article-title: Water Quality in the Ausable Bayfield Maitland Valley – volume: 729 year: 2020 ident: bib48 article-title: Characterizing the impacts of land use on nitrate load and water yield in an agricultural watershed in Atlantic Canada publication-title: Sci. Total Environ. – volume: 505 start-page: 150 year: 2013 end-page: 162 ident: bib13 article-title: Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain) publication-title: J. Hydrol. – volume: 212 year: 2022 ident: bib28 article-title: Model study on real-time aeration based on nitrite for effective operation of single-stage anammox publication-title: Environ. Res. – volume: 52 start-page: 330 year: 2016 end-page: 347 ident: bib54 article-title: Quantifying watershed-scale groundwater loading and in-stream fate of nitrate using high-frequency water quality data publication-title: Water Resour. Res. – volume: 5 start-page: 975 year: 2004 end-page: 1005 ident: bib81 article-title: Probability estimates for multi-class classification by pairwise coupling publication-title: J. Mach. Learn. Res. – volume: 21 start-page: 71 year: 2016 end-page: 82 ident: bib4 article-title: Predicting nitrate concentration and its spatial distribution in groundwater resources using support vector machines (SVMs) model publication-title: Environ. Model. Assess. – volume: 192 year: 2020 ident: bib9 article-title: Comparative evaluation of machine learning models for groundwater quality assessment publication-title: Environ. Monit. Assess. – volume: 35 start-page: 23 year: 2021 end-page: 37 ident: bib57 article-title: Ensemble boosting and bagging based machine learning models for groundwater potential prediction publication-title: Water Resour. Manag. – volume: 432 start-page: 412 year: 2012 end-page: 421 ident: bib63 article-title: Evaluating spatial interaction of soil property with non-point source pollution at watershed scale: the phosphorus indicator in Northeast China publication-title: Sci. Total Environ. – volume: 11 start-page: 352 year: 2009 end-page: 359 ident: bib42 article-title: Kernel functions analysis for support vector machines for land cover classification publication-title: Int. J. Appl. Earth Obs. – volume: 13 year: 2021 ident: bib55 article-title: Supervised machine learning for estimation of total suspended solids in urban watersheds publication-title: Water – volume: 124 year: 2021 ident: bib67 article-title: Retrieval model for total nitrogen concentration based on UAV hyper spectral remote sensing data and machine learning algorithms – a case study in the Miyun Reservoir, China publication-title: Ecol. Indicat. – volume: 1 start-page: 4 year: 2010 end-page: 20 ident: bib43 article-title: A review of machine learning algorithms for text documents classification publication-title: J. Adv. Inf. Technol. – volume: 2029 start-page: 1 year: 2017 end-page: 25 ident: bib62 article-title: Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis publication-title: Can. J. Fish. Aquat. Sci. – volume: 19 start-page: 439 year: 2020 end-page: 451 ident: bib25 article-title: Prediction of irrigation water quality parameters using machine learning models in a semi-arid environment publication-title: Journal of the Saudi Society of Agricultural Sciences – volume: 12 start-page: 1 year: 2020 end-page: 21 ident: bib53 article-title: River water salinity prediction using hybrid machine learning models publication-title: Water – volume: 216 start-page: 100 year: 2016 end-page: 115 ident: bib68 article-title: Influence of climate and land use changes on nutrient fluxes from Finnish rivers to the Baltic Sea publication-title: Agric. Ecosyst. Environ. – volume: 625 start-page: 1330 year: 2018 end-page: 1340 ident: bib71 article-title: Distribution and mass of groundwater orthophosphorus in an agricultural watershed publication-title: Sci. Total Environ. – volume: 25 start-page: 811 year: 2021 end-page: 829 ident: bib80 article-title: Determination of vadose zone and saturated zone nitrate lag times using long-Term groundwater monitoring data and statistical machine learning publication-title: Hydrol. Earth Syst. Sci. – volume: 1360 year: 2014 ident: bib23 article-title: The quality of our nation's waters - water quality in principal aquifers of the United States, 1991-2010: U.S publication-title: Geol. Surv. Circular – start-page: 285 year: 2016 ident: 10.1016/j.jenvman.2023.118924_bib1 – volume: 2029 start-page: 1 year: 2017 ident: 10.1016/j.jenvman.2023.118924_bib62 article-title: Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis publication-title: Can. J. Fish. Aquat. Sci. – volume: 40 year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib27 article-title: Comprehensive model applications for better understanding of pilot-scale membrane-aerated biofilm reactor performance publication-title: J. Water Proc. Eng. – volume: 192 issue: 12 year: 2020 ident: 10.1016/j.jenvman.2023.118924_bib9 article-title: Comparative evaluation of machine learning models for groundwater quality assessment publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-020-08695-3 – volume: 13 issue: 2 year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib55 article-title: Supervised machine learning for estimation of total suspended solids in urban watersheds publication-title: Water doi: 10.3390/w13020147 – volume: 21 start-page: 71 issue: 1 year: 2016 ident: 10.1016/j.jenvman.2023.118924_bib4 article-title: Predicting nitrate concentration and its spatial distribution in groundwater resources using support vector machines (SVMs) model publication-title: Environ. Model. Assess. doi: 10.1007/s10666-015-9468-0 – volume: 768 year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib39 article-title: A novel machine learning application: water quality resilience prediction Model publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144459 – volume: 26 start-page: 574 issue: 3 year: 2012 ident: 10.1016/j.jenvman.2023.118924_bib19 article-title: Development of a data mining-based analysis framework for multi-attribute construction project information publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2012.03.005 – volume: 864 year: 2023 ident: 10.1016/j.jenvman.2023.118924_bib52 article-title: Investigating relationships between climate controls and nutrient flux in surface waters, sediments, and subsurface pathways in an agricultural clay catchment of the Great Lakes Basin publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.160979 – volume: 19 start-page: 439 issue: 7 year: 2020 ident: 10.1016/j.jenvman.2023.118924_bib25 article-title: Prediction of irrigation water quality parameters using machine learning models in a semi-arid environment publication-title: Journal of the Saudi Society of Agricultural Sciences doi: 10.1016/j.jssas.2020.08.001 – volume: 42 start-page: 1308 issue: 5 year: 2013 ident: 10.1016/j.jenvman.2023.118924_bib74 article-title: Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment publication-title: J. Environ. Qual. doi: 10.2134/jeq2013.03.0098 – volume: 1360 year: 2014 ident: 10.1016/j.jenvman.2023.118924_bib23 article-title: The quality of our nation's waters - water quality in principal aquifers of the United States, 1991-2010: U.S publication-title: Geol. Surv. Circular – volume: 36 issue: May year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib58 article-title: Predicting national-scale tile drainage discharge in Denmark using machine learning algorithms publication-title: J. Hydrol.: Reg. Stud. – volume: 7 start-page: 436 year: 2018 ident: 10.1016/j.jenvman.2023.118924_bib77 article-title: Neural network modelling for nitrate concentration in groundwater of Kadava River basin, Nashik, Maharashtra, India publication-title: Groundwater for Sustainable Development doi: 10.1016/j.gsd.2017.12.012 – year: 2004 ident: 10.1016/j.jenvman.2023.118924_bib3 article-title: Naive Bayes vs decision trees in intrusion detection systems – volume: 218 year: 2022 ident: 10.1016/j.jenvman.2023.118924_bib83 article-title: Regional patterns and drivers of total nitrogen trends in the Chesapeake Bay watershed: insights from machine learning approaches and management implications publication-title: Water Res. doi: 10.1016/j.watres.2022.118443 – volume: 5 start-page: 975 year: 2004 ident: 10.1016/j.jenvman.2023.118924_bib81 article-title: Probability estimates for multi-class classification by pairwise coupling publication-title: J. Mach. Learn. Res. – year: 2001 ident: 10.1016/j.jenvman.2023.118924_bib72 – volume: 36 start-page: 1 issue: 4 year: 2022 ident: 10.1016/j.jenvman.2023.118924_bib76 article-title: Can machine learning accelerate process understanding and decision relevant predictions of river water quality? publication-title: Hydrol. Process. doi: 10.1002/hyp.14565 – volume: 47 start-page: 145 issue: 1 year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib49 article-title: Groundwater-surface water interactions and agricultural nutrient transport in a Great Lakes clay plain system publication-title: J. Great Lake. Res. doi: 10.1016/j.jglr.2020.11.008 – volume: 18 start-page: 1237 year: 2004 ident: 10.1016/j.jenvman.2023.118924_bib51 article-title: Seasonal and interannual variations of nitrate and chloride in stream waters related to spatial and temporal patterns of groundwater concentrations in agricultural catchments publication-title: Hydrol. Process. doi: 10.1002/hyp.1395 – volume: 644 start-page: 954 year: 2018 ident: 10.1016/j.jenvman.2023.118924_bib70 article-title: A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.054 – volume: 668 start-page: 1317 year: 2019 ident: 10.1016/j.jenvman.2023.118924_bib45 article-title: Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.045 – volume: 714 year: 2020 ident: 10.1016/j.jenvman.2023.118924_bib69 article-title: Spatiotemporal variations of nitrogen and phosphorus in a clay plain hydrological system in the Great Lakes Basin publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.136328 – volume: 140 year: 2022 ident: 10.1016/j.jenvman.2023.118924_bib82 article-title: Use of interpretable machine learning to identify the factors influencing the nonlinear linkage between land use and river water quality in the Chesapeake Bay watershed publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2022.108977 – year: 2011 ident: 10.1016/j.jenvman.2023.118924_bib50 – year: 1994 ident: 10.1016/j.jenvman.2023.118924_bib61 – volume: 151 start-page: 76 year: 2015 ident: 10.1016/j.jenvman.2023.118924_bib26 article-title: Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2014.12.012 – volume: 55 start-page: 8028 issue: 10 year: 2019 ident: 10.1016/j.jenvman.2023.118924_bib21 article-title: Identifying subsurface drainage using satellite big data and machine learning via google earth engine publication-title: Water Resour. Res. doi: 10.1029/2019WR024892 – volume: 25 start-page: 811 issue: 2 year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib80 article-title: Determination of vadose zone and saturated zone nitrate lag times using long-Term groundwater monitoring data and statistical machine learning publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-25-811-2021 – volume: 52 start-page: 330 issue: 1 year: 2016 ident: 10.1016/j.jenvman.2023.118924_bib54 article-title: Quantifying watershed-scale groundwater loading and in-stream fate of nitrate using high-frequency water quality data publication-title: Water Resour. Res. doi: 10.1002/2015WR017753 – volume: 12 start-page: 395 issue: 4 year: 2003 ident: 10.1016/j.jenvman.2023.118924_bib14 article-title: Automating hierarchical document classification for construction management information systems publication-title: Autom. ConStruct. doi: 10.1016/S0926-5805(03)00004-9 – volume: 25 start-page: 771 issue: 4 year: 2011 ident: 10.1016/j.jenvman.2023.118924_bib34 article-title: Learning and classifying actions of construction workers and equipment using Bag-of-Video-Feature-Words and Bayesian network models publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2011.06.002 – volume: 13 start-page: 1 issue: 4 year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib35 article-title: A comparison of linear and non-linear machine learning techniques (PCA and SOM) for characterizing urban nutrient runoff publication-title: Sustainability doi: 10.3390/su13042054 – volume: 28 start-page: 10804 issue: 9 year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib56 article-title: Susceptibility mapping of groundwater salinity using machine learning models publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-020-11319-5 – volume: 598 year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib44 article-title: Can artificial intelligence and data-driven machine learning models match or even replace process-driven hydrologic models for streamflow simulation?: a case study of four watersheds with different hydro-climatic regions across the CONUS publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126423 – volume: 124 year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib67 article-title: Retrieval model for total nitrogen concentration based on UAV hyper spectral remote sensing data and machine learning algorithms – a case study in the Miyun Reservoir, China publication-title: Ecol. Indicat. – volume: 432 start-page: 412 year: 2012 ident: 10.1016/j.jenvman.2023.118924_bib63 article-title: Evaluating spatial interaction of soil property with non-point source pollution at watershed scale: the phosphorus indicator in Northeast China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.06.017 – volume: vol. 27 year: 2009 ident: 10.1016/j.jenvman.2023.118924_bib38 – volume: 28 start-page: 1891 issue: 5 year: 2020 ident: 10.1016/j.jenvman.2023.118924_bib31 article-title: Groundwater nitrate in three distinct hydrogeologic and land-use settings in southwestern Ontario, Canada publication-title: Hydrogeol. J. doi: 10.1007/s10040-020-02156-4 – volume: 212 year: 2022 ident: 10.1016/j.jenvman.2023.118924_bib28 article-title: Model study on real-time aeration based on nitrite for effective operation of single-stage anammox publication-title: Environ. Res. doi: 10.1016/j.envres.2022.113554 – volume: 47 start-page: 8997 issue: 16 year: 2013 ident: 10.1016/j.jenvman.2023.118924_bib40 article-title: Water quality remediation faces unprecedented challenges from “legacy phosphorus.” publication-title: Environ. Sci. Technol. doi: 10.1021/es403160a – volume: 633 start-page: 220 year: 2018 ident: 10.1016/j.jenvman.2023.118924_bib20 article-title: Coupling hydrological modeling and support vector regression to model hydropeaking in alpine catchments publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.162 – volume: 4 start-page: 583 year: 2015 ident: 10.1016/j.jenvman.2023.118924_bib33 article-title: Watershed area ratio accurately predicts daily streamflow in nested catchments in the Catskills, New York publication-title: J. Hydrol.: Reg. Stud. – volume: 216 start-page: 100 year: 2016 ident: 10.1016/j.jenvman.2023.118924_bib68 article-title: Influence of climate and land use changes on nutrient fluxes from Finnish rivers to the Baltic Sea publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2015.09.010 – volume: 35 start-page: 352 year: 2002 ident: 10.1016/j.jenvman.2023.118924_bib24 article-title: Logistic regression and artificial neural network classification models: a methodology review publication-title: J. Biomed. Inf. doi: 10.1016/S1532-0464(03)00034-0 – volume: 35 start-page: 23 issue: 1 year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib57 article-title: Ensemble boosting and bagging based machine learning models for groundwater potential prediction publication-title: Water Resour. Manag. doi: 10.1007/s11269-020-02704-3 – year: 2011 ident: 10.1016/j.jenvman.2023.118924_bib15 – volume: 4 start-page: 33 issue: 11 year: 2013 ident: 10.1016/j.jenvman.2023.118924_bib5 article-title: Performance comparison between naïve Bayes, decision tree and k-nearest neighbor in searching alternative design in an energy simulation tool publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 20 start-page: 1 issue: 20 year: 2020 ident: 10.1016/j.jenvman.2023.118924_bib8 article-title: Comparative analysis of artificial intelligence models for accurate estimation of groundwater nitrate concentration publication-title: Sensors doi: 10.3390/s20205763 – volume: 625 start-page: 1330 year: 2018 ident: 10.1016/j.jenvman.2023.118924_bib71 article-title: Distribution and mass of groundwater orthophosphorus in an agricultural watershed publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.035 – volume: 505 start-page: 390 year: 2015 ident: 10.1016/j.jenvman.2023.118924_bib47 article-title: Modeling water outflow from tile-drained agricultural fields publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.10.009 – volume: 317 year: 2022 ident: 10.1016/j.jenvman.2023.118924_bib10 article-title: Using Random Forest, a machine learning approach to predict nitrogen, phosphorus, and sediment event mean concentrations in urban runoff publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2022.115412 – volume: 1 start-page: 4 issue: 1 year: 2010 ident: 10.1016/j.jenvman.2023.118924_bib43 article-title: A review of machine learning algorithms for text documents classification publication-title: J. Adv. Inf. Technol. – start-page: 841 year: 2002 ident: 10.1016/j.jenvman.2023.118924_bib60 article-title: On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes publication-title: Adv. Neural Inf. Process. Syst. – year: 2007 ident: 10.1016/j.jenvman.2023.118924_bib75 – volume: 141 issue: 35 year: 2022 ident: 10.1016/j.jenvman.2023.118924_bib79 article-title: Assessment of influencing factors on non-point source pollution critical source areas in an agricultural watershed publication-title: Ecol. Indicat. – volume: 143 start-page: 73 issue: 1 year: 2018 ident: 10.1016/j.jenvman.2023.118924_bib73 article-title: Nitrate in drinking water and colorectal cancer risk: a nationwide population-based cohort study publication-title: Int. J. Cancer doi: 10.1002/ijc.31306 – volume: 192 issue: 12 year: 2020 ident: 10.1016/j.jenvman.2023.118924_bib36 article-title: Estimation of nitrogen and phosphorus concentrations from water quality surrogates using machine learning in the Tri an Reservoir publication-title: Vietnam. Environmental Monitoring and Assessment – volume: 295 year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib6 article-title: Determination of flood probability and prioritization of sub-watersheds: a comparison of game theory to machine learning publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.113040 – year: 1999 ident: 10.1016/j.jenvman.2023.118924_bib37 – year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib41 article-title: Evaluate river water salinity in a semi-arid agricultural watershed by coupling ensemble machine learning technique with SWAT model publication-title: J. Am. Water Resour. Assoc. – volume: 597 year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib2 article-title: Dissolved oxygen concentration predictions for running waters with different land use land cover using a quantile regression forest machine learning technique publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126213 – volume: 13 issue: 21 year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib11 article-title: Prediction of nitrate and phosphorus concentrations using machine learning algorithms in watersheds with different land use publication-title: Water doi: 10.3390/w13213096 – volume: 14 issue: 11 year: 2022 ident: 10.1016/j.jenvman.2023.118924_bib66 article-title: Filling gaps in daily precipitation series using regression and machine learning in inter‐andean watersheds publication-title: Water doi: 10.3390/w14111799 – volume: 11 start-page: 352 issue: 5 year: 2009 ident: 10.1016/j.jenvman.2023.118924_bib42 article-title: Kernel functions analysis for support vector machines for land cover classification publication-title: Int. J. Appl. Earth Obs. – start-page: 145 year: 2020 ident: 10.1016/j.jenvman.2023.118924_bib46 article-title: Different machine learning models publication-title: Machine Learning in Cognitive IoT – volume: 159 start-page: 1224 year: 2022 ident: 10.1016/j.jenvman.2023.118924_bib29 article-title: Machine learning classification algorithms for inadequate wastewater treatment risk mitigation publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2022.01.065 – volume: 761 year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib78 article-title: Predicting stream water quality under different urban development pattern scenarios with an interpretable machine learning approach publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144057 – volume: 36 start-page: 1 issue: 6 year: 2022 ident: 10.1016/j.jenvman.2023.118924_bib7 article-title: A machine learning approach to water quality forecasts and sensor network expansion: case study in the Wabash River Basin, United States publication-title: Hydrol. Process. doi: 10.1002/hyp.14619 – volume: 729 year: 2020 ident: 10.1016/j.jenvman.2023.118924_bib48 article-title: Characterizing the impacts of land use on nitrate load and water yield in an agricultural watershed in Atlantic Canada publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138793 – volume: 584 year: 2020 ident: 10.1016/j.jenvman.2023.118924_bib65 article-title: Integrated modelling to assess climate change impacts on groundwater and surface water in the Great Lakes Basin using diverse climate forcing publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124682 – volume: 408 start-page: 189 year: 2020 ident: 10.1016/j.jenvman.2023.118924_bib17 article-title: A comprehensive survey on support vector machine classification: applications, challenges and trends publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.118 – volume: 598 year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib84 article-title: Ensemble machine learning paradigms in hydrology: a review publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126266 – year: 2019 ident: 10.1016/j.jenvman.2023.118924_bib12 – volume: 47 start-page: 1656 issue: 6 year: 2021 ident: 10.1016/j.jenvman.2023.118924_bib18 article-title: Linking multi-media modeling with machine learning to assess and predict lake chlorophyll a concentrations publication-title: J. Great Lake. Res. doi: 10.1016/j.jglr.2021.09.011 – volume: 578 year: 2019 ident: 10.1016/j.jenvman.2023.118924_bib59 article-title: Machine learning methods for better water quality prediction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124084 – volume: 505 start-page: 150 year: 2013 ident: 10.1016/j.jenvman.2023.118924_bib13 article-title: Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain) publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.09.048 – start-page: 304 year: 2010 ident: 10.1016/j.jenvman.2023.118924_bib22 article-title: Application of decision tree technique to analyze construction project data – volume: 1 start-page: 1 year: 2020 ident: 10.1016/j.jenvman.2023.118924_bib64 article-title: Machine learning models for predicting the ammonium concentration in alluvial groundwaters publication-title: Environ. Model. Assess. – year: 2012 ident: 10.1016/j.jenvman.2023.118924_bib16 – volume: 48 start-page: 455 issue: 2 year: 2022 ident: 10.1016/j.jenvman.2023.118924_bib32 article-title: Characterizing stream planform geometry using a novel application of spectral analysis publication-title: J. Great Lake. Res. doi: 10.1016/j.jglr.2022.01.021 – volume: 128 start-page: 17 year: 2017 ident: 10.1016/j.jenvman.2023.118924_bib30 article-title: Resilience of critical infrastructures: probabilistic case study of a district heating pipeline network in municipality of Latvia publication-title: Energy Proc. doi: 10.1016/j.egypro.2017.09.007 – volume: 12 start-page: 1 issue: 10 year: 2020 ident: 10.1016/j.jenvman.2023.118924_bib53 article-title: River water salinity prediction using hybrid machine learning models publication-title: Water doi: 10.3390/w12102951 |
| SSID | ssj0003217 |
| Score | 2.5050836 |
| Snippet | Excess nutrients in surface water and groundwater can lead to water quality deterioration in available water resources. Thus, the classification of nutrient... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118924 |
| SubjectTerms | agricultural land Agricultural watershed agricultural watersheds algorithms clay climate data collection environmental management Groundwater Machine learning classification algorithms Monitoring nitrates nutrient management Nutrient transport Ontario reactive phosphorus Surface water total dissolved phosphorus water quality |
| Title | Application of classification machine learning algorithms for characterizing nutrient transport in a clay plain agricultural watershed |
| URI | https://dx.doi.org/10.1016/j.jenvman.2023.118924 https://www.proquest.com/docview/2863299036 https://www.proquest.com/docview/3040434283 |
| Volume | 345 |
| WOSCitedRecordID | wos001074018800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-8630 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003217 issn: 0301-4797 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW6DgleEAwmxsdkJMTLlNLGjp08VqgTTFXhoZP6Ft18da26tLTdaPkB_AR-L76xnaSwaeOBl6h1Y7fpObFvru89l5B3USLVwo6Ss5JxhwPeUhDHDk-5yHicBFncLopNyMHAH42Cr43GL5sLcz2Tee5vNsHiv0Kt2hTYmDr7D3CXg6oG9VqBro4KdnW8F_Ddaku6iBlH8xjjgXTLZRE8mdpqEeMTmI3ny8n6QgszYCKwEXD-gZ_mKNaP4QJrK4KODhJMqIQtVqDGN-Nlpd_xHVCt82K3_GfN6K3l1WHayl-xN73ZCrba_9q9uDTDFBrbGx0esOPB7mNqvG4_g7xyLUxy_XRQi9Y0jg2XmQy_av5Tcw86_mR9smbcO1moed5Xz43OjUuA9kZMW1N1ReoyWji06VCteXaff_AlPD3v98NhbzR8v_jmYDUy3LU3pVn2yL4rvcBvkv3u597orFzjmVvUci5_YpUb9uHGb77N6vlj_S-MmuET8tgAQ7uaRU9JI80PyEObrL46IIe9OmDUrASrZ-RnjWZ0ntFdmlFDM2ppRiuaUUUzukszamlGS5rRSU4BR93Sgma0TjNa0uw5OT_tDT9-ckxNDydm0ls7WRZ10jZnEZMQJFIKL-JBAiwWrhS8E4Myj0XC0yQCKSR0BCibPAsigXUdOCTskDTzeZ6-IBSYBx0A9UQMknM3DkCwSLo8iNpZwr3oiHD7n4exEbzHuiuz0EY2TkMDVYhQhRqqI9Iquy204stdHXwLaGjMVm2OhoqSd3V9awkQqmkd9-ogT-dXq9D1BUNLkYnbz2FtlMZCxcSX9zjnFXlU3WWvSXO9vErfkAfx9XqyWh6TPTnyjw3NfwOcTNxt |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+classification+machine+learning+algorithms+for+characterizing+nutrient+transport+in+a+clay+plain+agricultural+watershed&rft.jtitle=Journal+of+environmental+management&rft.au=Elsayed%2C+Ahmed&rft.au=Rixon%2C+Sarah&rft.au=Levison%2C+Jana&rft.au=Binns%2C+Andrew&rft.date=2023-11-01&rft.issn=0301-4797&rft.volume=345+p.118924-&rft_id=info:doi/10.1016%2Fj.jenvman.2023.118924&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon |