Fast computation of dissipative quantum systems with ensemble rank truncation
We introduce a new technique for the simulation of dissipative quantum systems. This method is composed of an approximate decomposition of the Lindblad equation into a Kraus map, from which one can define an ensemble of wave functions. Using principal component analysis, this ensemble can be truncat...
Saved in:
| Published in: | Physical review research Vol. 3; no. 1; p. 013017 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
American Physical Society
08.01.2021
|
| ISSN: | 2643-1564, 2643-1564 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We introduce a new technique for the simulation of dissipative quantum systems. This method is composed of an approximate decomposition of the Lindblad equation into a Kraus map, from which one can define an ensemble of wave functions. Using principal component analysis, this ensemble can be truncated to a manageable size without sacrificing numerical accuracy. We term this method ensemble rank truncation (ERT), and find that in the regime of weak coupling, this method is able to outperform existing wave-function Monte Carlo methods by an order of magnitude in both accuracy and speed. We also explore the possibility of combining ERT with approximate techniques for simulating large systems [such as matrix product states (MPS)], and show that in many cases this approach will be more efficient than directly expressing the density matrix in its MPS form. We expect the ERT technique to be of practical interest when simulating dissipative systems for quantum information, metrology, and thermodynamics. |
|---|---|
| AbstractList | We introduce a new technique for the simulation of dissipative quantum systems. This method is composed of an approximate decomposition of the Lindblad equation into a Kraus map, from which one can define an ensemble of wave functions. Using principal component analysis, this ensemble can be truncated to a manageable size without sacrificing numerical accuracy. We term this method ensemble rank truncation (ERT), and find that in the regime of weak coupling, this method is able to outperform existing wave-function Monte Carlo methods by an order of magnitude in both accuracy and speed. We also explore the possibility of combining ERT with approximate techniques for simulating large systems [such as matrix product states (MPS)], and show that in many cases this approach will be more efficient than directly expressing the density matrix in its MPS form. We expect the ERT technique to be of practical interest when simulating dissipative systems for quantum information, metrology, and thermodynamics. |
| ArticleNumber | 013017 |
| Author | McCaul, Gerard Bondar, Denys I. Jacobs, Kurt |
| Author_xml | – sequence: 1 givenname: Gerard orcidid: 0000-0001-7972-456X surname: McCaul fullname: McCaul, Gerard – sequence: 2 givenname: Kurt orcidid: 0000-0003-0828-6421 surname: Jacobs fullname: Jacobs, Kurt – sequence: 3 givenname: Denys I. orcidid: 0000-0002-3626-4804 surname: Bondar fullname: Bondar, Denys I. |
| BookMark | eNqFkN9KwzAUh4NMcM69Q16gM2nTtL0RZDgdTJSh1-EkPXWZazuTbLK3t64Kshuvzh_4fefwXZJB0zZICOVswjlLrp9XB7_E_RI9gjOrSTJhPGE8OyPDWIok4qkUgz_9BRl7v2aMxSnnIk-H5HEGPlDT1ttdgGDbhrYVLa33dtuNe6QfO2jCrqb-4APWnn7asKLYeKz1BqmD5p0Gt2vMMXxFzivYeBz_1BF5nd29TB-ixdP9fHq7iEySpSEyZQVFjkVmRKZTzCDTRSq14MB0JkvB8kIYqDRgLmMtRWGKPDeVwbKAMhVxMiLznlu2sFZbZ2twB9WCVcdF694UuGDNBlUsdax1yUV3R3CUIOMiTioujYSK6bRj3fQs41rvHVbK2F5FcGA3ijP17VqduFaJ6l13gPwE8PvQv9EvHy6O0w |
| CitedBy_id | crossref_primary_10_1103_PhysRevA_108_052208 crossref_primary_10_1103_PhysRevResearch_6_023072 crossref_primary_10_1002_andp_202100523 crossref_primary_10_1140_epjp_s13360_023_04205_9 crossref_primary_10_1016_j_jcp_2025_114036 crossref_primary_10_1016_j_physleta_2024_129570 |
| Cites_doi | 10.1103/PhysRevB.102.115109 10.1103/PhysRevA.39.1200 10.1016/j.aop.2010.09.012 10.1103/PhysRevLett.121.057405 10.1103/PhysRevLett.93.207204 10.1007/s40295-015-0047-z 10.1088/0953-8984/10/20/004 10.1007/BF01011142 10.1016/0003-4916(63)90068-X 10.1103/PhysRevA.74.062113 10.1007/s11071-005-1915-z 10.1103/PhysRevA.97.053841 10.1063/1.5115323 10.1103/PhysRevX.10.021038 10.1088/1742-5468/2016/04/043404 10.1103/PhysRevResearch.2.013049 10.1103/PhysRevA.39.864 10.1017/CBO9781139179027 10.1103/RevModPhys.59.1 10.21468/SciPostPhys.7.2.020 10.1103/PhysRevLett.107.130404 10.1016/0375-9601(95)00169-4 10.1103/PhysRevLett.117.040501 10.1103/PhysRevLett.124.147203 10.1103/PhysRevA.98.042133 10.1002/prop.201600067 10.1016/S0167-7322(97)00002-0 10.1103/PhysRevLett.93.040502 10.1103/PhysRevB.98.155102 10.1103/PhysRevB.95.125124 10.1016/j.aop.2014.06.013 10.1016/0378-4371(83)90013-4 10.1103/PhysRevA.82.032118 10.1103/PhysRevA.78.042307 10.1063/1.3002335 10.1103/PhysRevLett.93.207205 10.1103/PhysRevLett.122.160401 10.1088/1367-2630/10/11/113019 10.1063/1.467222 10.1147/rd.11.0019 10.1103/PhysRevA.85.042114 10.1103/PhysRevE.81.021107 10.1103/PhysRevA.36.3509 10.1038/s41467-017-01994-3 10.1038/s41534-020-00299-6 10.1103/PhysRevLett.91.147902 10.1103/PhysRevA.95.043834 10.1007/s13538-018-0570-z 10.1016/j.cpc.2012.06.006 10.1103/PhysRevLett.120.230404 10.1103/PhysRevLett.52.1657 10.1103/PhysRevB.86.125118 10.1016/j.chemphys.2003.09.014 10.1093/acprof:oso/9780199213900.001.0001 10.1103/PhysRevLett.118.140403 10.1103/PhysRevLett.106.090502 10.1103/PhysRevE.59.4931 10.1103/PhysRevLett.88.170407 10.1103/PhysRevLett.121.183603 10.1063/1.522979 10.21468/SciPostPhys.2.1.003 10.1007/BF01328601 10.1016/0375-9601(86)90692-4 10.1103/PhysRevA.101.053408 10.1103/PhysRevB.87.014305 10.1088/1751-8113/40/21/015 10.1134/S1054660X06110041 10.1103/PhysRevA.87.032118 10.1080/713820643 10.1103/PhysRevLett.124.183201 10.1103/PhysRevLett.97.040503 10.1017/CBO9780511976667 10.1016/0009-2614(89)87521-9 10.1016/j.cpc.2012.11.019 10.1016/0009-2614(81)85316-X 10.1038/nphys1847 10.1038/s41566-018-0129-0 10.1103/PhysRevLett.81.2594 10.1088/1367-2630/10/2/023011 10.1364/JOSAB.10.000524 10.1103/PhysRevX.10.031040 10.1103/PhysRevB.77.064426 10.1103/PhysRevB.97.224310 10.1103/PhysRevLett.87.086802 10.1103/PhysRevX.5.021025 10.1142/6223 10.1007/BF01608499 10.1088/2058-9565/aadccd 10.1103/PhysRevA.85.043836 10.1103/PhysRevA.47.642 10.1016/j.cpc.2012.02.021 10.1103/PhysRevA.75.022103 10.1017/CBO9781139525343 10.1063/1.481295 10.1147/rd.321.0127 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1103/PhysRevResearch.3.013017 |
| DatabaseName | CrossRef Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2643-1564 |
| ExternalDocumentID | oai_doaj_org_article_26b2bbd145e741e6a62923f16c6af0b5 10_1103_PhysRevResearch_3_013017 |
| GroupedDBID | 3MX AAFWJ AAYXX AECSF AFGMR AFPKN AGDNE ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E ROL |
| ID | FETCH-LOGICAL-c375t-cdfa98e97c47b5e7a7b956b41a0b76d40894cafbae862b649c988cfced9ad5423 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000606325200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2643-1564 |
| IngestDate | Fri Oct 03 12:50:57 EDT 2025 Sat Nov 29 03:20:53 EST 2025 Tue Nov 18 21:09:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-cdfa98e97c47b5e7a7b956b41a0b76d40894cafbae862b649c988cfced9ad5423 |
| ORCID | 0000-0003-0828-6421 0000-0002-3626-4804 0000-0001-7972-456X |
| OpenAccessLink | https://doaj.org/article/26b2bbd145e741e6a62923f16c6af0b5 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_26b2bbd145e741e6a62923f16c6af0b5 crossref_citationtrail_10_1103_PhysRevResearch_3_013017 crossref_primary_10_1103_PhysRevResearch_3_013017 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-08 |
| PublicationDateYYYYMMDD | 2021-01-08 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationTitle | Physical review research |
| PublicationYear | 2021 |
| Publisher | American Physical Society |
| Publisher_xml | – name: American Physical Society |
| References | PhysRevResearch.3.013017Cc87R1 PhysRevResearch.3.013017Cc64R1 PhysRevResearch.3.013017Cc83R1 PhysRevResearch.3.013017Cc60R1 PhysRevResearch.3.013017Cc110R1 C. Gardiner (PhysRevResearch.3.013017Cc40R1) 2010 PhysRevResearch.3.013017Cc38R1 PhysRevResearch.3.013017Cc11R1 PhysRevResearch.3.013017Cc34R1 PhysRevResearch.3.013017Cc57R1 PhysRevResearch.3.013017Cc99R1 PhysRevResearch.3.013017Cc19R1 PhysRevResearch.3.013017Cc94R1 M. Wilde (PhysRevResearch.3.013017Cc68R1) 2013 PhysRevResearch.3.013017Cc98R1 PhysRevResearch.3.013017Cc75R1 PhysRevResearch.3.013017Cc10R1 PhysRevResearch.3.013017Cc52R1 PhysRevResearch.3.013017Cc71R1 PhysRevResearch.3.013017Cc90R1 PhysRevResearch.3.013017Cc26R1 PhysRevResearch.3.013017Cc49R1 PhysRevResearch.3.013017Cc102R1 PhysRevResearch.3.013017Cc22R1 PhysRevResearch.3.013017Cc45R1 PhysRevResearch.3.013017Cc106R1 PhysRevResearch.3.013017Cc7R1 PhysRevResearch.3.013017Cc3R1 PhysRevResearch.3.013017Cc42R1 PhysRevResearch.3.013017Cc65R1 PhysRevResearch.3.013017Cc84R1 PhysRevResearch.3.013017Cc61R1 N. Hatano (PhysRevResearch.3.013017Cc109R1) 2005 PhysRevResearch.3.013017Cc58R1 A. Redfield (PhysRevResearch.3.013017Cc9R1) 1965 PhysRevResearch.3.013017Cc35R1 PhysRevResearch.3.013017Cc77R1 R. Alicki (PhysRevResearch.3.013017Cc70R1) 1987 PhysRevResearch.3.013017Cc91R1 PhysRevResearch.3.013017Cc95R1 W. T. Pollard (PhysRevResearch.3.013017Cc12R1) 2007 K. Jacobs (PhysRevResearch.3.013017Cc39R1) 2014 PhysRevResearch.3.013017Cc30R1 PhysRevResearch.3.013017Cc53R1 PhysRevResearch.3.013017Cc76R1 PhysRevResearch.3.013017Cc72R1 PhysRevResearch.3.013017Cc27R1 PhysRevResearch.3.013017Cc103R1 PhysRevResearch.3.013017Cc23R1 PhysRevResearch.3.013017Cc46R1 M. Nielsen (PhysRevResearch.3.013017Cc74R1) 2010 PhysRevResearch.3.013017Cc88R1 J. W. Van Wingerden (PhysRevResearch.3.013017Cc107R1) 2007 (PhysRevResearch.3.013017Cc69R1) 1983 PhysRevResearch.3.013017Cc8R1 PhysRevResearch.3.013017Cc4R1 PhysRevResearch.3.013017Cc85R1 H.-P. Breuer (PhysRevResearch.3.013017Cc41R1) 2007 PhysRevResearch.3.013017Cc43R1 PhysRevResearch.3.013017Cc20R1 PhysRevResearch.3.013017Cc62R1 PhysRevResearch.3.013017Cc81R1 PhysRevResearch.3.013017Cc17R1 PhysRevResearch.3.013017Cc59R1 PhysRevResearch.3.013017Cc13R1 PhysRevResearch.3.013017Cc36R1 PhysRevResearch.3.013017Cc55R1 PhysRevResearch.3.013017Cc92R1 PhysRevResearch.3.013017Cc1R1 PhysRevResearch.3.013017Cc96R1 PhysRevResearch.3.013017Cc54R1 PhysRevResearch.3.013017Cc31R1 PhysRevResearch.3.013017Cc73R1 PhysRevResearch.3.013017Cc50R1 PhysRevResearch.3.013017Cc100R1 PhysRevResearch.3.013017Cc104R1 PhysRevResearch.3.013017Cc28R1 PhysRevResearch.3.013017Cc47R1 PhysRevResearch.3.013017Cc108R1 PhysRevResearch.3.013017Cc24R1 PhysRevResearch.3.013017Cc89R1 PhysRevResearch.3.013017Cc5R1 PhysRevResearch.3.013017Cc86R1 PhysRevResearch.3.013017Cc21R1 PhysRevResearch.3.013017Cc82R1 H. M. Wiseman (PhysRevResearch.3.013017Cc93R1) 2010 PhysRevResearch.3.013017Cc37R1 PhysRevResearch.3.013017Cc18R1 PhysRevResearch.3.013017Cc33R1 PhysRevResearch.3.013017Cc14R1 PhysRevResearch.3.013017Cc56R1 H. Kleinert (PhysRevResearch.3.013017Cc16R1) 2006 PhysRevResearch.3.013017Cc97R1 PhysRevResearch.3.013017Cc32R1 PhysRevResearch.3.013017Cc29R1 PhysRevResearch.3.013017Cc48R1 PhysRevResearch.3.013017Cc101R1 PhysRevResearch.3.013017Cc25R1 PhysRevResearch.3.013017Cc44R1 PhysRevResearch.3.013017Cc67R1 PhysRevResearch.3.013017Cc105R1 PhysRevResearch.3.013017Cc6R1 I. T. Jolliffe (PhysRevResearch.3.013017Cc78R1) 2002 PhysRevResearch.3.013017Cc2R1 |
| References_xml | – ident: PhysRevResearch.3.013017Cc52R1 doi: 10.1103/PhysRevB.102.115109 – ident: PhysRevResearch.3.013017Cc64R1 doi: 10.1103/PhysRevA.39.1200 – ident: PhysRevResearch.3.013017Cc58R1 doi: 10.1016/j.aop.2010.09.012 – ident: PhysRevResearch.3.013017Cc103R1 doi: 10.1103/PhysRevLett.121.057405 – ident: PhysRevResearch.3.013017Cc55R1 doi: 10.1103/PhysRevLett.93.207204 – ident: PhysRevResearch.3.013017Cc106R1 doi: 10.1007/s40295-015-0047-z – ident: PhysRevResearch.3.013017Cc94R1 doi: 10.1088/0953-8984/10/20/004 – ident: PhysRevResearch.3.013017Cc25R1 doi: 10.1007/BF01011142 – ident: PhysRevResearch.3.013017Cc14R1 doi: 10.1016/0003-4916(63)90068-X – ident: PhysRevResearch.3.013017Cc75R1 doi: 10.1103/PhysRevA.74.062113 – ident: PhysRevResearch.3.013017Cc108R1 doi: 10.1007/s11071-005-1915-z – ident: PhysRevResearch.3.013017Cc45R1 doi: 10.1103/PhysRevA.97.053841 – ident: PhysRevResearch.3.013017Cc44R1 doi: 10.1063/1.5115323 – ident: PhysRevResearch.3.013017Cc5R1 doi: 10.1103/PhysRevX.10.021038 – ident: PhysRevResearch.3.013017Cc22R1 doi: 10.1088/1742-5468/2016/04/043404 – ident: PhysRevResearch.3.013017Cc53R1 doi: 10.1103/PhysRevResearch.2.013049 – ident: PhysRevResearch.3.013017Cc21R1 doi: 10.1103/PhysRevA.39.864 – volume-title: Quantum Measurement Theory and its Applications year: 2014 ident: PhysRevResearch.3.013017Cc39R1 doi: 10.1017/CBO9781139179027 – ident: PhysRevResearch.3.013017Cc28R1 doi: 10.1103/RevModPhys.59.1 – ident: PhysRevResearch.3.013017Cc99R1 doi: 10.21468/SciPostPhys.7.2.020 – ident: PhysRevResearch.3.013017Cc7R1 doi: 10.1103/PhysRevLett.107.130404 – ident: PhysRevResearch.3.013017Cc17R1 doi: 10.1016/0375-9601(95)00169-4 – ident: PhysRevResearch.3.013017Cc4R1 doi: 10.1103/PhysRevLett.117.040501 – ident: PhysRevResearch.3.013017Cc98R1 doi: 10.1103/PhysRevLett.124.147203 – ident: PhysRevResearch.3.013017Cc1R1 doi: 10.1103/PhysRevA.98.042133 – ident: PhysRevResearch.3.013017Cc36R1 doi: 10.1002/prop.201600067 – volume-title: Advances in Magnetic Resonance year: 1965 ident: PhysRevResearch.3.013017Cc9R1 – ident: PhysRevResearch.3.013017Cc29R1 doi: 10.1016/S0167-7322(97)00002-0 – ident: PhysRevResearch.3.013017Cc82R1 doi: 10.1103/PhysRevLett.93.040502 – ident: PhysRevResearch.3.013017Cc85R1 doi: 10.1103/PhysRevB.98.155102 – volume-title: Principal Component Analysis year: 2002 ident: PhysRevResearch.3.013017Cc78R1 – ident: PhysRevResearch.3.013017Cc37R1 doi: 10.1103/PhysRevB.95.125124 – volume-title: Quantum Noise year: 2010 ident: PhysRevResearch.3.013017Cc40R1 – ident: PhysRevResearch.3.013017Cc83R1 doi: 10.1016/j.aop.2014.06.013 – ident: PhysRevResearch.3.013017Cc24R1 doi: 10.1016/0378-4371(83)90013-4 – ident: PhysRevResearch.3.013017Cc31R1 doi: 10.1103/PhysRevA.82.032118 – ident: PhysRevResearch.3.013017Cc50R1 doi: 10.1103/PhysRevA.78.042307 – ident: PhysRevResearch.3.013017Cc48R1 doi: 10.1063/1.3002335 – ident: PhysRevResearch.3.013017Cc56R1 doi: 10.1103/PhysRevLett.93.207205 – ident: PhysRevResearch.3.013017Cc57R1 doi: 10.1103/PhysRevLett.122.160401 – ident: PhysRevResearch.3.013017Cc49R1 doi: 10.1088/1367-2630/10/11/113019 – ident: PhysRevResearch.3.013017Cc11R1 doi: 10.1063/1.467222 – ident: PhysRevResearch.3.013017Cc10R1 doi: 10.1147/rd.11.0019 – ident: PhysRevResearch.3.013017Cc84R1 doi: 10.1103/PhysRevA.85.042114 – ident: PhysRevResearch.3.013017Cc33R1 doi: 10.1103/PhysRevE.81.021107 – ident: PhysRevResearch.3.013017Cc19R1 doi: 10.1103/PhysRevA.36.3509 – ident: PhysRevResearch.3.013017Cc90R1 doi: 10.1038/s41467-017-01994-3 – ident: PhysRevResearch.3.013017Cc13R1 doi: 10.1038/s41534-020-00299-6 – ident: PhysRevResearch.3.013017Cc81R1 doi: 10.1103/PhysRevLett.91.147902 – volume-title: Quantum Annealing and Other Optimization Methods year: 2005 ident: PhysRevResearch.3.013017Cc109R1 – ident: PhysRevResearch.3.013017Cc8R1 doi: 10.1103/PhysRevA.95.043834 – ident: PhysRevResearch.3.013017Cc72R1 doi: 10.1007/s13538-018-0570-z – ident: PhysRevResearch.3.013017Cc77R1 doi: 10.1016/j.cpc.2012.06.006 – ident: PhysRevResearch.3.013017Cc2R1 doi: 10.1103/PhysRevLett.120.230404 – ident: PhysRevResearch.3.013017Cc61R1 doi: 10.1103/PhysRevLett.52.1657 – ident: PhysRevResearch.3.013017Cc104R1 doi: 10.1103/PhysRevB.86.125118 – ident: PhysRevResearch.3.013017Cc35R1 doi: 10.1016/j.chemphys.2003.09.014 – volume-title: The Theory of Open Quantum Systems year: 2007 ident: PhysRevResearch.3.013017Cc41R1 doi: 10.1093/acprof:oso/9780199213900.001.0001 – ident: PhysRevResearch.3.013017Cc59R1 doi: 10.1103/PhysRevLett.118.140403 – ident: PhysRevResearch.3.013017Cc3R1 doi: 10.1103/PhysRevLett.106.090502 – ident: PhysRevResearch.3.013017Cc18R1 doi: 10.1103/PhysRevE.59.4931 – ident: PhysRevResearch.3.013017Cc34R1 doi: 10.1103/PhysRevLett.88.170407 – ident: PhysRevResearch.3.013017Cc92R1 doi: 10.1103/PhysRevLett.121.183603 – ident: PhysRevResearch.3.013017Cc43R1 doi: 10.1063/1.522979 – ident: PhysRevResearch.3.013017Cc100R1 doi: 10.21468/SciPostPhys.2.1.003 – ident: PhysRevResearch.3.013017Cc86R1 doi: 10.1007/BF01328601 – ident: PhysRevResearch.3.013017Cc62R1 doi: 10.1016/0375-9601(86)90692-4 – ident: PhysRevResearch.3.013017Cc95R1 doi: 10.1103/PhysRevA.101.053408 – ident: PhysRevResearch.3.013017Cc30R1 doi: 10.1103/PhysRevB.87.014305 – volume-title: Quantum Dynamical Semigroups and Applications year: 1987 ident: PhysRevResearch.3.013017Cc70R1 – ident: PhysRevResearch.3.013017Cc73R1 doi: 10.1088/1751-8113/40/21/015 – ident: PhysRevResearch.3.013017Cc71R1 doi: 10.1134/S1054660X06110041 – ident: PhysRevResearch.3.013017Cc91R1 doi: 10.1103/PhysRevA.87.032118 – ident: PhysRevResearch.3.013017Cc60R1 doi: 10.1080/713820643 – ident: PhysRevResearch.3.013017Cc96R1 doi: 10.1103/PhysRevLett.124.183201 – volume-title: Quantum Measurement and Control year: 2010 ident: PhysRevResearch.3.013017Cc93R1 – volume-title: Advances in Chemical Physics year: 2007 ident: PhysRevResearch.3.013017Cc12R1 – ident: PhysRevResearch.3.013017Cc47R1 doi: 10.1103/PhysRevLett.97.040503 – volume-title: Quantum Computation and Quantum Information year: 2010 ident: PhysRevResearch.3.013017Cc74R1 doi: 10.1017/CBO9780511976667 – ident: PhysRevResearch.3.013017Cc20R1 doi: 10.1016/0009-2614(89)87521-9 – ident: PhysRevResearch.3.013017Cc89R1 doi: 10.1016/j.cpc.2012.11.019 – volume-title: States, Effects, and Operations Fundamental Notions of Quantum Theory year: 1983 ident: PhysRevResearch.3.013017Cc69R1 – ident: PhysRevResearch.3.013017Cc27R1 doi: 10.1016/0009-2614(81)85316-X – ident: PhysRevResearch.3.013017Cc102R1 doi: 10.1038/nphys1847 – ident: PhysRevResearch.3.013017Cc105R1 doi: 10.1038/s41566-018-0129-0 – ident: PhysRevResearch.3.013017Cc46R1 doi: 10.1103/PhysRevLett.81.2594 – ident: PhysRevResearch.3.013017Cc76R1 doi: 10.1088/1367-2630/10/2/023011 – ident: PhysRevResearch.3.013017Cc67R1 doi: 10.1364/JOSAB.10.000524 – ident: PhysRevResearch.3.013017Cc54R1 doi: 10.1103/PhysRevX.10.031040 – ident: PhysRevResearch.3.013017Cc87R1 doi: 10.1103/PhysRevB.77.064426 – ident: PhysRevResearch.3.013017Cc38R1 doi: 10.1103/PhysRevB.97.224310 – ident: PhysRevResearch.3.013017Cc32R1 doi: 10.1103/PhysRevLett.87.086802 – ident: PhysRevResearch.3.013017Cc6R1 doi: 10.1103/PhysRevX.5.021025 – volume-title: Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets year: 2006 ident: PhysRevResearch.3.013017Cc16R1 doi: 10.1142/6223 – ident: PhysRevResearch.3.013017Cc42R1 doi: 10.1007/BF01608499 – ident: PhysRevResearch.3.013017Cc97R1 doi: 10.1088/2058-9565/aadccd – ident: PhysRevResearch.3.013017Cc101R1 doi: 10.1103/PhysRevA.85.043836 – ident: PhysRevResearch.3.013017Cc65R1 doi: 10.1103/PhysRevA.47.642 – ident: PhysRevResearch.3.013017Cc88R1 doi: 10.1016/j.cpc.2012.02.021 – volume-title: Proceedings of the IEEE Conference on Decision and Control year: 2007 ident: PhysRevResearch.3.013017Cc107R1 – ident: PhysRevResearch.3.013017Cc110R1 doi: 10.1103/PhysRevA.75.022103 – volume-title: Quantum Information Theory year: 2013 ident: PhysRevResearch.3.013017Cc68R1 doi: 10.1017/CBO9781139525343 – ident: PhysRevResearch.3.013017Cc23R1 doi: 10.1063/1.481295 – ident: PhysRevResearch.3.013017Cc26R1 doi: 10.1147/rd.321.0127 |
| SSID | ssj0002511485 |
| Score | 2.217104 |
| Snippet | We introduce a new technique for the simulation of dissipative quantum systems. This method is composed of an approximate decomposition of the Lindblad... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 013017 |
| Title | Fast computation of dissipative quantum systems with ensemble rank truncation |
| URI | https://doaj.org/article/26b2bbd145e741e6a62923f16c6af0b5 |
| Volume | 3 |
| WOSCitedRecordID | wos000606325200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2643-1564 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511485 issn: 2643-1564 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2643-1564 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511485 issn: 2643-1564 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQBRIL4inKSx5Y09qx48cIqBUDrRAC1C2yHVtC6gOatCPfju2kpWKBgSVDFFvRyVXuPddH5wJwLYUzWKckkanwBIVJkggdLPe1z8UGIydiv-P1gQ-HYjSSjxujvoImrLYHroHrpkynWheYZtYnP8sUS31N4jAzTDmko3sp4nKDTIV_cCicqchW0h1EukFQ-WSXKz1bh3TCmV2cU_adjzZs-2N-6e-DvaYwhDf1Cx2ALTs9BDtRoGnKIzDoq7KCJs5giGDCmYPhMD1KopcWfiw8RosJrK2ZSxgarNBzVDvRYwvDaHZYzRfTukN3DF76vee7-6QZhZAYwrMqMYVTUljJDeXaI6G49sRGU6yQ5qygSEhqlNPKeoaiGZVGCmGcsYVUReZLphPQms6m9hTAjHNsFVfYeXbkd1TUUl_lWKSZZSRFbcBXgOSm8QkP4yrGeeQLiOQ_oMxJXkPZBni98r32yvjDmtuA-fr54HYdb_gYyJsYyH-LgbP_2OQc7KZBrxLaK-ICtPw3sZdg2yyrt3J-FcPLXwefvS-0Atk- |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+computation+of+dissipative+quantum+systems+with+ensemble+rank+truncation&rft.jtitle=Physical+review+research&rft.au=Gerard+McCaul&rft.au=Kurt+Jacobs&rft.au=Denys+I.+Bondar&rft.date=2021-01-08&rft.pub=American+Physical+Society&rft.eissn=2643-1564&rft.volume=3&rft.issue=1&rft.spage=013017&rft_id=info:doi/10.1103%2FPhysRevResearch.3.013017&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_26b2bbd145e741e6a62923f16c6af0b5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon |