Application of classification machine learning algorithms for characterizing nutrient transport in a clay plain agricultural watershed

Excess nutrients in surface water and groundwater can lead to water quality deterioration in available water resources. Thus, the classification of nutrient concentrations in water resources has gained significant attention during recent decades. Machine learning (ML) algorithms are considered an ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management Jg. 345; S. 118924
Hauptverfasser: Elsayed, Ahmed, Rixon, Sarah, Levison, Jana, Binns, Andrew, Goel, Pradeep
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.11.2023
Schlagworte:
ISSN:0301-4797, 1095-8630, 1095-8630
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Excess nutrients in surface water and groundwater can lead to water quality deterioration in available water resources. Thus, the classification of nutrient concentrations in water resources has gained significant attention during recent decades. Machine learning (ML) algorithms are considered an efficient tool to describe nutrient loss from agricultural land to surface water and groundwater. Previous studies have applied regression and classification ML algorithms to predict nutrient concentrations in surface water and/or groundwater, or to categorize an output variable using a limited number of input variables. However, there have been no studies that examined the application of different ML classification algorithms in agricultural settings to classify various output variables using a wide range of input variables. In this study, twenty-four ML classification algorithms were implemented on a dataset from three locations within the Upper Parkhill watershed, an agricultural watershed in southern Ontario, Canada. Nutrient concentrations in surface water were classified using geochemical and physical water parameters of surface water and groundwater (e.g., pH), climate and field conditions as the input variables. The performance of these algorithms was evaluated using four evaluation metrics (e.g., classification accuracy) to identify the optimal algorithm for classifying the output variables. Ensemble bagged trees was found to be the optimal ML algorithm for classifying nitrate concentration in surface water (accuracy of 90.9%), while the weighted KNN was the most appropriate algorithm for categorizing the total phosphorus concentration (accuracy of 87%). The ensemble subspace discriminant algorithm gave the highest overall classification accuracy for the concentration of soluble reactive phosphorus and total dissolved phosphorus in surface water with an accuracy of 79.2% and 77.9%, respectively. This study exemplifies that ML algorithms can be used to signify exceedance of recommended concentrations of nutrients in surface waters in agricultural watersheds. Results are useful for decision makers to develop nutrient management strategies. [Display omitted] •Machine learning algorithms were applied on a data from an agricultural watershed.•Output variables were nutrient concentrations in surface water in the watershed.•Performance of algorithms was assessed using four evaluation metrics.•Interdependence between different nutrient transport variables was investigated.•Machine learning results can be used for nutrient management and decision making.
AbstractList Excess nutrients in surface water and groundwater can lead to water quality deterioration in available water resources. Thus, the classification of nutrient concentrations in water resources has gained significant attention during recent decades. Machine learning (ML) algorithms are considered an efficient tool to describe nutrient loss from agricultural land to surface water and groundwater. Previous studies have applied regression and classification ML algorithms to predict nutrient concentrations in surface water and/or groundwater, or to categorize an output variable using a limited number of input variables. However, there have been no studies that examined the application of different ML classification algorithms in agricultural settings to classify various output variables using a wide range of input variables. In this study, twenty-four ML classification algorithms were implemented on a dataset from three locations within the Upper Parkhill watershed, an agricultural watershed in southern Ontario, Canada. Nutrient concentrations in surface water were classified using geochemical and physical water parameters of surface water and groundwater (e.g., pH), climate and field conditions as the input variables. The performance of these algorithms was evaluated using four evaluation metrics (e.g., classification accuracy) to identify the optimal algorithm for classifying the output variables. Ensemble bagged trees was found to be the optimal ML algorithm for classifying nitrate concentration in surface water (accuracy of 90.9%), while the weighted KNN was the most appropriate algorithm for categorizing the total phosphorus concentration (accuracy of 87%). The ensemble subspace discriminant algorithm gave the highest overall classification accuracy for the concentration of soluble reactive phosphorus and total dissolved phosphorus in surface water with an accuracy of 79.2% and 77.9%, respectively. This study exemplifies that ML algorithms can be used to signify exceedance of recommended concentrations of nutrients in surface waters in agricultural watersheds. Results are useful for decision makers to develop nutrient management strategies.
Excess nutrients in surface water and groundwater can lead to water quality deterioration in available water resources. Thus, the classification of nutrient concentrations in water resources has gained significant attention during recent decades. Machine learning (ML) algorithms are considered an efficient tool to describe nutrient loss from agricultural land to surface water and groundwater. Previous studies have applied regression and classification ML algorithms to predict nutrient concentrations in surface water and/or groundwater, or to categorize an output variable using a limited number of input variables. However, there have been no studies that examined the application of different ML classification algorithms in agricultural settings to classify various output variables using a wide range of input variables. In this study, twenty-four ML classification algorithms were implemented on a dataset from three locations within the Upper Parkhill watershed, an agricultural watershed in southern Ontario, Canada. Nutrient concentrations in surface water were classified using geochemical and physical water parameters of surface water and groundwater (e.g., pH), climate and field conditions as the input variables. The performance of these algorithms was evaluated using four evaluation metrics (e.g., classification accuracy) to identify the optimal algorithm for classifying the output variables. Ensemble bagged trees was found to be the optimal ML algorithm for classifying nitrate concentration in surface water (accuracy of 90.9%), while the weighted KNN was the most appropriate algorithm for categorizing the total phosphorus concentration (accuracy of 87%). The ensemble subspace discriminant algorithm gave the highest overall classification accuracy for the concentration of soluble reactive phosphorus and total dissolved phosphorus in surface water with an accuracy of 79.2% and 77.9%, respectively. This study exemplifies that ML algorithms can be used to signify exceedance of recommended concentrations of nutrients in surface waters in agricultural watersheds. Results are useful for decision makers to develop nutrient management strategies. [Display omitted] •Machine learning algorithms were applied on a data from an agricultural watershed.•Output variables were nutrient concentrations in surface water in the watershed.•Performance of algorithms was assessed using four evaluation metrics.•Interdependence between different nutrient transport variables was investigated.•Machine learning results can be used for nutrient management and decision making.
Excess nutrients in surface water and groundwater can lead to water quality deterioration in available water resources. Thus, the classification of nutrient concentrations in water resources has gained significant attention during recent decades. Machine learning (ML) algorithms are considered an efficient tool to describe nutrient loss from agricultural land to surface water and groundwater. Previous studies have applied regression and classification ML algorithms to predict nutrient concentrations in surface water and/or groundwater, or to categorize an output variable using a limited number of input variables. However, there have been no studies that examined the application of different ML classification algorithms in agricultural settings to classify various output variables using a wide range of input variables. In this study, twenty-four ML classification algorithms were implemented on a dataset from three locations within the Upper Parkhill watershed, an agricultural watershed in southern Ontario, Canada. Nutrient concentrations in surface water were classified using geochemical and physical water parameters of surface water and groundwater (e.g., pH), climate and field conditions as the input variables. The performance of these algorithms was evaluated using four evaluation metrics (e.g., classification accuracy) to identify the optimal algorithm for classifying the output variables. Ensemble bagged trees was found to be the optimal ML algorithm for classifying nitrate concentration in surface water (accuracy of 90.9%), while the weighted KNN was the most appropriate algorithm for categorizing the total phosphorus concentration (accuracy of 87%). The ensemble subspace discriminant algorithm gave the highest overall classification accuracy for the concentration of soluble reactive phosphorus and total dissolved phosphorus in surface water with an accuracy of 79.2% and 77.9%, respectively. This study exemplifies that ML algorithms can be used to signify exceedance of recommended concentrations of nutrients in surface waters in agricultural watersheds. Results are useful for decision makers to develop nutrient management strategies.Excess nutrients in surface water and groundwater can lead to water quality deterioration in available water resources. Thus, the classification of nutrient concentrations in water resources has gained significant attention during recent decades. Machine learning (ML) algorithms are considered an efficient tool to describe nutrient loss from agricultural land to surface water and groundwater. Previous studies have applied regression and classification ML algorithms to predict nutrient concentrations in surface water and/or groundwater, or to categorize an output variable using a limited number of input variables. However, there have been no studies that examined the application of different ML classification algorithms in agricultural settings to classify various output variables using a wide range of input variables. In this study, twenty-four ML classification algorithms were implemented on a dataset from three locations within the Upper Parkhill watershed, an agricultural watershed in southern Ontario, Canada. Nutrient concentrations in surface water were classified using geochemical and physical water parameters of surface water and groundwater (e.g., pH), climate and field conditions as the input variables. The performance of these algorithms was evaluated using four evaluation metrics (e.g., classification accuracy) to identify the optimal algorithm for classifying the output variables. Ensemble bagged trees was found to be the optimal ML algorithm for classifying nitrate concentration in surface water (accuracy of 90.9%), while the weighted KNN was the most appropriate algorithm for categorizing the total phosphorus concentration (accuracy of 87%). The ensemble subspace discriminant algorithm gave the highest overall classification accuracy for the concentration of soluble reactive phosphorus and total dissolved phosphorus in surface water with an accuracy of 79.2% and 77.9%, respectively. This study exemplifies that ML algorithms can be used to signify exceedance of recommended concentrations of nutrients in surface waters in agricultural watersheds. Results are useful for decision makers to develop nutrient management strategies.
ArticleNumber 118924
Author Levison, Jana
Binns, Andrew
Rixon, Sarah
Goel, Pradeep
Elsayed, Ahmed
Author_xml – sequence: 1
  givenname: Ahmed
  surname: Elsayed
  fullname: Elsayed, Ahmed
  email: aelsay03@uoguelph.ca
  organization: School of Engineering, Morwick G360 Groundwater Research Institute, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
– sequence: 2
  givenname: Sarah
  surname: Rixon
  fullname: Rixon, Sarah
  organization: School of Engineering, Morwick G360 Groundwater Research Institute, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
– sequence: 3
  givenname: Jana
  orcidid: 0000-0003-3524-1392
  surname: Levison
  fullname: Levison, Jana
  organization: School of Engineering, Morwick G360 Groundwater Research Institute, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
– sequence: 4
  givenname: Andrew
  surname: Binns
  fullname: Binns, Andrew
  organization: School of Engineering, Morwick G360 Groundwater Research Institute, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
– sequence: 5
  givenname: Pradeep
  orcidid: 0000-0002-0695-5321
  surname: Goel
  fullname: Goel, Pradeep
  organization: Ministry of the Environment, Conservation and Parks (MECP), 125 Resources Road, Etobicoke, Ontario, M9P 3V6, Canada
BookMark eNqFkc1u3CAYRVGVSpkkfYRILLvxlD_DoC6qKOqfFKmbZo0-YzzDCIMLOFX6AH3u2p10082sEHDPXZx7hS5iig6hW0q2lFD57rg9uvg0QtwywviW0p1m4hXaUKLbZic5uUAbwglthNLqEl2VciSEcEbVBv2-m6bgLVSfIk4DtgFK8cO_lxHswUeHg4McfdxjCPuUfT2MBQ8pY3uADLa67H-tv3Gu2btYcc0Qy5RyxT5iWFuf8RRgveyzt3Ooc4aAf8KCloPrb9DrAUJxb17Oa_T46eP3-y_Nw7fPX-_vHhrLVVubYeioI4J3XIHulZJtJ3QP3EqmpKAWtJKyF67vQEkFVAJr5aA7KelOCuj5NXp76p1y-jG7Us3oi3UhQHRpLoYTsdQLtuNno2wxy7QmXC7R9hS1OZWS3WCm7EfIz4YSs05kjuZlIrNOZE4TLdz7_zjr61_xiz8fztIfTrRbhD15l02xi3zrep-draZP_kzDH5vAtis
CitedBy_id crossref_primary_10_1080_08839514_2024_2426377
crossref_primary_10_1016_j_jece_2025_118844
crossref_primary_10_1016_j_jenvman_2024_123305
crossref_primary_10_1016_j_porgcoat_2024_109003
crossref_primary_10_1016_j_jwpe_2024_105932
crossref_primary_10_1016_j_jclepro_2025_146400
crossref_primary_10_3389_fenvs_2025_1543852
crossref_primary_10_1016_j_jwpe_2024_105379
crossref_primary_10_1016_j_jhydrol_2023_130338
crossref_primary_10_1016_j_asoc_2025_113778
crossref_primary_10_1016_j_watres_2024_121262
crossref_primary_10_1016_j_jece_2025_118384
crossref_primary_10_1016_j_ecolind_2025_113974
crossref_primary_10_1002_wer_70059
Cites_doi 10.1007/s10661-020-08695-3
10.3390/w13020147
10.1007/s10666-015-9468-0
10.1016/j.scitotenv.2020.144459
10.1016/j.aei.2012.03.005
10.1016/j.scitotenv.2022.160979
10.1016/j.jssas.2020.08.001
10.2134/jeq2013.03.0098
10.1016/j.gsd.2017.12.012
10.1016/j.watres.2022.118443
10.1002/hyp.14565
10.1016/j.jglr.2020.11.008
10.1002/hyp.1395
10.1016/j.scitotenv.2018.07.054
10.1016/j.scitotenv.2019.03.045
10.1016/j.scitotenv.2019.136328
10.1016/j.ecolind.2022.108977
10.1016/j.jenvman.2014.12.012
10.1029/2019WR024892
10.5194/hess-25-811-2021
10.1002/2015WR017753
10.1016/S0926-5805(03)00004-9
10.1016/j.aei.2011.06.002
10.3390/su13042054
10.1007/s11356-020-11319-5
10.1016/j.jhydrol.2021.126423
10.1016/j.scitotenv.2012.06.017
10.1007/s10040-020-02156-4
10.1016/j.envres.2022.113554
10.1021/es403160a
10.1016/j.scitotenv.2018.03.162
10.1016/j.agee.2015.09.010
10.1016/S1532-0464(03)00034-0
10.1007/s11269-020-02704-3
10.3390/s20205763
10.1016/j.scitotenv.2018.01.035
10.1016/j.scitotenv.2014.10.009
10.1016/j.jenvman.2022.115412
10.1002/ijc.31306
10.1016/j.jenvman.2021.113040
10.1016/j.jhydrol.2021.126213
10.3390/w13213096
10.3390/w14111799
10.1016/j.psep.2022.01.065
10.1016/j.scitotenv.2020.144057
10.1002/hyp.14619
10.1016/j.scitotenv.2020.138793
10.1016/j.jhydrol.2020.124682
10.1016/j.neucom.2019.10.118
10.1016/j.jhydrol.2021.126266
10.1016/j.jglr.2021.09.011
10.1016/j.jhydrol.2019.124084
10.1016/j.jhydrol.2013.09.048
10.1016/j.jglr.2022.01.021
10.1016/j.egypro.2017.09.007
10.3390/w12102951
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jenvman.2023.118924
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1095-8630
ExternalDocumentID 10_1016_j_jenvman_2023_118924
S0301479723017127
GeographicLocations Ontario
GeographicLocations_xml – name: Ontario
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOMHK
AVARZ
AXJTR
BELTK
BKOJK
BKOMP
BLECG
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSJ
SSO
SSR
SSZ
T5K
TAE
TWZ
WH7
XSW
Y6R
YK3
ZCA
ZU3
~02
~G-
~KM
29K
3EH
53G
9DU
AAQXK
AATTM
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADXHL
AEUPX
AFPUW
AGQPQ
AI.
AIDBO
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
D-I
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
UHS
UQL
VH1
WUQ
XPP
YV5
ZMT
ZY4
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c375t-ffb1e043b37a9d7765b49da3c627641ca9766d4edba767a16a256f9b661864ad3
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001074018800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0301-4797
1095-8630
IngestDate Sun Sep 28 04:10:27 EDT 2025
Wed Oct 01 14:32:13 EDT 2025
Tue Nov 18 22:22:16 EST 2025
Sat Nov 29 08:04:36 EST 2025
Sat Mar 22 15:54:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Machine learning classification algorithms
Nutrient transport
Agricultural watershed
Groundwater
Monitoring
Surface water
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c375t-ffb1e043b37a9d7765b49da3c627641ca9766d4edba767a16a256f9b661864ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0695-5321
0000-0003-3524-1392
PQID 2863299036
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3040434283
proquest_miscellaneous_2863299036
crossref_primary_10_1016_j_jenvman_2023_118924
crossref_citationtrail_10_1016_j_jenvman_2023_118924
elsevier_sciencedirect_doi_10_1016_j_jenvman_2023_118924
PublicationCentury 2000
PublicationDate 2023-11-01
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of environmental management
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Elsayed, Siam, El-Dakhakhni (bib29) 2022; 159
Khan, Baharudin, Lee, Khan (bib43) 2010; 1
Behrouz, Yazdi, Sample (bib10) 2022; 317
Zhang, Bostic, Sabo (bib83) 2022; 218
Gardner, Levison, Parker, Martin (bib31) 2020; 28
Gardner, Nguyen, Sattolo, May, Binns, Levison (bib32) 2022; 48
Kuzmanovski, Trajanov, Leprince, Džeroski, Debeljak (bib47) 2015; 505
Perović, Šenk, Tarjan, Obradović, Dimkić (bib64) 2020; 1
Steele, Veliz (bib75) 2007
Balson, Ward (bib7) 2022; 36
Desai, Joshi (bib22) 2010
Imani, Hasan, Bittencourt, McClymont, Kapelan (bib39) 2021; 768
Amor, Benferhat, Elouedi (bib3) 2004
Elsayed, Hurdle, Kim (bib27) 2021; 40
Kumar, Makkar (bib46) 2020
Sharpley, Jarvie, Buda, May, Spears, Kleinman (bib74) 2013; 42
Varadharajan, Appling, Arora, Christianson, Hendrix, Kumar, Lima, Müller, Oliver, Ombadi, Perciano, Sadler, Weierbach, Willard, Xu, Zwart (bib76) 2022; 36
Ouyang, Huang, Hao, Shan, Guo (bib63) 2012; 432
Najah Ahmed, Binti Othman, Abdulmohsin Afan, Khaleel Ibrahim, Ming Fai, Shabbir Hossain, Ehteram, Elshafie (bib59) 2019; 578
Han, Karypis, Kumar (bib37) 1999
Wang, Wang, Wang, Wang (bib79) 2022; 141
Bedi, Samal, Ray, Snow (bib9) 2020; 192
Dreiseitl, Ohno-Machado (bib24) 2002; 35
Cervantes, Garcia-Lamont, Rodríguez-Mazahua, Lopez (bib17) 2020; 408
Wells, Gilmore, Nelson, Mittelstet, Böhlke (bib80) 2021; 25
Melesse, Khosravi, Tiefenbacher, Heddam, Kim, Mosavi, Pham (bib53) 2020; 12
Arabgol, Sartaj, Asghari (bib4) 2016; 21
Band, Janizadeh, Pal, Chowdhuri, Siabi, Norouzi, Melesse, Shokri, Mosavi (bib8) 2020; 20
Elsayed, Yu, Lee, Kim (bib28) 2022; 212
Mackie, Levison, Binns, O'Halloran (bib49) 2021; 47
Schilling, Streeter, Isenhart, Beck, Tomer, Cole, Kovar (bib71) 2018; 625
Knoll, Breuer, Bach (bib45) 2019; 668
(bib61) 1994
May, Rixon, Gardner, Goel, Levison, Binns (bib52) 2023; 864
Chi, Suk, Kang, Mulva (bib19) 2012; 26
Mosavi, Hosseini, Choubin, Taromideh, Ghodsi, Nazari, Dineva (bib56) 2021; 28
Chiogna, Marcolini, Liu, Pérez Ciria, Tuo (bib20) 2018; 633
Gong, Caldas, Gordon (bib34) 2011; 25
Orihel, Baulch, Casson, North, Parsons, Seckar, Venkiteswaran (bib62) 2017; 2029
Kavzoglu, Colkesen (bib42) 2009; 11
(bib16) 2012
El-Khoury, Seidou, Lapen, Que, Mohammadian, Sunohara, Bahram (bib26) 2015; 151
Martin, Aquilina, Gascuel-Odoux, Molenat, Faucheux, Ruiz (bib51) 2004; 18
Moeini, Shojaeizadeh, Geza (bib55) 2021; 13
Schullehner, Hansen, Thygesen, Pedersen, Sigsgaard (bib73) 2018; 143
Ha, Nguyen, Truong, Le, Thai, Pham (bib36) 2020; 192
Kim, Yang, Gao, Zhang, Ding, Wen, Gourley, Hong (bib44) 2021; 598
Feofilovs, Romagnoli (bib30) 2017; 128
DeSimone, McMahon, Rosen (bib23) 2014; 1360
Wang, Kim, Li (bib78) 2021; 761
Caldas, Soibelman (bib14) 2003; 12
Aggarwal (bib1) 2016
Boehmke, Greenwell (bib12) 2019
Jarvie, Sharpley, Spears, Buda, May, Kleinman (bib40) 2013; 47
El Bilali, Taleb (bib25) 2020; 19
Bhattarai, Dhakal, Gautam, Bhattarai (bib11) 2021; 13
Sajedi-Hosseini, Malekian, Choubin, Rahmati, Cipullo, Coulon, Pradhan (bib70) 2018; 644
Liang, Jiang, Qi, Fuller, Nyiraneza, Meng (bib48) 2020; 729
Motarjemi, Møller, Plauborg, Iversen (bib58) 2021; 36
Cho, Jacobs, Jia, Kraatz (bib21) 2019; 55
Gorgoglione, Castro, Iacobellis, Gioia (bib35) 2021; 13
(bib15) 2011
Hastie, Tibshirani, Friedman (bib38) 2009; vol. 27
Miller, Tesoriero, Capel, Pellerin, Hyer, Burns (bib54) 2016; 52
Zhang, Huang, Duan, Huang, Cai, Bian (bib82) 2022; 140
Mosavi, Hosseini, Choubin, Goodarzi, Dineva, Sardooi (bib57) 2021; 35
Wu, Lin, Weng (bib81) 2004; 5
Avand, Khiavi, Khazaei, Tiefenbacher (bib6) 2021; 295
Portuguez‐maurtua, Arumi, Lagos, Stehr, Arquiñigo (bib66) 2022; 14
Rankinen, Keinänen, Cano Bernal (bib68) 2016; 216
Wagh, Panaskar, Muley, Mukate, Gaikwad (bib77) 2018; 7
Ashari, Paryudi, Tjoa (bib5) 2013; 4
Gianfagna, Johnson, Chandler, Hofmann (bib33) 2015; 4
Ahmed, Lin (bib2) 2021; 597
Zounemat-Kermani, Batelaan, Fadaee, Hinkelmann (bib84) 2021; 598
MacRitchie (bib50) 2011
Persaud, Levison, MacRitchie, Berg, Erler, Parker, Sudicky (bib65) 2020; 584
Ng, Jordan (bib60) 2002
Boy-Roura, Nolan, Menció, Mas-Pla (bib13) 2013; 505
Jung, Ahn, Sheng, Ayana, Srinivasan, Yeganantham (bib41) 2021
Chang, Garcia, Tang, Vlahos, Wanik, Yan, Bash, Astitha (bib18) 2021; 47
Rixon, Levison, Binns, Persaud (bib69) 2020; 714
Qun’ou, Lidan, Siyang, Meilin, Huijie (bib67) 2021; 124
Scholkopf, Smola (bib72) 2001
Boehmke (10.1016/j.jenvman.2023.118924_bib12) 2019
El-Khoury (10.1016/j.jenvman.2023.118924_bib26) 2015; 151
Martin (10.1016/j.jenvman.2023.118924_bib51) 2004; 18
Behrouz (10.1016/j.jenvman.2023.118924_bib10) 2022; 317
May (10.1016/j.jenvman.2023.118924_bib52) 2023; 864
Schilling (10.1016/j.jenvman.2023.118924_bib71) 2018; 625
Motarjemi (10.1016/j.jenvman.2023.118924_bib58) 2021; 36
Bedi (10.1016/j.jenvman.2023.118924_bib9) 2020; 192
MacRitchie (10.1016/j.jenvman.2023.118924_bib50) 2011
(10.1016/j.jenvman.2023.118924_bib15) 2011
Desai (10.1016/j.jenvman.2023.118924_bib22) 2010
Mackie (10.1016/j.jenvman.2023.118924_bib49) 2021; 47
Mosavi (10.1016/j.jenvman.2023.118924_bib56) 2021; 28
Ng (10.1016/j.jenvman.2023.118924_bib60) 2002
Sajedi-Hosseini (10.1016/j.jenvman.2023.118924_bib70) 2018; 644
Kumar (10.1016/j.jenvman.2023.118924_bib46) 2020
Band (10.1016/j.jenvman.2023.118924_bib8) 2020; 20
Moeini (10.1016/j.jenvman.2023.118924_bib55) 2021; 13
(10.1016/j.jenvman.2023.118924_bib61) 1994
El Bilali (10.1016/j.jenvman.2023.118924_bib25) 2020; 19
Najah Ahmed (10.1016/j.jenvman.2023.118924_bib59) 2019; 578
Feofilovs (10.1016/j.jenvman.2023.118924_bib30) 2017; 128
Elsayed (10.1016/j.jenvman.2023.118924_bib27) 2021; 40
Amor (10.1016/j.jenvman.2023.118924_bib3) 2004
Kuzmanovski (10.1016/j.jenvman.2023.118924_bib47) 2015; 505
Ouyang (10.1016/j.jenvman.2023.118924_bib63) 2012; 432
Ahmed (10.1016/j.jenvman.2023.118924_bib2) 2021; 597
Jung (10.1016/j.jenvman.2023.118924_bib41) 2021
Zounemat-Kermani (10.1016/j.jenvman.2023.118924_bib84) 2021; 598
(10.1016/j.jenvman.2023.118924_bib16) 2012
Liang (10.1016/j.jenvman.2023.118924_bib48) 2020; 729
Wu (10.1016/j.jenvman.2023.118924_bib81) 2004; 5
Qun’ou (10.1016/j.jenvman.2023.118924_bib67) 2021; 124
Mosavi (10.1016/j.jenvman.2023.118924_bib57) 2021; 35
Elsayed (10.1016/j.jenvman.2023.118924_bib28) 2022; 212
Zhang (10.1016/j.jenvman.2023.118924_bib82) 2022; 140
Portuguez‐maurtua (10.1016/j.jenvman.2023.118924_bib66) 2022; 14
Balson (10.1016/j.jenvman.2023.118924_bib7) 2022; 36
Steele (10.1016/j.jenvman.2023.118924_bib75) 2007
Perović (10.1016/j.jenvman.2023.118924_bib64) 2020; 1
Varadharajan (10.1016/j.jenvman.2023.118924_bib76) 2022; 36
Knoll (10.1016/j.jenvman.2023.118924_bib45) 2019; 668
Aggarwal (10.1016/j.jenvman.2023.118924_bib1) 2016
Scholkopf (10.1016/j.jenvman.2023.118924_bib72) 2001
Jarvie (10.1016/j.jenvman.2023.118924_bib40) 2013; 47
Chang (10.1016/j.jenvman.2023.118924_bib18) 2021; 47
Sharpley (10.1016/j.jenvman.2023.118924_bib74) 2013; 42
Wells (10.1016/j.jenvman.2023.118924_bib80) 2021; 25
Caldas (10.1016/j.jenvman.2023.118924_bib14) 2003; 12
Chiogna (10.1016/j.jenvman.2023.118924_bib20) 2018; 633
Wang (10.1016/j.jenvman.2023.118924_bib79) 2022; 141
Zhang (10.1016/j.jenvman.2023.118924_bib83) 2022; 218
Gong (10.1016/j.jenvman.2023.118924_bib34) 2011; 25
Kim (10.1016/j.jenvman.2023.118924_bib44) 2021; 598
Ashari (10.1016/j.jenvman.2023.118924_bib5) 2013; 4
Rankinen (10.1016/j.jenvman.2023.118924_bib68) 2016; 216
Schullehner (10.1016/j.jenvman.2023.118924_bib73) 2018; 143
Cho (10.1016/j.jenvman.2023.118924_bib21) 2019; 55
Dreiseitl (10.1016/j.jenvman.2023.118924_bib24) 2002; 35
Khan (10.1016/j.jenvman.2023.118924_bib43) 2010; 1
Kavzoglu (10.1016/j.jenvman.2023.118924_bib42) 2009; 11
Bhattarai (10.1016/j.jenvman.2023.118924_bib11) 2021; 13
Gorgoglione (10.1016/j.jenvman.2023.118924_bib35) 2021; 13
Orihel (10.1016/j.jenvman.2023.118924_bib62) 2017; 2029
Imani (10.1016/j.jenvman.2023.118924_bib39) 2021; 768
Han (10.1016/j.jenvman.2023.118924_bib37) 1999
Arabgol (10.1016/j.jenvman.2023.118924_bib4) 2016; 21
Wagh (10.1016/j.jenvman.2023.118924_bib77) 2018; 7
Gianfagna (10.1016/j.jenvman.2023.118924_bib33) 2015; 4
Boy-Roura (10.1016/j.jenvman.2023.118924_bib13) 2013; 505
Rixon (10.1016/j.jenvman.2023.118924_bib69) 2020; 714
Cervantes (10.1016/j.jenvman.2023.118924_bib17) 2020; 408
Wang (10.1016/j.jenvman.2023.118924_bib78) 2021; 761
Persaud (10.1016/j.jenvman.2023.118924_bib65) 2020; 584
Miller (10.1016/j.jenvman.2023.118924_bib54) 2016; 52
Ha (10.1016/j.jenvman.2023.118924_bib36) 2020; 192
DeSimone (10.1016/j.jenvman.2023.118924_bib23) 2014; 1360
Chi (10.1016/j.jenvman.2023.118924_bib19) 2012; 26
Gardner (10.1016/j.jenvman.2023.118924_bib31) 2020; 28
Elsayed (10.1016/j.jenvman.2023.118924_bib29) 2022; 159
Gardner (10.1016/j.jenvman.2023.118924_bib32) 2022; 48
Hastie (10.1016/j.jenvman.2023.118924_bib38) 2009; vol. 27
Melesse (10.1016/j.jenvman.2023.118924_bib53) 2020; 12
Avand (10.1016/j.jenvman.2023.118924_bib6) 2021; 295
References_xml – volume: 598
  year: 2021
  ident: bib44
  article-title: Can artificial intelligence and data-driven machine learning models match or even replace process-driven hydrologic models for streamflow simulation?: a case study of four watersheds with different hydro-climatic regions across the CONUS
  publication-title: J. Hydrol.
– volume: 36
  year: 2021
  ident: bib58
  article-title: Predicting national-scale tile drainage discharge in Denmark using machine learning algorithms
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 128
  start-page: 17
  year: 2017
  end-page: 23
  ident: bib30
  article-title: Resilience of critical infrastructures: probabilistic case study of a district heating pipeline network in municipality of Latvia
  publication-title: Energy Proc.
– volume: 42
  start-page: 1308
  year: 2013
  ident: bib74
  article-title: Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment
  publication-title: J. Environ. Qual.
– volume: 7
  start-page: 436
  year: 2018
  end-page: 445
  ident: bib77
  article-title: Neural network modelling for nitrate concentration in groundwater of Kadava River basin, Nashik, Maharashtra, India
  publication-title: Groundwater for Sustainable Development
– volume: 505
  start-page: 390
  year: 2015
  end-page: 401
  ident: bib47
  article-title: Modeling water outflow from tile-drained agricultural fields
  publication-title: Sci. Total Environ.
– volume: 761
  year: 2021
  ident: bib78
  article-title: Predicting stream water quality under different urban development pattern scenarios with an interpretable machine learning approach
  publication-title: Sci. Total Environ.
– volume: 35
  start-page: 352
  year: 2002
  end-page: 359
  ident: bib24
  article-title: Logistic regression and artificial neural network classification models: a methodology review
  publication-title: J. Biomed. Inf.
– year: 2019
  ident: bib12
  article-title: Hands-On Machine Learning with R
– volume: 55
  start-page: 8028
  year: 2019
  end-page: 8045
  ident: bib21
  article-title: Identifying subsurface drainage using satellite big data and machine learning via google earth engine
  publication-title: Water Resour. Res.
– year: 2001
  ident: bib72
  article-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
– volume: 408
  start-page: 189
  year: 2020
  end-page: 215
  ident: bib17
  article-title: A comprehensive survey on support vector machine classification: applications, challenges and trends
  publication-title: Neurocomputing
– volume: 1
  start-page: 1
  year: 2020
  end-page: 17
  ident: bib64
  article-title: Machine learning models for predicting the ammonium concentration in alluvial groundwaters
  publication-title: Environ. Model. Assess.
– year: 2004
  ident: bib3
  article-title: Naive Bayes vs decision trees in intrusion detection systems
  publication-title: Proc., 2004 ACM Symp. On Applied Computing, 420–424
– volume: 768
  year: 2021
  ident: bib39
  article-title: A novel machine learning application: water quality resilience prediction Model
  publication-title: Sci. Total Environ.
– volume: 13
  start-page: 1
  year: 2021
  end-page: 19
  ident: bib35
  article-title: A comparison of linear and non-linear machine learning techniques (PCA and SOM) for characterizing urban nutrient runoff
  publication-title: Sustainability
– volume: 18
  start-page: 1237
  year: 2004
  end-page: 1254
  ident: bib51
  article-title: Seasonal and interannual variations of nitrate and chloride in stream waters related to spatial and temporal patterns of groundwater concentrations in agricultural catchments
  publication-title: Hydrol. Process.
– volume: 14
  year: 2022
  ident: bib66
  article-title: Filling gaps in daily precipitation series using regression and machine learning in inter‐andean watersheds
  publication-title: Water
– volume: 25
  start-page: 771
  year: 2011
  end-page: 782
  ident: bib34
  article-title: Learning and classifying actions of construction workers and equipment using Bag-of-Video-Feature-Words and Bayesian network models
  publication-title: Adv. Eng. Inf.
– year: 2011
  ident: bib15
  article-title: Selected Tools to Evaluate Water Monitoring Networks for Climate Change Adaptation
– volume: 28
  start-page: 10804
  year: 2021
  end-page: 10817
  ident: bib56
  article-title: Susceptibility mapping of groundwater salinity using machine learning models
  publication-title: Environ. Sci. Pollut. Control Ser.
– start-page: 841
  year: 2002
  end-page: 848
  ident: bib60
  article-title: On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 23
  ident: bib8
  article-title: Comparative analysis of artificial intelligence models for accurate estimation of groundwater nitrate concentration
  publication-title: Sensors
– year: 2011
  ident: bib50
  article-title: Assessment of Water Monitoring Networks for Climate Change
– volume: 140
  year: 2022
  ident: bib82
  article-title: Use of interpretable machine learning to identify the factors influencing the nonlinear linkage between land use and river water quality in the Chesapeake Bay watershed
  publication-title: Ecol. Indicat.
– year: 1994
  ident: bib61
  article-title: Water Management - Policies, Guidelines, Provincial Water Quality Objective
– year: 2012
  ident: bib16
  article-title: Canadian Water Quality Guidelines for the Protection of Aquatic Life: Nitrate
– volume: 317
  year: 2022
  ident: bib10
  article-title: Using Random Forest, a machine learning approach to predict nitrogen, phosphorus, and sediment event mean concentrations in urban runoff
  publication-title: J. Environ. Manag.
– volume: 47
  start-page: 145
  year: 2021
  end-page: 159
  ident: bib49
  article-title: Groundwater-surface water interactions and agricultural nutrient transport in a Great Lakes clay plain system
  publication-title: J. Great Lake. Res.
– volume: 192
  year: 2020
  ident: bib36
  article-title: Estimation of nitrogen and phosphorus concentrations from water quality surrogates using machine learning in the Tri an Reservoir
  publication-title: Vietnam. Environmental Monitoring and Assessment
– volume: 47
  start-page: 8997
  year: 2013
  end-page: 8998
  ident: bib40
  article-title: Water quality remediation faces unprecedented challenges from “legacy phosphorus.”
  publication-title: Environ. Sci. Technol.
– volume: vol. 27
  year: 2009
  ident: bib38
  publication-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– volume: 668
  start-page: 1317
  year: 2019
  end-page: 1327
  ident: bib45
  article-title: Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning
  publication-title: Sci. Total Environ.
– volume: 47
  start-page: 1656
  year: 2021
  end-page: 1670
  ident: bib18
  article-title: Linking multi-media modeling with machine learning to assess and predict lake chlorophyll a concentrations
  publication-title: J. Great Lake. Res.
– volume: 141
  year: 2022
  ident: bib79
  article-title: Assessment of influencing factors on non-point source pollution critical source areas in an agricultural watershed
  publication-title: Ecol. Indicat.
– volume: 295
  year: 2021
  ident: bib6
  article-title: Determination of flood probability and prioritization of sub-watersheds: a comparison of game theory to machine learning
  publication-title: J. Environ. Manag.
– year: 2021
  ident: bib41
  article-title: Evaluate river water salinity in a semi-arid agricultural watershed by coupling ensemble machine learning technique with SWAT model
  publication-title: J. Am. Water Resour. Assoc.
– volume: 864
  year: 2023
  ident: bib52
  article-title: Investigating relationships between climate controls and nutrient flux in surface waters, sediments, and subsurface pathways in an agricultural clay catchment of the Great Lakes Basin
  publication-title: Sci. Total Environ.
– volume: 4
  start-page: 583
  year: 2015
  end-page: 594
  ident: bib33
  article-title: Watershed area ratio accurately predicts daily streamflow in nested catchments in the Catskills, New York
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 218
  year: 2022
  ident: bib83
  article-title: Regional patterns and drivers of total nitrogen trends in the Chesapeake Bay watershed: insights from machine learning approaches and management implications
  publication-title: Water Res.
– volume: 143
  start-page: 73
  year: 2018
  end-page: 79
  ident: bib73
  article-title: Nitrate in drinking water and colorectal cancer risk: a nationwide population-based cohort study
  publication-title: Int. J. Cancer
– volume: 40
  year: 2021
  ident: bib27
  article-title: Comprehensive model applications for better understanding of pilot-scale membrane-aerated biofilm reactor performance
  publication-title: J. Water Proc. Eng.
– volume: 48
  start-page: 455
  year: 2022
  end-page: 467
  ident: bib32
  article-title: Characterizing stream planform geometry using a novel application of spectral analysis
  publication-title: J. Great Lake. Res.
– volume: 714
  year: 2020
  ident: bib69
  article-title: Spatiotemporal variations of nitrogen and phosphorus in a clay plain hydrological system in the Great Lakes Basin
  publication-title: Sci. Total Environ.
– volume: 13
  year: 2021
  ident: bib11
  article-title: Prediction of nitrate and phosphorus concentrations using machine learning algorithms in watersheds with different land use
  publication-title: Water
– volume: 12
  start-page: 395
  year: 2003
  end-page: 406
  ident: bib14
  article-title: Automating hierarchical document classification for construction management information systems
  publication-title: Autom. ConStruct.
– volume: 36
  start-page: 1
  year: 2022
  end-page: 22
  ident: bib76
  article-title: Can machine learning accelerate process understanding and decision relevant predictions of river water quality?
  publication-title: Hydrol. Process.
– volume: 633
  start-page: 220
  year: 2018
  end-page: 229
  ident: bib20
  article-title: Coupling hydrological modeling and support vector regression to model hydropeaking in alpine catchments
  publication-title: Sci. Total Environ.
– start-page: 285
  year: 2016
  end-page: 426
  ident: bib1
  article-title: Data Mining: the Textbook
– volume: 598
  year: 2021
  ident: bib84
  article-title: Ensemble machine learning paradigms in hydrology: a review
  publication-title: J. Hydrol.
– volume: 584
  year: 2020
  ident: bib65
  article-title: Integrated modelling to assess climate change impacts on groundwater and surface water in the Great Lakes Basin using diverse climate forcing
  publication-title: J. Hydrol.
– start-page: 145
  year: 2020
  end-page: 160
  ident: bib46
  article-title: Different machine learning models
  publication-title: Machine Learning in Cognitive IoT
– volume: 4
  start-page: 33
  year: 2013
  end-page: 39
  ident: bib5
  article-title: Performance comparison between naïve Bayes, decision tree and k-nearest neighbor in searching alternative design in an energy simulation tool
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 644
  start-page: 954
  year: 2018
  end-page: 962
  ident: bib70
  article-title: A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination
  publication-title: Sci. Total Environ.
– volume: 151
  start-page: 76
  year: 2015
  end-page: 86
  ident: bib26
  article-title: Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin
  publication-title: J. Environ. Manag.
– start-page: 304
  year: 2010
  end-page: 313
  ident: bib22
  article-title: Application of decision tree technique to analyze construction project data
  publication-title: Proc., Int. Conf. On Information Systems
– year: 1999
  ident: bib37
  article-title: Text Categorization Using Weighted Adjusted K-Nearest Neighbor Classification
– volume: 159
  start-page: 1224
  year: 2022
  end-page: 1235
  ident: bib29
  article-title: Machine learning classification algorithms for inadequate wastewater treatment risk mitigation
  publication-title: Process Saf. Environ. Protect.
– volume: 578
  year: 2019
  ident: bib59
  article-title: Machine learning methods for better water quality prediction
  publication-title: J. Hydrol.
– volume: 28
  start-page: 1891
  year: 2020
  end-page: 1908
  ident: bib31
  article-title: Groundwater nitrate in three distinct hydrogeologic and land-use settings in southwestern Ontario, Canada
  publication-title: Hydrogeol. J.
– volume: 26
  start-page: 574
  year: 2012
  end-page: 581
  ident: bib19
  article-title: Development of a data mining-based analysis framework for multi-attribute construction project information
  publication-title: Adv. Eng. Inf.
– volume: 597
  year: 2021
  ident: bib2
  article-title: Dissolved oxygen concentration predictions for running waters with different land use land cover using a quantile regression forest machine learning technique
  publication-title: J. Hydrol.
– volume: 36
  start-page: 1
  year: 2022
  end-page: 15
  ident: bib7
  article-title: A machine learning approach to water quality forecasts and sensor network expansion: case study in the Wabash River Basin, United States
  publication-title: Hydrol. Process.
– year: 2007
  ident: bib75
  article-title: Water Quality in the Ausable Bayfield Maitland Valley
– volume: 729
  year: 2020
  ident: bib48
  article-title: Characterizing the impacts of land use on nitrate load and water yield in an agricultural watershed in Atlantic Canada
  publication-title: Sci. Total Environ.
– volume: 505
  start-page: 150
  year: 2013
  end-page: 162
  ident: bib13
  article-title: Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain)
  publication-title: J. Hydrol.
– volume: 212
  year: 2022
  ident: bib28
  article-title: Model study on real-time aeration based on nitrite for effective operation of single-stage anammox
  publication-title: Environ. Res.
– volume: 52
  start-page: 330
  year: 2016
  end-page: 347
  ident: bib54
  article-title: Quantifying watershed-scale groundwater loading and in-stream fate of nitrate using high-frequency water quality data
  publication-title: Water Resour. Res.
– volume: 5
  start-page: 975
  year: 2004
  end-page: 1005
  ident: bib81
  article-title: Probability estimates for multi-class classification by pairwise coupling
  publication-title: J. Mach. Learn. Res.
– volume: 21
  start-page: 71
  year: 2016
  end-page: 82
  ident: bib4
  article-title: Predicting nitrate concentration and its spatial distribution in groundwater resources using support vector machines (SVMs) model
  publication-title: Environ. Model. Assess.
– volume: 192
  year: 2020
  ident: bib9
  article-title: Comparative evaluation of machine learning models for groundwater quality assessment
  publication-title: Environ. Monit. Assess.
– volume: 35
  start-page: 23
  year: 2021
  end-page: 37
  ident: bib57
  article-title: Ensemble boosting and bagging based machine learning models for groundwater potential prediction
  publication-title: Water Resour. Manag.
– volume: 432
  start-page: 412
  year: 2012
  end-page: 421
  ident: bib63
  article-title: Evaluating spatial interaction of soil property with non-point source pollution at watershed scale: the phosphorus indicator in Northeast China
  publication-title: Sci. Total Environ.
– volume: 11
  start-page: 352
  year: 2009
  end-page: 359
  ident: bib42
  article-title: Kernel functions analysis for support vector machines for land cover classification
  publication-title: Int. J. Appl. Earth Obs.
– volume: 13
  year: 2021
  ident: bib55
  article-title: Supervised machine learning for estimation of total suspended solids in urban watersheds
  publication-title: Water
– volume: 124
  year: 2021
  ident: bib67
  article-title: Retrieval model for total nitrogen concentration based on UAV hyper spectral remote sensing data and machine learning algorithms – a case study in the Miyun Reservoir, China
  publication-title: Ecol. Indicat.
– volume: 1
  start-page: 4
  year: 2010
  end-page: 20
  ident: bib43
  article-title: A review of machine learning algorithms for text documents classification
  publication-title: J. Adv. Inf. Technol.
– volume: 2029
  start-page: 1
  year: 2017
  end-page: 25
  ident: bib62
  article-title: Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis
  publication-title: Can. J. Fish. Aquat. Sci.
– volume: 19
  start-page: 439
  year: 2020
  end-page: 451
  ident: bib25
  article-title: Prediction of irrigation water quality parameters using machine learning models in a semi-arid environment
  publication-title: Journal of the Saudi Society of Agricultural Sciences
– volume: 12
  start-page: 1
  year: 2020
  end-page: 21
  ident: bib53
  article-title: River water salinity prediction using hybrid machine learning models
  publication-title: Water
– volume: 216
  start-page: 100
  year: 2016
  end-page: 115
  ident: bib68
  article-title: Influence of climate and land use changes on nutrient fluxes from Finnish rivers to the Baltic Sea
  publication-title: Agric. Ecosyst. Environ.
– volume: 625
  start-page: 1330
  year: 2018
  end-page: 1340
  ident: bib71
  article-title: Distribution and mass of groundwater orthophosphorus in an agricultural watershed
  publication-title: Sci. Total Environ.
– volume: 25
  start-page: 811
  year: 2021
  end-page: 829
  ident: bib80
  article-title: Determination of vadose zone and saturated zone nitrate lag times using long-Term groundwater monitoring data and statistical machine learning
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 1360
  year: 2014
  ident: bib23
  article-title: The quality of our nation's waters - water quality in principal aquifers of the United States, 1991-2010: U.S
  publication-title: Geol. Surv. Circular
– start-page: 285
  year: 2016
  ident: 10.1016/j.jenvman.2023.118924_bib1
– volume: 2029
  start-page: 1
  year: 2017
  ident: 10.1016/j.jenvman.2023.118924_bib62
  article-title: Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis
  publication-title: Can. J. Fish. Aquat. Sci.
– volume: 40
  year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib27
  article-title: Comprehensive model applications for better understanding of pilot-scale membrane-aerated biofilm reactor performance
  publication-title: J. Water Proc. Eng.
– volume: 192
  issue: 12
  year: 2020
  ident: 10.1016/j.jenvman.2023.118924_bib9
  article-title: Comparative evaluation of machine learning models for groundwater quality assessment
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-020-08695-3
– volume: 13
  issue: 2
  year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib55
  article-title: Supervised machine learning for estimation of total suspended solids in urban watersheds
  publication-title: Water
  doi: 10.3390/w13020147
– volume: 21
  start-page: 71
  issue: 1
  year: 2016
  ident: 10.1016/j.jenvman.2023.118924_bib4
  article-title: Predicting nitrate concentration and its spatial distribution in groundwater resources using support vector machines (SVMs) model
  publication-title: Environ. Model. Assess.
  doi: 10.1007/s10666-015-9468-0
– volume: 768
  year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib39
  article-title: A novel machine learning application: water quality resilience prediction Model
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144459
– volume: 26
  start-page: 574
  issue: 3
  year: 2012
  ident: 10.1016/j.jenvman.2023.118924_bib19
  article-title: Development of a data mining-based analysis framework for multi-attribute construction project information
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2012.03.005
– volume: 864
  year: 2023
  ident: 10.1016/j.jenvman.2023.118924_bib52
  article-title: Investigating relationships between climate controls and nutrient flux in surface waters, sediments, and subsurface pathways in an agricultural clay catchment of the Great Lakes Basin
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.160979
– volume: 19
  start-page: 439
  issue: 7
  year: 2020
  ident: 10.1016/j.jenvman.2023.118924_bib25
  article-title: Prediction of irrigation water quality parameters using machine learning models in a semi-arid environment
  publication-title: Journal of the Saudi Society of Agricultural Sciences
  doi: 10.1016/j.jssas.2020.08.001
– volume: 42
  start-page: 1308
  issue: 5
  year: 2013
  ident: 10.1016/j.jenvman.2023.118924_bib74
  article-title: Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2013.03.0098
– volume: 1360
  year: 2014
  ident: 10.1016/j.jenvman.2023.118924_bib23
  article-title: The quality of our nation's waters - water quality in principal aquifers of the United States, 1991-2010: U.S
  publication-title: Geol. Surv. Circular
– volume: 36
  issue: May
  year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib58
  article-title: Predicting national-scale tile drainage discharge in Denmark using machine learning algorithms
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 7
  start-page: 436
  year: 2018
  ident: 10.1016/j.jenvman.2023.118924_bib77
  article-title: Neural network modelling for nitrate concentration in groundwater of Kadava River basin, Nashik, Maharashtra, India
  publication-title: Groundwater for Sustainable Development
  doi: 10.1016/j.gsd.2017.12.012
– year: 2004
  ident: 10.1016/j.jenvman.2023.118924_bib3
  article-title: Naive Bayes vs decision trees in intrusion detection systems
– volume: 218
  year: 2022
  ident: 10.1016/j.jenvman.2023.118924_bib83
  article-title: Regional patterns and drivers of total nitrogen trends in the Chesapeake Bay watershed: insights from machine learning approaches and management implications
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118443
– volume: 5
  start-page: 975
  year: 2004
  ident: 10.1016/j.jenvman.2023.118924_bib81
  article-title: Probability estimates for multi-class classification by pairwise coupling
  publication-title: J. Mach. Learn. Res.
– year: 2001
  ident: 10.1016/j.jenvman.2023.118924_bib72
– volume: 36
  start-page: 1
  issue: 4
  year: 2022
  ident: 10.1016/j.jenvman.2023.118924_bib76
  article-title: Can machine learning accelerate process understanding and decision relevant predictions of river water quality?
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.14565
– volume: 47
  start-page: 145
  issue: 1
  year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib49
  article-title: Groundwater-surface water interactions and agricultural nutrient transport in a Great Lakes clay plain system
  publication-title: J. Great Lake. Res.
  doi: 10.1016/j.jglr.2020.11.008
– volume: 18
  start-page: 1237
  year: 2004
  ident: 10.1016/j.jenvman.2023.118924_bib51
  article-title: Seasonal and interannual variations of nitrate and chloride in stream waters related to spatial and temporal patterns of groundwater concentrations in agricultural catchments
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.1395
– volume: 644
  start-page: 954
  year: 2018
  ident: 10.1016/j.jenvman.2023.118924_bib70
  article-title: A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.054
– volume: 668
  start-page: 1317
  year: 2019
  ident: 10.1016/j.jenvman.2023.118924_bib45
  article-title: Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.03.045
– volume: 714
  year: 2020
  ident: 10.1016/j.jenvman.2023.118924_bib69
  article-title: Spatiotemporal variations of nitrogen and phosphorus in a clay plain hydrological system in the Great Lakes Basin
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.136328
– volume: 140
  year: 2022
  ident: 10.1016/j.jenvman.2023.118924_bib82
  article-title: Use of interpretable machine learning to identify the factors influencing the nonlinear linkage between land use and river water quality in the Chesapeake Bay watershed
  publication-title: Ecol. Indicat.
  doi: 10.1016/j.ecolind.2022.108977
– year: 2011
  ident: 10.1016/j.jenvman.2023.118924_bib50
– year: 1994
  ident: 10.1016/j.jenvman.2023.118924_bib61
– volume: 151
  start-page: 76
  year: 2015
  ident: 10.1016/j.jenvman.2023.118924_bib26
  article-title: Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2014.12.012
– volume: 55
  start-page: 8028
  issue: 10
  year: 2019
  ident: 10.1016/j.jenvman.2023.118924_bib21
  article-title: Identifying subsurface drainage using satellite big data and machine learning via google earth engine
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR024892
– volume: 25
  start-page: 811
  issue: 2
  year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib80
  article-title: Determination of vadose zone and saturated zone nitrate lag times using long-Term groundwater monitoring data and statistical machine learning
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-25-811-2021
– volume: 52
  start-page: 330
  issue: 1
  year: 2016
  ident: 10.1016/j.jenvman.2023.118924_bib54
  article-title: Quantifying watershed-scale groundwater loading and in-stream fate of nitrate using high-frequency water quality data
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR017753
– volume: 12
  start-page: 395
  issue: 4
  year: 2003
  ident: 10.1016/j.jenvman.2023.118924_bib14
  article-title: Automating hierarchical document classification for construction management information systems
  publication-title: Autom. ConStruct.
  doi: 10.1016/S0926-5805(03)00004-9
– volume: 25
  start-page: 771
  issue: 4
  year: 2011
  ident: 10.1016/j.jenvman.2023.118924_bib34
  article-title: Learning and classifying actions of construction workers and equipment using Bag-of-Video-Feature-Words and Bayesian network models
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2011.06.002
– volume: 13
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib35
  article-title: A comparison of linear and non-linear machine learning techniques (PCA and SOM) for characterizing urban nutrient runoff
  publication-title: Sustainability
  doi: 10.3390/su13042054
– volume: 28
  start-page: 10804
  issue: 9
  year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib56
  article-title: Susceptibility mapping of groundwater salinity using machine learning models
  publication-title: Environ. Sci. Pollut. Control Ser.
  doi: 10.1007/s11356-020-11319-5
– volume: 598
  year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib44
  article-title: Can artificial intelligence and data-driven machine learning models match or even replace process-driven hydrologic models for streamflow simulation?: a case study of four watersheds with different hydro-climatic regions across the CONUS
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126423
– volume: 124
  year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib67
  article-title: Retrieval model for total nitrogen concentration based on UAV hyper spectral remote sensing data and machine learning algorithms – a case study in the Miyun Reservoir, China
  publication-title: Ecol. Indicat.
– volume: 432
  start-page: 412
  year: 2012
  ident: 10.1016/j.jenvman.2023.118924_bib63
  article-title: Evaluating spatial interaction of soil property with non-point source pollution at watershed scale: the phosphorus indicator in Northeast China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.06.017
– volume: vol. 27
  year: 2009
  ident: 10.1016/j.jenvman.2023.118924_bib38
– volume: 28
  start-page: 1891
  issue: 5
  year: 2020
  ident: 10.1016/j.jenvman.2023.118924_bib31
  article-title: Groundwater nitrate in three distinct hydrogeologic and land-use settings in southwestern Ontario, Canada
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-020-02156-4
– volume: 212
  year: 2022
  ident: 10.1016/j.jenvman.2023.118924_bib28
  article-title: Model study on real-time aeration based on nitrite for effective operation of single-stage anammox
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.113554
– volume: 47
  start-page: 8997
  issue: 16
  year: 2013
  ident: 10.1016/j.jenvman.2023.118924_bib40
  article-title: Water quality remediation faces unprecedented challenges from “legacy phosphorus.”
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es403160a
– volume: 633
  start-page: 220
  year: 2018
  ident: 10.1016/j.jenvman.2023.118924_bib20
  article-title: Coupling hydrological modeling and support vector regression to model hydropeaking in alpine catchments
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.162
– volume: 4
  start-page: 583
  year: 2015
  ident: 10.1016/j.jenvman.2023.118924_bib33
  article-title: Watershed area ratio accurately predicts daily streamflow in nested catchments in the Catskills, New York
  publication-title: J. Hydrol.: Reg. Stud.
– volume: 216
  start-page: 100
  year: 2016
  ident: 10.1016/j.jenvman.2023.118924_bib68
  article-title: Influence of climate and land use changes on nutrient fluxes from Finnish rivers to the Baltic Sea
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2015.09.010
– volume: 35
  start-page: 352
  year: 2002
  ident: 10.1016/j.jenvman.2023.118924_bib24
  article-title: Logistic regression and artificial neural network classification models: a methodology review
  publication-title: J. Biomed. Inf.
  doi: 10.1016/S1532-0464(03)00034-0
– volume: 35
  start-page: 23
  issue: 1
  year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib57
  article-title: Ensemble boosting and bagging based machine learning models for groundwater potential prediction
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-020-02704-3
– year: 2011
  ident: 10.1016/j.jenvman.2023.118924_bib15
– volume: 4
  start-page: 33
  issue: 11
  year: 2013
  ident: 10.1016/j.jenvman.2023.118924_bib5
  article-title: Performance comparison between naïve Bayes, decision tree and k-nearest neighbor in searching alternative design in an energy simulation tool
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 20
  start-page: 1
  issue: 20
  year: 2020
  ident: 10.1016/j.jenvman.2023.118924_bib8
  article-title: Comparative analysis of artificial intelligence models for accurate estimation of groundwater nitrate concentration
  publication-title: Sensors
  doi: 10.3390/s20205763
– volume: 625
  start-page: 1330
  year: 2018
  ident: 10.1016/j.jenvman.2023.118924_bib71
  article-title: Distribution and mass of groundwater orthophosphorus in an agricultural watershed
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.035
– volume: 505
  start-page: 390
  year: 2015
  ident: 10.1016/j.jenvman.2023.118924_bib47
  article-title: Modeling water outflow from tile-drained agricultural fields
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.10.009
– volume: 317
  year: 2022
  ident: 10.1016/j.jenvman.2023.118924_bib10
  article-title: Using Random Forest, a machine learning approach to predict nitrogen, phosphorus, and sediment event mean concentrations in urban runoff
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.115412
– volume: 1
  start-page: 4
  issue: 1
  year: 2010
  ident: 10.1016/j.jenvman.2023.118924_bib43
  article-title: A review of machine learning algorithms for text documents classification
  publication-title: J. Adv. Inf. Technol.
– start-page: 841
  year: 2002
  ident: 10.1016/j.jenvman.2023.118924_bib60
  article-title: On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2007
  ident: 10.1016/j.jenvman.2023.118924_bib75
– volume: 141
  issue: 35
  year: 2022
  ident: 10.1016/j.jenvman.2023.118924_bib79
  article-title: Assessment of influencing factors on non-point source pollution critical source areas in an agricultural watershed
  publication-title: Ecol. Indicat.
– volume: 143
  start-page: 73
  issue: 1
  year: 2018
  ident: 10.1016/j.jenvman.2023.118924_bib73
  article-title: Nitrate in drinking water and colorectal cancer risk: a nationwide population-based cohort study
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.31306
– volume: 192
  issue: 12
  year: 2020
  ident: 10.1016/j.jenvman.2023.118924_bib36
  article-title: Estimation of nitrogen and phosphorus concentrations from water quality surrogates using machine learning in the Tri an Reservoir
  publication-title: Vietnam. Environmental Monitoring and Assessment
– volume: 295
  year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib6
  article-title: Determination of flood probability and prioritization of sub-watersheds: a comparison of game theory to machine learning
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.113040
– year: 1999
  ident: 10.1016/j.jenvman.2023.118924_bib37
– year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib41
  article-title: Evaluate river water salinity in a semi-arid agricultural watershed by coupling ensemble machine learning technique with SWAT model
  publication-title: J. Am. Water Resour. Assoc.
– volume: 597
  year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib2
  article-title: Dissolved oxygen concentration predictions for running waters with different land use land cover using a quantile regression forest machine learning technique
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126213
– volume: 13
  issue: 21
  year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib11
  article-title: Prediction of nitrate and phosphorus concentrations using machine learning algorithms in watersheds with different land use
  publication-title: Water
  doi: 10.3390/w13213096
– volume: 14
  issue: 11
  year: 2022
  ident: 10.1016/j.jenvman.2023.118924_bib66
  article-title: Filling gaps in daily precipitation series using regression and machine learning in inter‐andean watersheds
  publication-title: Water
  doi: 10.3390/w14111799
– volume: 11
  start-page: 352
  issue: 5
  year: 2009
  ident: 10.1016/j.jenvman.2023.118924_bib42
  article-title: Kernel functions analysis for support vector machines for land cover classification
  publication-title: Int. J. Appl. Earth Obs.
– start-page: 145
  year: 2020
  ident: 10.1016/j.jenvman.2023.118924_bib46
  article-title: Different machine learning models
  publication-title: Machine Learning in Cognitive IoT
– volume: 159
  start-page: 1224
  year: 2022
  ident: 10.1016/j.jenvman.2023.118924_bib29
  article-title: Machine learning classification algorithms for inadequate wastewater treatment risk mitigation
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2022.01.065
– volume: 761
  year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib78
  article-title: Predicting stream water quality under different urban development pattern scenarios with an interpretable machine learning approach
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144057
– volume: 36
  start-page: 1
  issue: 6
  year: 2022
  ident: 10.1016/j.jenvman.2023.118924_bib7
  article-title: A machine learning approach to water quality forecasts and sensor network expansion: case study in the Wabash River Basin, United States
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.14619
– volume: 729
  year: 2020
  ident: 10.1016/j.jenvman.2023.118924_bib48
  article-title: Characterizing the impacts of land use on nitrate load and water yield in an agricultural watershed in Atlantic Canada
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138793
– volume: 584
  year: 2020
  ident: 10.1016/j.jenvman.2023.118924_bib65
  article-title: Integrated modelling to assess climate change impacts on groundwater and surface water in the Great Lakes Basin using diverse climate forcing
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124682
– volume: 408
  start-page: 189
  year: 2020
  ident: 10.1016/j.jenvman.2023.118924_bib17
  article-title: A comprehensive survey on support vector machine classification: applications, challenges and trends
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.118
– volume: 598
  year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib84
  article-title: Ensemble machine learning paradigms in hydrology: a review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126266
– year: 2019
  ident: 10.1016/j.jenvman.2023.118924_bib12
– volume: 47
  start-page: 1656
  issue: 6
  year: 2021
  ident: 10.1016/j.jenvman.2023.118924_bib18
  article-title: Linking multi-media modeling with machine learning to assess and predict lake chlorophyll a concentrations
  publication-title: J. Great Lake. Res.
  doi: 10.1016/j.jglr.2021.09.011
– volume: 578
  year: 2019
  ident: 10.1016/j.jenvman.2023.118924_bib59
  article-title: Machine learning methods for better water quality prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124084
– volume: 505
  start-page: 150
  year: 2013
  ident: 10.1016/j.jenvman.2023.118924_bib13
  article-title: Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.09.048
– start-page: 304
  year: 2010
  ident: 10.1016/j.jenvman.2023.118924_bib22
  article-title: Application of decision tree technique to analyze construction project data
– volume: 1
  start-page: 1
  year: 2020
  ident: 10.1016/j.jenvman.2023.118924_bib64
  article-title: Machine learning models for predicting the ammonium concentration in alluvial groundwaters
  publication-title: Environ. Model. Assess.
– year: 2012
  ident: 10.1016/j.jenvman.2023.118924_bib16
– volume: 48
  start-page: 455
  issue: 2
  year: 2022
  ident: 10.1016/j.jenvman.2023.118924_bib32
  article-title: Characterizing stream planform geometry using a novel application of spectral analysis
  publication-title: J. Great Lake. Res.
  doi: 10.1016/j.jglr.2022.01.021
– volume: 128
  start-page: 17
  year: 2017
  ident: 10.1016/j.jenvman.2023.118924_bib30
  article-title: Resilience of critical infrastructures: probabilistic case study of a district heating pipeline network in municipality of Latvia
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2017.09.007
– volume: 12
  start-page: 1
  issue: 10
  year: 2020
  ident: 10.1016/j.jenvman.2023.118924_bib53
  article-title: River water salinity prediction using hybrid machine learning models
  publication-title: Water
  doi: 10.3390/w12102951
SSID ssj0003217
Score 2.5050836
Snippet Excess nutrients in surface water and groundwater can lead to water quality deterioration in available water resources. Thus, the classification of nutrient...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118924
SubjectTerms agricultural land
Agricultural watershed
agricultural watersheds
algorithms
clay
climate
data collection
environmental management
Groundwater
Machine learning classification algorithms
Monitoring
nitrates
nutrient management
Nutrient transport
Ontario
reactive phosphorus
Surface water
total dissolved phosphorus
water quality
Title Application of classification machine learning algorithms for characterizing nutrient transport in a clay plain agricultural watershed
URI https://dx.doi.org/10.1016/j.jenvman.2023.118924
https://www.proquest.com/docview/2863299036
https://www.proquest.com/docview/3040434283
Volume 345
WOSCitedRecordID wos001074018800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-8630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003217
  issn: 0301-4797
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLa6DgkuCAYT42MyEuKCUtrYieNjhTrBVBUOndSb5cRO16pLS9uNlh_A_-Ef4jd2Pso2bRy4RK0bO02fp_aT1-8HQu_SVPs8UspLQ556lPnEk21lAJFxm3GWUsVVXmyCDQbRaMS_NRq_i1iYqxnLsmiz4Yv_CrVpM2BD6Ow_wF0OahrMawO6ORrYzfFewHerLencZxzkMfgD2ZaL3HlSF9Uixh_kbDxfTtbnNjEDBAK7BM4_4dMMkvWDu8C6SIIOBhIIqJRbqEANb8bLKn_HDwnZOs93y3_WRG8trg7CVq753vRmK7m19tfu-YUbJs-xvbHuATsW7D6Extv2U5lVpoVJZp8Oat6azrBhSNIpDRt2Ljbqz4tCt22jb2hzEzihQW0KNk9M3IZlX1sdrKFi2pqamzV32IKrtqrzd7NxD76Kk7N-Xwx7o-H7xXcPCpXBhr6r2rKH9n0W8KiJ9rtfeqPTcvknfl7mufymVdjYxxuvfJsg-ksa5Hpn-AQ9dpjhriXYU9TQ2QF6WMSxrw7QYa-OJXaLxOoZ-lVjIJ6neJeB2DEQFwzEFQOxYSDeZSAuGIhLBuJJhiWMusU5A3Gdgbhk4HN0dtIbfvrsuXIfXkJYsPbSNO7oNiUxYZIrxsIgplxJkoQ-C2knkUY5h4pqFUsWMtkJpZHrKY9DKPlApSKHqJnNM_0CYfBO0NSsZoEKKE1IzI1Ok3mcuFY6UkeIFr-5SFwufCjJMhOF0-NUOKgEQCUsVEeoVXZb2GQwd3WICkCFU7RWqQpDybu6vi0IIMyMD9t4MtPzy5XwDatARJLw9nNIG7JmQTLFl_cY5xV6VP0BX6Pmenmp36AHydV6sloeoz02io4dzf8AfsLlPA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+classification+machine+learning+algorithms+for+characterizing+nutrient+transport+in+a+clay+plain+agricultural+watershed&rft.jtitle=Journal+of+environmental+management&rft.au=Elsayed%2C+Ahmed&rft.au=Rixon%2C+Sarah&rft.au=Levison%2C+Jana&rft.au=Binns%2C+Andrew&rft.date=2023-11-01&rft.issn=1095-8630&rft.eissn=1095-8630&rft.volume=345&rft.spage=118924&rft_id=info:doi/10.1016%2Fj.jenvman.2023.118924&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon