Machine learning-based classification models for non-covalent Bruton’s tyrosine kinase inhibitors: predictive ability and interpretability

In this study, we built classification models using machine learning techniques to predict the bioactivity of non-covalent inhibitors of Bruton’s tyrosine kinase (BTK) and to provide interpretable and transparent explanations for these predictions. To achieve this, we gathered data on BTK inhibitors...

Full description

Saved in:
Bibliographic Details
Published in:Molecular diversity Vol. 28; no. 4; pp. 2429 - 2447
Main Authors: Li, Guo, Li, Jiaxuan, Tian, Yujia, Zhao, Yunyang, Pang, Xiaoyang, Yan, Aixia
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.08.2024
Springer Nature B.V
Subjects:
ISSN:1381-1991, 1573-501X, 1573-501X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this study, we built classification models using machine learning techniques to predict the bioactivity of non-covalent inhibitors of Bruton’s tyrosine kinase (BTK) and to provide interpretable and transparent explanations for these predictions. To achieve this, we gathered data on BTK inhibitors from the Reaxys and ChEMBL databases, removing compounds with covalent bonds and duplicates to obtain a dataset of 3895 inhibitors of non-covalent. These inhibitors were characterized using MACCS fingerprints and Morgan fingerprints, and four traditional machine learning algorithms (decision trees (DT), random forests (RF), support vector machines (SVM), and extreme gradient boosting (XGBoost)) were used to build 16 classification models. In addition, four deep learning models were developed using deep neural networks (DNN). The best model, Model D_4, which was built using XGBoost and MACCS fingerprints, achieved an accuracy of 94.1% and a Matthews correlation coefficient (MCC) of 0.75 on the test set. To provide interpretable explanations, we employed the SHAP method to decompose the predicted values into the contributions of each feature. We also used K-means dimensionality reduction and hierarchical clustering to visualize the clustering effects of molecular structures of the inhibitors. The results of this study were validated using crystal structures, and we found that the interaction between the BTK amino acid residue and the important features of clustered scaffold was consistent with the known properties of the complex crystal structures. Overall, our models demonstrated high predictive ability and a qualitative model can be converted to a quantitative model to some extent by SHAP, making them valuable for guiding the design of new BTK inhibitors with desired activity.
AbstractList In this study, we built classification models using machine learning techniques to predict the bioactivity of non-covalent inhibitors of Bruton's tyrosine kinase (BTK) and to provide interpretable and transparent explanations for these predictions. To achieve this, we gathered data on BTK inhibitors from the Reaxys and ChEMBL databases, removing compounds with covalent bonds and duplicates to obtain a dataset of 3895 inhibitors of non-covalent. These inhibitors were characterized using MACCS fingerprints and Morgan fingerprints, and four traditional machine learning algorithms (decision trees (DT), random forests (RF), support vector machines (SVM), and extreme gradient boosting (XGBoost)) were used to build 16 classification models. In addition, four deep learning models were developed using deep neural networks (DNN). The best model, Model D_4, which was built using XGBoost and MACCS fingerprints, achieved an accuracy of 94.1% and a Matthews correlation coefficient (MCC) of 0.75 on the test set. To provide interpretable explanations, we employed the SHAP method to decompose the predicted values into the contributions of each feature. We also used K-means dimensionality reduction and hierarchical clustering to visualize the clustering effects of molecular structures of the inhibitors. The results of this study were validated using crystal structures, and we found that the interaction between the BTK amino acid residue and the important features of clustered scaffold was consistent with the known properties of the complex crystal structures. Overall, our models demonstrated high predictive ability and a qualitative model can be converted to a quantitative model to some extent by SHAP, making them valuable for guiding the design of new BTK inhibitors with desired activity.
In this study, we built classification models using machine learning techniques to predict the bioactivity of non-covalent inhibitors of Bruton's tyrosine kinase (BTK) and to provide interpretable and transparent explanations for these predictions. To achieve this, we gathered data on BTK inhibitors from the Reaxys and ChEMBL databases, removing compounds with covalent bonds and duplicates to obtain a dataset of 3895 inhibitors of non-covalent. These inhibitors were characterized using MACCS fingerprints and Morgan fingerprints, and four traditional machine learning algorithms (decision trees (DT), random forests (RF), support vector machines (SVM), and extreme gradient boosting (XGBoost)) were used to build 16 classification models. In addition, four deep learning models were developed using deep neural networks (DNN). The best model, Model D_4, which was built using XGBoost and MACCS fingerprints, achieved an accuracy of 94.1% and a Matthews correlation coefficient (MCC) of 0.75 on the test set. To provide interpretable explanations, we employed the SHAP method to decompose the predicted values into the contributions of each feature. We also used K-means dimensionality reduction and hierarchical clustering to visualize the clustering effects of molecular structures of the inhibitors. The results of this study were validated using crystal structures, and we found that the interaction between the BTK amino acid residue and the important features of clustered scaffold was consistent with the known properties of the complex crystal structures. Overall, our models demonstrated high predictive ability and a qualitative model can be converted to a quantitative model to some extent by SHAP, making them valuable for guiding the design of new BTK inhibitors with desired activity.In this study, we built classification models using machine learning techniques to predict the bioactivity of non-covalent inhibitors of Bruton's tyrosine kinase (BTK) and to provide interpretable and transparent explanations for these predictions. To achieve this, we gathered data on BTK inhibitors from the Reaxys and ChEMBL databases, removing compounds with covalent bonds and duplicates to obtain a dataset of 3895 inhibitors of non-covalent. These inhibitors were characterized using MACCS fingerprints and Morgan fingerprints, and four traditional machine learning algorithms (decision trees (DT), random forests (RF), support vector machines (SVM), and extreme gradient boosting (XGBoost)) were used to build 16 classification models. In addition, four deep learning models were developed using deep neural networks (DNN). The best model, Model D_4, which was built using XGBoost and MACCS fingerprints, achieved an accuracy of 94.1% and a Matthews correlation coefficient (MCC) of 0.75 on the test set. To provide interpretable explanations, we employed the SHAP method to decompose the predicted values into the contributions of each feature. We also used K-means dimensionality reduction and hierarchical clustering to visualize the clustering effects of molecular structures of the inhibitors. The results of this study were validated using crystal structures, and we found that the interaction between the BTK amino acid residue and the important features of clustered scaffold was consistent with the known properties of the complex crystal structures. Overall, our models demonstrated high predictive ability and a qualitative model can be converted to a quantitative model to some extent by SHAP, making them valuable for guiding the design of new BTK inhibitors with desired activity.
Author Li, Guo
Tian, Yujia
Yan, Aixia
Pang, Xiaoyang
Li, Jiaxuan
Zhao, Yunyang
Author_xml – sequence: 1
  givenname: Guo
  surname: Li
  fullname: Li, Guo
  organization: State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology
– sequence: 2
  givenname: Jiaxuan
  surname: Li
  fullname: Li, Jiaxuan
  organization: State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology
– sequence: 3
  givenname: Yujia
  surname: Tian
  fullname: Tian, Yujia
  organization: State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology
– sequence: 4
  givenname: Yunyang
  surname: Zhao
  fullname: Zhao, Yunyang
  organization: State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology
– sequence: 5
  givenname: Xiaoyang
  surname: Pang
  fullname: Pang, Xiaoyang
  organization: State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology
– sequence: 6
  givenname: Aixia
  surname: Yan
  fullname: Yan, Aixia
  email: yanax@buct.edu.cn
  organization: State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37479824$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uVSEUhYlpY3_0BRwYEidOsPycA-c408afJm2caOKMcGDTUs-FK3Ca3JkP4Av4ej6JtPc2Jh10AmTzrZWdtY7QXkwREHrB6BtGqTopjFFBCeWCMCpHSeQTdMh6JUhP2fe99hYDI2wc2QE6KuWa0iZj4ik6EKpT48C7Q_T7wtirEAHPYHIM8ZJMpoDDdjalBB-sqSFFvEoO5oJ9yrgtQWy6MTPEit_npab499efgusmp3Lr9CPEZoFDvApTqCmXt3idwQVbww1gM4U51A020TWkQm5_dTd8hva9mQs8393H6NvHD19PP5PzL5_OTt-dEytUX4kTk5uUkLIffeeZdX6Aceo9OOsEM6MV1nLpLbiBKXBecQ6cj4NTpuOGj-IYvd76rnP6uUCpehWKhXk2EdJSNB86RjlrR0NfPUCv05Jj204LxriUnEvVqJc7aplW4PQ6h5XJG32fcwOGLWBbSCWD1zbUu2hrNmHWjOrbSvW2Ut0q1XeVatmk_IH03v1RkdiKSoPjJeT_az-i-gdX27gb
CitedBy_id crossref_primary_10_1016_j_ymeth_2023_09_010
crossref_primary_10_1016_j_afres_2025_101291
crossref_primary_10_1186_s12888_025_06657_y
crossref_primary_10_3390_molecules28207140
crossref_primary_10_3390_sci6040081
crossref_primary_10_1080_17460441_2025_2543802
Cites_doi 10.1021/acscombsci.0c00169
10.3390/molecules25010024
10.1016/j.jmgm.2019.08.009
10.1109/3477.623240
10.1158/2159-8290.CD-17-1409
10.1016/j.ailsci.2022.100039
10.1021/acs.jmedchem.0c00702
10.1007/s40265-023-01860-1
10.1007/s40265-020-01318-8
10.1111/bph.14099
10.1007/BF01533070
10.1073/pnas.1004594107
10.1016/j.bmc.2019.05.021
10.1021/acs.jmedchem.1c00926
10.1021/acs.jmedchem.6b00788
10.1158/1078-0432.CCR-20-3741
10.1039/D0MD00154F
10.1021/acs.jmedchem.1c01279
10.1038/nrc.2017.121
10.1038/s41419-022-04684-1
10.1111/cbdd.13656
10.1039/D0SC06122K
10.1182/blood.2022018674
10.1186/s13045-016-0250-9
10.1021/acs.jmedchem.7b01712
10.3390/genes11050492
10.1016/j.bmc.2021.116163
10.1002/hon.2667
10.1002/cpt.85
10.1021/acs.jmedchem.6b01088
10.1021/jm4017762
10.1016/j.bmcl.2020.127390
10.1021/ci100050t
10.1007/s40265-021-01482-5
10.1021/acsmedchemlett.5b00463
10.1145/2939672.2939778
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
M0S
M1P
M2P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s11030-023-10696-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
Science Database (via ProQuest SciTech Premium Collection)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 1573-501X
EndPage 2447
ExternalDocumentID 37479824
10_1007_s11030_023_10696_6
Genre Journal Article
GroupedDBID ---
-4W
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40E
53G
5QI
5VS
67Z
6NX
7X7
88E
88I
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LK5
LLZTM
M1P
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
Z7U
Z7V
Z87
Z8O
Z8P
Z91
ZMTXR
ZOVNA
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c375t-d3bdb736659f4f1cdf8e9b5fedcd31a9c3cc26fced817edf722e2298d7a42a293
IEDL.DBID M2P
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001034245200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1381-1991
1573-501X
IngestDate Sun Nov 09 13:03:26 EST 2025
Wed Nov 05 04:10:51 EST 2025
Thu Apr 03 07:04:20 EDT 2025
Sat Nov 29 01:53:54 EST 2025
Tue Nov 18 21:29:39 EST 2025
Fri Feb 21 02:40:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Non-covalent Bruton’s tyrosine kinase (BTK) inhibitors
Machine learning method
SHAP
Classification models
Structure clustering
Language English
License 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-d3bdb736659f4f1cdf8e9b5fedcd31a9c3cc26fced817edf722e2298d7a42a293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 37479824
PQID 3112662267
PQPubID 54625
PageCount 19
ParticipantIDs proquest_miscellaneous_2841021410
proquest_journals_3112662267
pubmed_primary_37479824
crossref_citationtrail_10_1007_s11030_023_10696_6
crossref_primary_10_1007_s11030_023_10696_6
springer_journals_10_1007_s11030_023_10696_6
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
2024-Aug
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Netherlands
– name: Dordrecht
PublicationTitle Molecular diversity
PublicationTitleAbbrev Mol Divers
PublicationTitleAlternate Mol Divers
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Xing, Liang, Deng (CR24) 2020; 22
Voice, Tresadern, Twidale (CR13) 2021; 12
Zou, Zhu, Li (CR6) 2019; 37
Reiff, Mantel, Smith (CR16) 2018; 8
CR38
Liu, Guiadeen, Krikorian (CR45) 2020; 30
CR37
Wu, Zhang, Liu (CR5) 2016; 9
CR36
Hu, Wang, Sun (CR10) 2021; 27
CR35
CR34
Lundberg, Lee (CR39) 2017; 30
CR33
Li, Zuo, Tang (CR4) 2014; 57
CR31
Gomez, Ebata, Randeria (CR42) 2023
Márquez, Mora, Flores-Morales (CR23) 2020; 25
Thieme, Liu, Bruss (CR17) 2022; 13
Rogers, Hahn (CR32) 2010; 50
Van Drie, Weininger, Martin (CR30) 1989; 3
Hopkins, Bame, Bell (CR28) 2019; 27
Elemam, Hachim, Hannawi, Maghazachi (CR12) 2020; 11
Burger, Wiestner (CR3) 2018; 18
Kawahata, Asami, Kiyoi (CR18) 2021; 64
Tankiewicz-Kwedlo, Hermanowicz, Domaniewski (CR1) 2018; 175
Jackson, Widen, Harki, Brummond (CR14) 2017; 60
Ma, Bohnert, Otipoby (CR11) 2020; 63
van der Maaten, Hinton (CR41) 2008; 9
Honigberg, Smith, Sirisawad (CR2) 2010; 107
Sutanto, Konstantinidou, Dömling (CR29) 2020; 11
CR27
CR26
Wang, Zhang, Champlin, Wang (CR9) 2015; 97
CR25
Qiu, Ali, Bender (CR47) 2021; 40
Dhillon (CR7) 2020; 80
Ma, Wang, Chu, Yan (CR22) 2019; 92
Yang, Tian, Kong (CR20) 2022; 2
Watterson, De Lucca, Shi (CR43) 2016; 59
Liu, Guiadeen, Krikorian (CR44) 2016; 7
Chaudhuri, Chaudhuri (CR40) 1997; 27
Crawford, Johnson, Misner (CR15) 2018; 61
Hopkins, Bame, Bajrami (CR46) 2022; 65
Dhillon (CR8) 2021; 81
Keam (CR19) 2023; 83
Wang, Ran, Chen, Lu (CR21) 2020; 96
J Wang (10696_CR21) 2020; 96
EB Gomez (10696_CR42) 2023
NM Elemam (10696_CR12) 2020; 11
A Tankiewicz-Kwedlo (10696_CR1) 2018; 175
W Kawahata (10696_CR18) 2021; 64
Y-X Zou (10696_CR6) 2019; 37
H Qiu (10696_CR47) 2021; 40
JH Van Drie (10696_CR30) 1989; 3
J Liu (10696_CR44) 2016; 7
N Hu (10696_CR10) 2021; 27
PA Jackson (10696_CR14) 2017; 60
SJ Keam (10696_CR19) 2023; 83
W Ma (10696_CR22) 2019; 92
E Márquez (10696_CR23) 2020; 25
J Liu (10696_CR45) 2020; 30
10696_CR26
G Xing (10696_CR24) 2020; 22
10696_CR27
X Li (10696_CR4) 2014; 57
10696_CR25
AT Voice (10696_CR13) 2021; 12
JJ Crawford (10696_CR15) 2018; 61
LA Honigberg (10696_CR2) 2010; 107
JA Burger (10696_CR3) 2018; 18
LJP van der Maaten (10696_CR41) 2008; 9
SD Reiff (10696_CR16) 2018; 8
D Rogers (10696_CR32) 2010; 50
D Chaudhuri (10696_CR40) 1997; 27
B Ma (10696_CR11) 2020; 63
F Sutanto (10696_CR29) 2020; 11
S Dhillon (10696_CR8) 2021; 81
Z Yang (10696_CR20) 2022; 2
SM Lundberg (10696_CR39) 2017; 30
J Wu (10696_CR5) 2016; 9
BT Hopkins (10696_CR28) 2019; 27
10696_CR37
SH Watterson (10696_CR43) 2016; 59
10696_CR38
10696_CR35
BT Hopkins (10696_CR46) 2022; 65
10696_CR36
S Dhillon (10696_CR7) 2020; 80
Y Wang (10696_CR9) 2015; 97
10696_CR33
10696_CR34
10696_CR31
E Thieme (10696_CR17) 2022; 13
References_xml – volume: 22
  start-page: 873
  year: 2020
  end-page: 886
  ident: CR24
  article-title: Activity Prediction of small molecule inhibitors for antirheumatoid arthritis targets based on artificial intelligence
  publication-title: ACS Comb Sci
  doi: 10.1021/acscombsci.0c00169
– volume: 25
  start-page: 24
  year: 2020
  ident: CR23
  article-title: Modeling the Antileukemia activity of ellipticine-related compounds: QSAR and molecular docking study
  publication-title: Molecules
  doi: 10.3390/molecules25010024
– ident: CR37
– volume: 92
  start-page: 357
  year: 2019
  end-page: 362
  ident: CR22
  article-title: 4D-QSAR and MIA-QSAR study on the Bruton’s tyrosine kinase (Btk) inhibitors
  publication-title: J Mol Graph Model
  doi: 10.1016/j.jmgm.2019.08.009
– volume: 30
  start-page: 4768
  year: 2017
  end-page: 4777
  ident: CR39
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv Neural Inf Process Syst
– volume: 27
  start-page: 871
  year: 1997
  end-page: 876
  ident: CR40
  article-title: A novel multiseed nonhierarchical data clustering technique
  publication-title: IEEE Trans on Syst, Man, Cybern Part B (Cybernetics)
  doi: 10.1109/3477.623240
– volume: 8
  start-page: 1300
  year: 2018
  end-page: 1315
  ident: CR16
  article-title: The BTK inhibitor ARQ 531 targets ibrutinib-resistant CLL and richter transformation
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-17-1409
– volume: 2
  start-page: 100039
  year: 2022
  ident: CR20
  article-title: Classification of JAK1 inhibitors and SAR research by machine learning methods
  publication-title: Artif Intell Life Sci
  doi: 10.1016/j.ailsci.2022.100039
– ident: CR33
– volume: 63
  start-page: 12526
  year: 2020
  end-page: 12541
  ident: CR11
  article-title: Discovery of BIIB068: a selective, potent, reversible Bruton’s tyrosine kinase inhibitor as an orally efficacious agent for autoimmune diseases
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.0c00702
– volume: 83
  start-page: 547
  year: 2023
  end-page: 553
  ident: CR19
  article-title: Pirtobrutinib: first approval
  publication-title: Drugs
  doi: 10.1007/s40265-023-01860-1
– ident: CR35
– volume: 80
  start-page: 835
  year: 2020
  end-page: 840
  ident: CR7
  article-title: Tirabrutinib: first approval
  publication-title: Drugs
  doi: 10.1007/s40265-020-01318-8
– volume: 175
  start-page: 743
  year: 2018
  end-page: 762
  ident: CR1
  article-title: Simultaneous use of erythropoietin and LFM-A13 as a new therapeutic approach for colorectal cancer
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.14099
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: CR41
  article-title: Visualizing high-dimensional data using t-SNE
  publication-title: J Mach Learn Res
– ident: CR25
– ident: CR27
– volume: 3
  start-page: 225
  year: 1989
  end-page: 251
  ident: CR30
  article-title: ALADDIN: an integrated tool for computer-assisted molecular design and pharmacophore recognition from geometric, steric, and substructure searching of three-dimensional molecular structures
  publication-title: J Comput-Aided Mol Des
  doi: 10.1007/BF01533070
– volume: 107
  start-page: 13075
  year: 2010
  end-page: 13080
  ident: CR2
  article-title: The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1004594107
– volume: 27
  start-page: 2905
  year: 2019
  end-page: 2913
  ident: CR28
  article-title: Optimization of novel reversible Bruton’s tyrosine kinase inhibitors identified using tethering-fragment-based screens
  publication-title: Bioorg Med Chem
  doi: 10.1016/j.bmc.2019.05.021
– volume: 65
  start-page: 1206
  year: 2022
  end-page: 1224
  ident: CR46
  article-title: Discovery and preclinical characterization of BIIB091, a reversible, selective BTK inhibitor for the treatment of multiple sclerosis
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.1c00926
– ident: CR38
– volume: 60
  start-page: 839
  year: 2017
  end-page: 885
  ident: CR14
  article-title: Covalent modifiers: a chemical perspective on the reactivity of α, β-unsaturated carbonyls with thiols via hetero-michael addition reactions
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.6b00788
– volume: 27
  start-page: 2301
  year: 2021
  end-page: 2313
  ident: CR10
  article-title: Follicular lymphoma–associated BTK mutations are inactivating resulting in augmented AKT activation
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-20-3741
– volume: 11
  start-page: 876
  year: 2020
  end-page: 884
  ident: CR29
  article-title: Covalent inhibitors: a rational approach to drug discovery
  publication-title: RSC Med Chem
  doi: 10.1039/D0MD00154F
– volume: 64
  start-page: 14129
  year: 2021
  end-page: 14141
  ident: CR18
  article-title: Discovery of AS-1763: a potent, selective, noncovalent, and orally available inhibitor of Bruton’s Tyrosine Kinase
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.1c01279
– ident: CR31
– volume: 18
  start-page: 148
  year: 2018
  end-page: 167
  ident: CR3
  article-title: Targeting B cell receptor signalling in cancer: preclinical and clinical advances
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc.2017.121
– volume: 13
  start-page: 1
  year: 2022
  end-page: 11
  ident: CR17
  article-title: Dual BTK/SYK inhibition with CG-806 (luxeptinib) disrupts B-cell receptor and Bcl-2 signaling networks in mantle cell lymphoma
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-022-04684-1
– volume: 96
  start-page: 1114
  year: 2020
  end-page: 1122
  ident: CR21
  article-title: Bayesian machine learning to discover Bruton’s tyrosine kinase inhibitors
  publication-title: Chem Biol Drug Des
  doi: 10.1111/cbdd.13656
– volume: 12
  start-page: 5511
  year: 2021
  end-page: 5516
  ident: CR13
  article-title: Mechanism of covalent binding of ibrutinib to Bruton’s tyrosine kinase revealed by QM/MM calculations
  publication-title: Chem Sci
  doi: 10.1039/D0SC06122K
– year: 2023
  ident: CR42
  article-title: Pirtobrutinib preclinical characterization: a highly selective, non-covalent (reversible) BTK inhibitor
  publication-title: Blood
  doi: 10.1182/blood.2022018674
– volume: 9
  start-page: 21
  year: 2016
  ident: CR5
  article-title: Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-016-0250-9
– volume: 61
  start-page: 2227
  year: 2018
  end-page: 2245
  ident: CR15
  article-title: Discovery of GDC-0853: a potent, selective, and noncovalent Bruton’s tyrosine kinase inhibitor in early clinical development
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.7b01712
– ident: CR34
– ident: CR36
– volume: 11
  start-page: 492
  year: 2020
  ident: CR12
  article-title: Differentially expressed genes of natural killer cells can distinguish rheumatoid arthritis patients from healthy controls
  publication-title: Genes
  doi: 10.3390/genes11050492
– volume: 40
  start-page: 116163
  year: 2021
  ident: CR47
  article-title: Discovery of potent and selective reversible Bruton’s tyrosine kinase inhibitors
  publication-title: Bioorg Med Chem
  doi: 10.1016/j.bmc.2021.116163
– volume: 37
  start-page: 392
  year: 2019
  end-page: 400
  ident: CR6
  article-title: The impacts of zanubrutinib on immune cells in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma
  publication-title: Hematol Oncol
  doi: 10.1002/hon.2667
– volume: 97
  start-page: 455
  year: 2015
  end-page: 468
  ident: CR9
  article-title: Targeting Bruton’s tyrosine kinase with ibrutinib in B-cell malignancies
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.85
– volume: 59
  start-page: 9173
  year: 2016
  end-page: 9200
  ident: CR43
  article-title: Discovery of 6-fluoro-5-(R)-(3-(S)-(8-fluoro-1-methyl-2,4-dioxo-1,2-dihydroquinazolin-3(4H)-yl)-2-methylphenyl)-2-(S)-(2-hydroxypropan-2-yl)-2,3,4,9-tetrahydro-1H-carbazole-8-carboxamide (BMS-986142): a reversible inhibitor of Bruton’s Tyrosine Kinase (BTK) conformationally constrained by two locked atropisomers
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.6b01088
– volume: 57
  start-page: 5112
  year: 2014
  end-page: 5128
  ident: CR4
  article-title: Discovery of a series of 2,5-diaminopyrimidine covalent irreversible inhibitors of Bruton’s tyrosine kinase with in vivo antitumor activity
  publication-title: J Med Chem
  doi: 10.1021/jm4017762
– volume: 30
  start-page: 127390
  year: 2020
  ident: CR45
  article-title: Potent, non-covalent reversible BTK inhibitors with 8-amino-imidazo[1,5-a]pyrazine core featuring 3-position bicyclic ring substitutes
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2020.127390
– ident: CR26
– volume: 50
  start-page: 742
  year: 2010
  end-page: 754
  ident: CR32
  article-title: Extended-connectivity fingerprints
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100050t
– volume: 81
  start-page: 503
  year: 2021
  end-page: 507
  ident: CR8
  article-title: Orelabrutinib: first approval
  publication-title: Drugs
  doi: 10.1007/s40265-021-01482-5
– volume: 7
  start-page: 198
  year: 2016
  end-page: 203
  ident: CR44
  article-title: Discovery of 8-amino-imidazo[1,5- ]pyrazines as reversible BTK Inhibitors for the treatment of rheumatoid arthritis
  publication-title: ACS Med Chem Lett
  doi: 10.1021/acsmedchemlett.5b00463
– volume: 27
  start-page: 2301
  year: 2021
  ident: 10696_CR10
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-20-3741
– volume: 8
  start-page: 1300
  year: 2018
  ident: 10696_CR16
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-17-1409
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10696_CR41
  publication-title: J Mach Learn Res
– volume: 2
  start-page: 100039
  year: 2022
  ident: 10696_CR20
  publication-title: Artif Intell Life Sci
  doi: 10.1016/j.ailsci.2022.100039
– volume: 40
  start-page: 116163
  year: 2021
  ident: 10696_CR47
  publication-title: Bioorg Med Chem
  doi: 10.1016/j.bmc.2021.116163
– volume: 80
  start-page: 835
  year: 2020
  ident: 10696_CR7
  publication-title: Drugs
  doi: 10.1007/s40265-020-01318-8
– volume: 7
  start-page: 198
  year: 2016
  ident: 10696_CR44
  publication-title: ACS Med Chem Lett
  doi: 10.1021/acsmedchemlett.5b00463
– volume: 61
  start-page: 2227
  year: 2018
  ident: 10696_CR15
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.7b01712
– volume: 64
  start-page: 14129
  year: 2021
  ident: 10696_CR18
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.1c01279
– volume: 83
  start-page: 547
  year: 2023
  ident: 10696_CR19
  publication-title: Drugs
  doi: 10.1007/s40265-023-01860-1
– volume: 57
  start-page: 5112
  year: 2014
  ident: 10696_CR4
  publication-title: J Med Chem
  doi: 10.1021/jm4017762
– ident: 10696_CR26
– volume: 30
  start-page: 127390
  year: 2020
  ident: 10696_CR45
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2020.127390
– volume: 18
  start-page: 148
  year: 2018
  ident: 10696_CR3
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc.2017.121
– volume: 37
  start-page: 392
  year: 2019
  ident: 10696_CR6
  publication-title: Hematol Oncol
  doi: 10.1002/hon.2667
– ident: 10696_CR38
  doi: 10.1145/2939672.2939778
– volume: 22
  start-page: 873
  year: 2020
  ident: 10696_CR24
  publication-title: ACS Comb Sci
  doi: 10.1021/acscombsci.0c00169
– ident: 10696_CR36
– volume: 81
  start-page: 503
  year: 2021
  ident: 10696_CR8
  publication-title: Drugs
  doi: 10.1007/s40265-021-01482-5
– volume: 27
  start-page: 2905
  year: 2019
  ident: 10696_CR28
  publication-title: Bioorg Med Chem
  doi: 10.1016/j.bmc.2019.05.021
– ident: 10696_CR34
– ident: 10696_CR37
– volume: 3
  start-page: 225
  year: 1989
  ident: 10696_CR30
  publication-title: J Comput-Aided Mol Des
  doi: 10.1007/BF01533070
– volume: 11
  start-page: 876
  year: 2020
  ident: 10696_CR29
  publication-title: RSC Med Chem
  doi: 10.1039/D0MD00154F
– volume: 107
  start-page: 13075
  year: 2010
  ident: 10696_CR2
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1004594107
– volume: 27
  start-page: 871
  year: 1997
  ident: 10696_CR40
  publication-title: IEEE Trans on Syst, Man, Cybern Part B (Cybernetics)
  doi: 10.1109/3477.623240
– volume: 175
  start-page: 743
  year: 2018
  ident: 10696_CR1
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.14099
– volume: 97
  start-page: 455
  year: 2015
  ident: 10696_CR9
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.85
– volume: 25
  start-page: 24
  year: 2020
  ident: 10696_CR23
  publication-title: Molecules
  doi: 10.3390/molecules25010024
– ident: 10696_CR27
– volume: 63
  start-page: 12526
  year: 2020
  ident: 10696_CR11
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.0c00702
– ident: 10696_CR25
– volume: 96
  start-page: 1114
  year: 2020
  ident: 10696_CR21
  publication-title: Chem Biol Drug Des
  doi: 10.1111/cbdd.13656
– volume: 59
  start-page: 9173
  year: 2016
  ident: 10696_CR43
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.6b01088
– volume: 11
  start-page: 492
  year: 2020
  ident: 10696_CR12
  publication-title: Genes
  doi: 10.3390/genes11050492
– volume: 50
  start-page: 742
  year: 2010
  ident: 10696_CR32
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100050t
– volume: 30
  start-page: 4768
  year: 2017
  ident: 10696_CR39
  publication-title: Adv Neural Inf Process Syst
– volume: 13
  start-page: 1
  year: 2022
  ident: 10696_CR17
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-022-04684-1
– volume: 92
  start-page: 357
  year: 2019
  ident: 10696_CR22
  publication-title: J Mol Graph Model
  doi: 10.1016/j.jmgm.2019.08.009
– volume: 9
  start-page: 21
  year: 2016
  ident: 10696_CR5
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-016-0250-9
– ident: 10696_CR31
– year: 2023
  ident: 10696_CR42
  publication-title: Blood
  doi: 10.1182/blood.2022018674
– volume: 60
  start-page: 839
  year: 2017
  ident: 10696_CR14
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.6b00788
– volume: 12
  start-page: 5511
  year: 2021
  ident: 10696_CR13
  publication-title: Chem Sci
  doi: 10.1039/D0SC06122K
– ident: 10696_CR33
– ident: 10696_CR35
– volume: 65
  start-page: 1206
  year: 2022
  ident: 10696_CR46
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.1c00926
SSID ssj0010013
Score 2.3997889
Snippet In this study, we built classification models using machine learning techniques to predict the bioactivity of non-covalent inhibitors of Bruton’s tyrosine...
In this study, we built classification models using machine learning techniques to predict the bioactivity of non-covalent inhibitors of Bruton's tyrosine...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2429
SubjectTerms Accuracy
Agammaglobulinaemia Tyrosine Kinase - antagonists & inhibitors
Agammaglobulinaemia Tyrosine Kinase - chemistry
Algorithms
Autoimmune diseases
Binding sites
Biochemistry
Biological activity
Biomedical and Life Sciences
Chemical bonds
Classification
Clustering
Datasets
Decision trees
Deep learning
FDA approval
Humans
Life Sciences
Lymphoma
Machine Learning
Neural networks
Neural Networks, Computer
Organic Chemistry
Original Article
Pharmacy
Polymer Sciences
Protein Kinase Inhibitors - chemistry
Protein Kinase Inhibitors - pharmacology
Signal transduction
Support Vector Machine
Support vector machines
Tyrosine Kinase Inhibitors
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtUwEB2VAlI3lDehLTISO7BEbMdx2CHUqptWiJe6ixI_aATKrW5uK90dH9Af6O_1S5hxHldVAYnuosSZTOyx51gzngPwShkqQicDV8EKriiBsDKq4tYp6Ysadc96son88NAcHRUfh0Nh3ZjtPoYk40q9OuxGjFgcfQwuHbrQXN-C2-juDBE2fPr8bYodEKqJ2yyTUhpFOhyV-bOMq-7oGsa8Fh-Nbmdv82YK34d7A8xk73u7eABrvn0Id3viySVexcRP2z2C84OYTenZQB_xnZNfc8wSqqY0ojhyLBLmdAwRLmtnLbczNFB0VwxNA8Hj5a-Lji2W-Ick6UfTogjWtMdN3RCZzzt2Mqd4EK2srK8LvmRV61gzZTz2Nx_D173dLx_2-cDQwK3MswV3snZ1LrXOiqBCal0wOMBZ8M46mVaFldYKHax3Js29C7kQXojCuLxSokKk8QTWUWv_DBgiPZnXddDB10oGZWyGgoW3mUcMmtkE0nGgSjuULycWjZ_lqvAy9XeJ_V3G_i51Aq-nd0764h3_bL09jn85TOSulHTESiNGzRN4OT3GKUhxlar1s9OuRA8fCdLTtwk87e1m-pzE7VphhErgzWgkK-F_1-X5_zXfgg2BYKtPTNyG9cX81O_AHXu2aLr5izg9fgNc3QxX
  priority: 102
  providerName: Springer Nature
Title Machine learning-based classification models for non-covalent Bruton’s tyrosine kinase inhibitors: predictive ability and interpretability
URI https://link.springer.com/article/10.1007/s11030-023-10696-6
https://www.ncbi.nlm.nih.gov/pubmed/37479824
https://www.proquest.com/docview/3112662267
https://www.proquest.com/docview/2841021410
Volume 28
WOSCitedRecordID wos001034245200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-501X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010013
  issn: 1381-1991
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB7RFiQu_FMMJVokbrCi3l1711wQoFZcGkXlR7lZ9v6AReWEOEXKjQfgBXg9noSZtZMIVfTCxbISZz3RzO589nw7H8BTZagJnQxcBSu4IgJhZVTFrVPSFzXanvViE3o8NtNpMRleuHUDrXK9JsaF2s0svSN_IWmvS45gQb-af-OkGkXV1UFCYwf2ENmkROk6EZNNFYHwTXzgMikRKtJh00y_dY70tThmLFyI8iLn-d-J6QLavFApjQno-Ob_mn4LbgzQk73uY-U2XPHtHbjWi1Gu8CySQW13F36eRIalZ4OkxGdOuc4xS0ibqEXRmyyK6HQMUS9rZy23MwxaTGEMwwUB5e8fvzq2XOF_pZG-Ni0OwZr2S1M3JPDzks0XVCOi1Zb1vcJXrGodazYsyP7De_Dx-OjD23d8UG3gVupsyZ2sXa1lnmdFUCG1Lhh0eha8s06mVWGltSIP1juTau-CFsILURinKyUqRB_3YRet9g-AIfqTuq5DHnytZFDGZjiw8DbziEszm0C6dllph5bmpKxxVm6bMZObS3RzGd1c5gk82_xm3jf0uPTqg7VLy2Fyd-XWnwk82XyN05JqLVXrZ-ddiVk_iqanhwns9xG0uZ3ER7jCCJXA83VIbQf_ty0PL7flEVwXCLh6cuIB7C4X5_4xXLXfl023GMGOnup4NCPYe3M0npyO4mTB4-n7T38AnxIa3A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VBQQX_n8CBYwEJ7AgtvOHhBACqlZtVz0UqbeQ-AciUHbZbEF74wF4AV6Ch-JJmLGTrFBFbz1wizZZ78j7eeZzZjwfwEOVUxM66bhyWnBFBYRVriqujZK2qNH2JIhNZJNJfnhY7K_Br-EsDJVVDj7RO2oz1fSO_Kmksy4pkoXs5ewLJ9Uoyq4OEhoBFjt2-Q23bN2L7Tf4_z4SYvPtwest3qsKcC2zZMGNrE2dyTRNCqdcrI3L0ajEWaONjKtCS61F6rQ1eZxZ4zIhrBBFbrJKiUpQ8yV0-WcUdRajUkGxP2YtiE_5DV4eUwFH3B_SCUf1SM-LY4REx5cWKU__DoTH2O2xzKwPeJuX_repugwXe2rNXoW1cAXWbHsVzgWxzSVe-WJX3V2DH3u-gtSyXjLjA6dYbpimnQSVTnm0Mi8S1DFk9aydtlxPcVFiiGa4HJAw__7-s2OLJc4tjfSpaXEI1rQfm7ohAaPnbDanHBhFExZ6oS9Z1RrWjFWe4cPr8O5UJuUGrKPV9hYwZLcyq2uXOlsr6VSuExxYWJ1Y5N2JjiAeIFLqvmU7KYd8LlfNpglWJcKq9LAq0wgej9-ZhYYlJz69MUCo7J1XV67wE8GD8Ta6HcolVa2dHnUlshovCh8_i-BmQOz4cxK3qEUuVARPBgivBv-3LbdPtuU-nN862Nstd7cnO3fggkByGQoxN2B9MT-yd-Gs_rpouvk9vygZvD9taP8BIDh3KQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEB1VKSBeuF8MBRYJnmBVvLu-ISEEtBFVIYoQSH0z9l7AAjkhTkF54wP4AX6Fz-FLmPHajlBF3_rAmxU7m9Hm7MxZz-wcgHsqpSZ00nHltOCKCgiLVBVcGyVtVqLtkRebSCaT9OAgm27Ar_4sDJVV9j6xddRmpukd-baksy4xkoVk23VlEdOd8dP5F04KUpRp7eU0PET27eobbt-aJ3s7-F_fF2K8-_bFS94pDHAtk2jJjSxNmcg4jjKnXKiNS9HAyFmjjQyLTEutRey0NWmYWOMSIawQWWqSQolCUCMmdP-bCZIMNYLN57uT6Zshh0Hsqt3upSGVc4TdkR1_cI_UvTjGS3SDcRbz-O-weITrHsnTtuFvfP5_nrgLcK4j3eyZXyUXYcPWl-C0l-Fc4VVbBquby_DjdVtbalknpvGBU5Q3TNMeg4qqWhyzVj6oYcj3WT2ruZ7hcsXgzXChIJX-_f1nw5YrnGca6VNV4xCsqj9WZUXSRo_ZfEHZMYozzHdJX7GiNqwa6j_9h1fg3YlMylUYodX2OjDkvTIpSxc7WyrpVKojHFhYHVlk5JEOIOzhkuuumTtpinzO122oCWI5QixvIZbHATwYvjP3rUyOfXqrh1PeubUmX2MpgLvDbXRIlGUqajs7bHLkO61cfPgogGsevcPPSdy8ZqlQATzs4bwe_N-23DjeljtwBhGdv9qb7N-EswJZp6_Q3ILRcnFob8Ep_XVZNYvb3Qpl8P6ksf0H4J2BQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+classification+models+for+non-covalent+Bruton%E2%80%99s+tyrosine+kinase+inhibitors%3A+predictive+ability+and+interpretability&rft.jtitle=Molecular+diversity&rft.au=Li%2C+Guo&rft.au=Li%2C+Jiaxuan&rft.au=Tian%2C+Yujia&rft.au=Zhao%2C+Yunyang&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1381-1991&rft.eissn=1573-501X&rft.volume=28&rft.issue=4&rft.spage=2429&rft.epage=2447&rft_id=info:doi/10.1007%2Fs11030-023-10696-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-1991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-1991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-1991&client=summon