Fast computation of dissipative quantum systems with ensemble rank truncation

We introduce a new technique for the simulation of dissipative quantum systems. This method is composed of an approximate decomposition of the Lindblad equation into a Kraus map, from which one can define an ensemble of wave functions. Using principal component analysis, this ensemble can be truncat...

Full description

Saved in:
Bibliographic Details
Published in:Physical review research Vol. 3; no. 1; p. 013017
Main Authors: McCaul, Gerard, Jacobs, Kurt, Bondar, Denys I.
Format: Journal Article
Language:English
Published: American Physical Society 08.01.2021
ISSN:2643-1564, 2643-1564
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We introduce a new technique for the simulation of dissipative quantum systems. This method is composed of an approximate decomposition of the Lindblad equation into a Kraus map, from which one can define an ensemble of wave functions. Using principal component analysis, this ensemble can be truncated to a manageable size without sacrificing numerical accuracy. We term this method ensemble rank truncation (ERT), and find that in the regime of weak coupling, this method is able to outperform existing wave-function Monte Carlo methods by an order of magnitude in both accuracy and speed. We also explore the possibility of combining ERT with approximate techniques for simulating large systems [such as matrix product states (MPS)], and show that in many cases this approach will be more efficient than directly expressing the density matrix in its MPS form. We expect the ERT technique to be of practical interest when simulating dissipative systems for quantum information, metrology, and thermodynamics.
AbstractList We introduce a new technique for the simulation of dissipative quantum systems. This method is composed of an approximate decomposition of the Lindblad equation into a Kraus map, from which one can define an ensemble of wave functions. Using principal component analysis, this ensemble can be truncated to a manageable size without sacrificing numerical accuracy. We term this method ensemble rank truncation (ERT), and find that in the regime of weak coupling, this method is able to outperform existing wave-function Monte Carlo methods by an order of magnitude in both accuracy and speed. We also explore the possibility of combining ERT with approximate techniques for simulating large systems [such as matrix product states (MPS)], and show that in many cases this approach will be more efficient than directly expressing the density matrix in its MPS form. We expect the ERT technique to be of practical interest when simulating dissipative systems for quantum information, metrology, and thermodynamics.
ArticleNumber 013017
Author McCaul, Gerard
Bondar, Denys I.
Jacobs, Kurt
Author_xml – sequence: 1
  givenname: Gerard
  orcidid: 0000-0001-7972-456X
  surname: McCaul
  fullname: McCaul, Gerard
– sequence: 2
  givenname: Kurt
  orcidid: 0000-0003-0828-6421
  surname: Jacobs
  fullname: Jacobs, Kurt
– sequence: 3
  givenname: Denys I.
  orcidid: 0000-0002-3626-4804
  surname: Bondar
  fullname: Bondar, Denys I.
BookMark eNqFkN9KwzAUh4NMcM69Q16gM2nTtL0RZDgdTJSh1-EkPXWZazuTbLK3t64Kshuvzh_4fefwXZJB0zZICOVswjlLrp9XB7_E_RI9gjOrSTJhPGE8OyPDWIok4qkUgz_9BRl7v2aMxSnnIk-H5HEGPlDT1ttdgGDbhrYVLa33dtuNe6QfO2jCrqb-4APWnn7asKLYeKz1BqmD5p0Gt2vMMXxFzivYeBz_1BF5nd29TB-ixdP9fHq7iEySpSEyZQVFjkVmRKZTzCDTRSq14MB0JkvB8kIYqDRgLmMtRWGKPDeVwbKAMhVxMiLznlu2sFZbZ2twB9WCVcdF694UuGDNBlUsdax1yUV3R3CUIOMiTioujYSK6bRj3fQs41rvHVbK2F5FcGA3ijP17VqduFaJ6l13gPwE8PvQv9EvHy6O0w
CitedBy_id crossref_primary_10_1103_PhysRevA_108_052208
crossref_primary_10_1103_PhysRevResearch_6_023072
crossref_primary_10_1002_andp_202100523
crossref_primary_10_1140_epjp_s13360_023_04205_9
crossref_primary_10_1016_j_jcp_2025_114036
crossref_primary_10_1016_j_physleta_2024_129570
Cites_doi 10.1103/PhysRevB.102.115109
10.1103/PhysRevA.39.1200
10.1016/j.aop.2010.09.012
10.1103/PhysRevLett.121.057405
10.1103/PhysRevLett.93.207204
10.1007/s40295-015-0047-z
10.1088/0953-8984/10/20/004
10.1007/BF01011142
10.1016/0003-4916(63)90068-X
10.1103/PhysRevA.74.062113
10.1007/s11071-005-1915-z
10.1103/PhysRevA.97.053841
10.1063/1.5115323
10.1103/PhysRevX.10.021038
10.1088/1742-5468/2016/04/043404
10.1103/PhysRevResearch.2.013049
10.1103/PhysRevA.39.864
10.1017/CBO9781139179027
10.1103/RevModPhys.59.1
10.21468/SciPostPhys.7.2.020
10.1103/PhysRevLett.107.130404
10.1016/0375-9601(95)00169-4
10.1103/PhysRevLett.117.040501
10.1103/PhysRevLett.124.147203
10.1103/PhysRevA.98.042133
10.1002/prop.201600067
10.1016/S0167-7322(97)00002-0
10.1103/PhysRevLett.93.040502
10.1103/PhysRevB.98.155102
10.1103/PhysRevB.95.125124
10.1016/j.aop.2014.06.013
10.1016/0378-4371(83)90013-4
10.1103/PhysRevA.82.032118
10.1103/PhysRevA.78.042307
10.1063/1.3002335
10.1103/PhysRevLett.93.207205
10.1103/PhysRevLett.122.160401
10.1088/1367-2630/10/11/113019
10.1063/1.467222
10.1147/rd.11.0019
10.1103/PhysRevA.85.042114
10.1103/PhysRevE.81.021107
10.1103/PhysRevA.36.3509
10.1038/s41467-017-01994-3
10.1038/s41534-020-00299-6
10.1103/PhysRevLett.91.147902
10.1103/PhysRevA.95.043834
10.1007/s13538-018-0570-z
10.1016/j.cpc.2012.06.006
10.1103/PhysRevLett.120.230404
10.1103/PhysRevLett.52.1657
10.1103/PhysRevB.86.125118
10.1016/j.chemphys.2003.09.014
10.1093/acprof:oso/9780199213900.001.0001
10.1103/PhysRevLett.118.140403
10.1103/PhysRevLett.106.090502
10.1103/PhysRevE.59.4931
10.1103/PhysRevLett.88.170407
10.1103/PhysRevLett.121.183603
10.1063/1.522979
10.21468/SciPostPhys.2.1.003
10.1007/BF01328601
10.1016/0375-9601(86)90692-4
10.1103/PhysRevA.101.053408
10.1103/PhysRevB.87.014305
10.1088/1751-8113/40/21/015
10.1134/S1054660X06110041
10.1103/PhysRevA.87.032118
10.1080/713820643
10.1103/PhysRevLett.124.183201
10.1103/PhysRevLett.97.040503
10.1017/CBO9780511976667
10.1016/0009-2614(89)87521-9
10.1016/j.cpc.2012.11.019
10.1016/0009-2614(81)85316-X
10.1038/nphys1847
10.1038/s41566-018-0129-0
10.1103/PhysRevLett.81.2594
10.1088/1367-2630/10/2/023011
10.1364/JOSAB.10.000524
10.1103/PhysRevX.10.031040
10.1103/PhysRevB.77.064426
10.1103/PhysRevB.97.224310
10.1103/PhysRevLett.87.086802
10.1103/PhysRevX.5.021025
10.1142/6223
10.1007/BF01608499
10.1088/2058-9565/aadccd
10.1103/PhysRevA.85.043836
10.1103/PhysRevA.47.642
10.1016/j.cpc.2012.02.021
10.1103/PhysRevA.75.022103
10.1017/CBO9781139525343
10.1063/1.481295
10.1147/rd.321.0127
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PhysRevResearch.3.013017
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2643-1564
ExternalDocumentID oai_doaj_org_article_26b2bbd145e741e6a62923f16c6af0b5
10_1103_PhysRevResearch_3_013017
GroupedDBID 3MX
AAFWJ
AAYXX
AECSF
AFGMR
AFPKN
AGDNE
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ROL
ID FETCH-LOGICAL-c375t-cdfa98e97c47b5e7a7b956b41a0b76d40894cafbae862b649c988cfced9ad5423
IEDL.DBID DOA
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000606325200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2643-1564
IngestDate Fri Oct 03 12:50:57 EDT 2025
Sat Nov 29 03:20:53 EST 2025
Tue Nov 18 21:09:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-cdfa98e97c47b5e7a7b956b41a0b76d40894cafbae862b649c988cfced9ad5423
ORCID 0000-0003-0828-6421
0000-0002-3626-4804
0000-0001-7972-456X
OpenAccessLink https://doaj.org/article/26b2bbd145e741e6a62923f16c6af0b5
ParticipantIDs doaj_primary_oai_doaj_org_article_26b2bbd145e741e6a62923f16c6af0b5
crossref_citationtrail_10_1103_PhysRevResearch_3_013017
crossref_primary_10_1103_PhysRevResearch_3_013017
PublicationCentury 2000
PublicationDate 2021-01-08
PublicationDateYYYYMMDD 2021-01-08
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-08
  day: 08
PublicationDecade 2020
PublicationTitle Physical review research
PublicationYear 2021
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevResearch.3.013017Cc87R1
PhysRevResearch.3.013017Cc64R1
PhysRevResearch.3.013017Cc83R1
PhysRevResearch.3.013017Cc60R1
PhysRevResearch.3.013017Cc110R1
C. Gardiner (PhysRevResearch.3.013017Cc40R1) 2010
PhysRevResearch.3.013017Cc38R1
PhysRevResearch.3.013017Cc11R1
PhysRevResearch.3.013017Cc34R1
PhysRevResearch.3.013017Cc57R1
PhysRevResearch.3.013017Cc99R1
PhysRevResearch.3.013017Cc19R1
PhysRevResearch.3.013017Cc94R1
M. Wilde (PhysRevResearch.3.013017Cc68R1) 2013
PhysRevResearch.3.013017Cc98R1
PhysRevResearch.3.013017Cc75R1
PhysRevResearch.3.013017Cc10R1
PhysRevResearch.3.013017Cc52R1
PhysRevResearch.3.013017Cc71R1
PhysRevResearch.3.013017Cc90R1
PhysRevResearch.3.013017Cc26R1
PhysRevResearch.3.013017Cc49R1
PhysRevResearch.3.013017Cc102R1
PhysRevResearch.3.013017Cc22R1
PhysRevResearch.3.013017Cc45R1
PhysRevResearch.3.013017Cc106R1
PhysRevResearch.3.013017Cc7R1
PhysRevResearch.3.013017Cc3R1
PhysRevResearch.3.013017Cc42R1
PhysRevResearch.3.013017Cc65R1
PhysRevResearch.3.013017Cc84R1
PhysRevResearch.3.013017Cc61R1
N. Hatano (PhysRevResearch.3.013017Cc109R1) 2005
PhysRevResearch.3.013017Cc58R1
A. Redfield (PhysRevResearch.3.013017Cc9R1) 1965
PhysRevResearch.3.013017Cc35R1
PhysRevResearch.3.013017Cc77R1
R. Alicki (PhysRevResearch.3.013017Cc70R1) 1987
PhysRevResearch.3.013017Cc91R1
PhysRevResearch.3.013017Cc95R1
W. T. Pollard (PhysRevResearch.3.013017Cc12R1) 2007
K. Jacobs (PhysRevResearch.3.013017Cc39R1) 2014
PhysRevResearch.3.013017Cc30R1
PhysRevResearch.3.013017Cc53R1
PhysRevResearch.3.013017Cc76R1
PhysRevResearch.3.013017Cc72R1
PhysRevResearch.3.013017Cc27R1
PhysRevResearch.3.013017Cc103R1
PhysRevResearch.3.013017Cc23R1
PhysRevResearch.3.013017Cc46R1
M. Nielsen (PhysRevResearch.3.013017Cc74R1) 2010
PhysRevResearch.3.013017Cc88R1
J. W. Van Wingerden (PhysRevResearch.3.013017Cc107R1) 2007
(PhysRevResearch.3.013017Cc69R1) 1983
PhysRevResearch.3.013017Cc8R1
PhysRevResearch.3.013017Cc4R1
PhysRevResearch.3.013017Cc85R1
H.-P. Breuer (PhysRevResearch.3.013017Cc41R1) 2007
PhysRevResearch.3.013017Cc43R1
PhysRevResearch.3.013017Cc20R1
PhysRevResearch.3.013017Cc62R1
PhysRevResearch.3.013017Cc81R1
PhysRevResearch.3.013017Cc17R1
PhysRevResearch.3.013017Cc59R1
PhysRevResearch.3.013017Cc13R1
PhysRevResearch.3.013017Cc36R1
PhysRevResearch.3.013017Cc55R1
PhysRevResearch.3.013017Cc92R1
PhysRevResearch.3.013017Cc1R1
PhysRevResearch.3.013017Cc96R1
PhysRevResearch.3.013017Cc54R1
PhysRevResearch.3.013017Cc31R1
PhysRevResearch.3.013017Cc73R1
PhysRevResearch.3.013017Cc50R1
PhysRevResearch.3.013017Cc100R1
PhysRevResearch.3.013017Cc104R1
PhysRevResearch.3.013017Cc28R1
PhysRevResearch.3.013017Cc47R1
PhysRevResearch.3.013017Cc108R1
PhysRevResearch.3.013017Cc24R1
PhysRevResearch.3.013017Cc89R1
PhysRevResearch.3.013017Cc5R1
PhysRevResearch.3.013017Cc86R1
PhysRevResearch.3.013017Cc21R1
PhysRevResearch.3.013017Cc82R1
H. M. Wiseman (PhysRevResearch.3.013017Cc93R1) 2010
PhysRevResearch.3.013017Cc37R1
PhysRevResearch.3.013017Cc18R1
PhysRevResearch.3.013017Cc33R1
PhysRevResearch.3.013017Cc14R1
PhysRevResearch.3.013017Cc56R1
H. Kleinert (PhysRevResearch.3.013017Cc16R1) 2006
PhysRevResearch.3.013017Cc97R1
PhysRevResearch.3.013017Cc32R1
PhysRevResearch.3.013017Cc29R1
PhysRevResearch.3.013017Cc48R1
PhysRevResearch.3.013017Cc101R1
PhysRevResearch.3.013017Cc25R1
PhysRevResearch.3.013017Cc44R1
PhysRevResearch.3.013017Cc67R1
PhysRevResearch.3.013017Cc105R1
PhysRevResearch.3.013017Cc6R1
I. T. Jolliffe (PhysRevResearch.3.013017Cc78R1) 2002
PhysRevResearch.3.013017Cc2R1
References_xml – ident: PhysRevResearch.3.013017Cc52R1
  doi: 10.1103/PhysRevB.102.115109
– ident: PhysRevResearch.3.013017Cc64R1
  doi: 10.1103/PhysRevA.39.1200
– ident: PhysRevResearch.3.013017Cc58R1
  doi: 10.1016/j.aop.2010.09.012
– ident: PhysRevResearch.3.013017Cc103R1
  doi: 10.1103/PhysRevLett.121.057405
– ident: PhysRevResearch.3.013017Cc55R1
  doi: 10.1103/PhysRevLett.93.207204
– ident: PhysRevResearch.3.013017Cc106R1
  doi: 10.1007/s40295-015-0047-z
– ident: PhysRevResearch.3.013017Cc94R1
  doi: 10.1088/0953-8984/10/20/004
– ident: PhysRevResearch.3.013017Cc25R1
  doi: 10.1007/BF01011142
– ident: PhysRevResearch.3.013017Cc14R1
  doi: 10.1016/0003-4916(63)90068-X
– ident: PhysRevResearch.3.013017Cc75R1
  doi: 10.1103/PhysRevA.74.062113
– ident: PhysRevResearch.3.013017Cc108R1
  doi: 10.1007/s11071-005-1915-z
– ident: PhysRevResearch.3.013017Cc45R1
  doi: 10.1103/PhysRevA.97.053841
– ident: PhysRevResearch.3.013017Cc44R1
  doi: 10.1063/1.5115323
– ident: PhysRevResearch.3.013017Cc5R1
  doi: 10.1103/PhysRevX.10.021038
– ident: PhysRevResearch.3.013017Cc22R1
  doi: 10.1088/1742-5468/2016/04/043404
– ident: PhysRevResearch.3.013017Cc53R1
  doi: 10.1103/PhysRevResearch.2.013049
– ident: PhysRevResearch.3.013017Cc21R1
  doi: 10.1103/PhysRevA.39.864
– volume-title: Quantum Measurement Theory and its Applications
  year: 2014
  ident: PhysRevResearch.3.013017Cc39R1
  doi: 10.1017/CBO9781139179027
– ident: PhysRevResearch.3.013017Cc28R1
  doi: 10.1103/RevModPhys.59.1
– ident: PhysRevResearch.3.013017Cc99R1
  doi: 10.21468/SciPostPhys.7.2.020
– ident: PhysRevResearch.3.013017Cc7R1
  doi: 10.1103/PhysRevLett.107.130404
– ident: PhysRevResearch.3.013017Cc17R1
  doi: 10.1016/0375-9601(95)00169-4
– ident: PhysRevResearch.3.013017Cc4R1
  doi: 10.1103/PhysRevLett.117.040501
– ident: PhysRevResearch.3.013017Cc98R1
  doi: 10.1103/PhysRevLett.124.147203
– ident: PhysRevResearch.3.013017Cc1R1
  doi: 10.1103/PhysRevA.98.042133
– ident: PhysRevResearch.3.013017Cc36R1
  doi: 10.1002/prop.201600067
– volume-title: Advances in Magnetic Resonance
  year: 1965
  ident: PhysRevResearch.3.013017Cc9R1
– ident: PhysRevResearch.3.013017Cc29R1
  doi: 10.1016/S0167-7322(97)00002-0
– ident: PhysRevResearch.3.013017Cc82R1
  doi: 10.1103/PhysRevLett.93.040502
– ident: PhysRevResearch.3.013017Cc85R1
  doi: 10.1103/PhysRevB.98.155102
– volume-title: Principal Component Analysis
  year: 2002
  ident: PhysRevResearch.3.013017Cc78R1
– ident: PhysRevResearch.3.013017Cc37R1
  doi: 10.1103/PhysRevB.95.125124
– volume-title: Quantum Noise
  year: 2010
  ident: PhysRevResearch.3.013017Cc40R1
– ident: PhysRevResearch.3.013017Cc83R1
  doi: 10.1016/j.aop.2014.06.013
– ident: PhysRevResearch.3.013017Cc24R1
  doi: 10.1016/0378-4371(83)90013-4
– ident: PhysRevResearch.3.013017Cc31R1
  doi: 10.1103/PhysRevA.82.032118
– ident: PhysRevResearch.3.013017Cc50R1
  doi: 10.1103/PhysRevA.78.042307
– ident: PhysRevResearch.3.013017Cc48R1
  doi: 10.1063/1.3002335
– ident: PhysRevResearch.3.013017Cc56R1
  doi: 10.1103/PhysRevLett.93.207205
– ident: PhysRevResearch.3.013017Cc57R1
  doi: 10.1103/PhysRevLett.122.160401
– ident: PhysRevResearch.3.013017Cc49R1
  doi: 10.1088/1367-2630/10/11/113019
– ident: PhysRevResearch.3.013017Cc11R1
  doi: 10.1063/1.467222
– ident: PhysRevResearch.3.013017Cc10R1
  doi: 10.1147/rd.11.0019
– ident: PhysRevResearch.3.013017Cc84R1
  doi: 10.1103/PhysRevA.85.042114
– ident: PhysRevResearch.3.013017Cc33R1
  doi: 10.1103/PhysRevE.81.021107
– ident: PhysRevResearch.3.013017Cc19R1
  doi: 10.1103/PhysRevA.36.3509
– ident: PhysRevResearch.3.013017Cc90R1
  doi: 10.1038/s41467-017-01994-3
– ident: PhysRevResearch.3.013017Cc13R1
  doi: 10.1038/s41534-020-00299-6
– ident: PhysRevResearch.3.013017Cc81R1
  doi: 10.1103/PhysRevLett.91.147902
– volume-title: Quantum Annealing and Other Optimization Methods
  year: 2005
  ident: PhysRevResearch.3.013017Cc109R1
– ident: PhysRevResearch.3.013017Cc8R1
  doi: 10.1103/PhysRevA.95.043834
– ident: PhysRevResearch.3.013017Cc72R1
  doi: 10.1007/s13538-018-0570-z
– ident: PhysRevResearch.3.013017Cc77R1
  doi: 10.1016/j.cpc.2012.06.006
– ident: PhysRevResearch.3.013017Cc2R1
  doi: 10.1103/PhysRevLett.120.230404
– ident: PhysRevResearch.3.013017Cc61R1
  doi: 10.1103/PhysRevLett.52.1657
– ident: PhysRevResearch.3.013017Cc104R1
  doi: 10.1103/PhysRevB.86.125118
– ident: PhysRevResearch.3.013017Cc35R1
  doi: 10.1016/j.chemphys.2003.09.014
– volume-title: The Theory of Open Quantum Systems
  year: 2007
  ident: PhysRevResearch.3.013017Cc41R1
  doi: 10.1093/acprof:oso/9780199213900.001.0001
– ident: PhysRevResearch.3.013017Cc59R1
  doi: 10.1103/PhysRevLett.118.140403
– ident: PhysRevResearch.3.013017Cc3R1
  doi: 10.1103/PhysRevLett.106.090502
– ident: PhysRevResearch.3.013017Cc18R1
  doi: 10.1103/PhysRevE.59.4931
– ident: PhysRevResearch.3.013017Cc34R1
  doi: 10.1103/PhysRevLett.88.170407
– ident: PhysRevResearch.3.013017Cc92R1
  doi: 10.1103/PhysRevLett.121.183603
– ident: PhysRevResearch.3.013017Cc43R1
  doi: 10.1063/1.522979
– ident: PhysRevResearch.3.013017Cc100R1
  doi: 10.21468/SciPostPhys.2.1.003
– ident: PhysRevResearch.3.013017Cc86R1
  doi: 10.1007/BF01328601
– ident: PhysRevResearch.3.013017Cc62R1
  doi: 10.1016/0375-9601(86)90692-4
– ident: PhysRevResearch.3.013017Cc95R1
  doi: 10.1103/PhysRevA.101.053408
– ident: PhysRevResearch.3.013017Cc30R1
  doi: 10.1103/PhysRevB.87.014305
– volume-title: Quantum Dynamical Semigroups and Applications
  year: 1987
  ident: PhysRevResearch.3.013017Cc70R1
– ident: PhysRevResearch.3.013017Cc73R1
  doi: 10.1088/1751-8113/40/21/015
– ident: PhysRevResearch.3.013017Cc71R1
  doi: 10.1134/S1054660X06110041
– ident: PhysRevResearch.3.013017Cc91R1
  doi: 10.1103/PhysRevA.87.032118
– ident: PhysRevResearch.3.013017Cc60R1
  doi: 10.1080/713820643
– ident: PhysRevResearch.3.013017Cc96R1
  doi: 10.1103/PhysRevLett.124.183201
– volume-title: Quantum Measurement and Control
  year: 2010
  ident: PhysRevResearch.3.013017Cc93R1
– volume-title: Advances in Chemical Physics
  year: 2007
  ident: PhysRevResearch.3.013017Cc12R1
– ident: PhysRevResearch.3.013017Cc47R1
  doi: 10.1103/PhysRevLett.97.040503
– volume-title: Quantum Computation and Quantum Information
  year: 2010
  ident: PhysRevResearch.3.013017Cc74R1
  doi: 10.1017/CBO9780511976667
– ident: PhysRevResearch.3.013017Cc20R1
  doi: 10.1016/0009-2614(89)87521-9
– ident: PhysRevResearch.3.013017Cc89R1
  doi: 10.1016/j.cpc.2012.11.019
– volume-title: States, Effects, and Operations Fundamental Notions of Quantum Theory
  year: 1983
  ident: PhysRevResearch.3.013017Cc69R1
– ident: PhysRevResearch.3.013017Cc27R1
  doi: 10.1016/0009-2614(81)85316-X
– ident: PhysRevResearch.3.013017Cc102R1
  doi: 10.1038/nphys1847
– ident: PhysRevResearch.3.013017Cc105R1
  doi: 10.1038/s41566-018-0129-0
– ident: PhysRevResearch.3.013017Cc46R1
  doi: 10.1103/PhysRevLett.81.2594
– ident: PhysRevResearch.3.013017Cc76R1
  doi: 10.1088/1367-2630/10/2/023011
– ident: PhysRevResearch.3.013017Cc67R1
  doi: 10.1364/JOSAB.10.000524
– ident: PhysRevResearch.3.013017Cc54R1
  doi: 10.1103/PhysRevX.10.031040
– ident: PhysRevResearch.3.013017Cc87R1
  doi: 10.1103/PhysRevB.77.064426
– ident: PhysRevResearch.3.013017Cc38R1
  doi: 10.1103/PhysRevB.97.224310
– ident: PhysRevResearch.3.013017Cc32R1
  doi: 10.1103/PhysRevLett.87.086802
– ident: PhysRevResearch.3.013017Cc6R1
  doi: 10.1103/PhysRevX.5.021025
– volume-title: Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets
  year: 2006
  ident: PhysRevResearch.3.013017Cc16R1
  doi: 10.1142/6223
– ident: PhysRevResearch.3.013017Cc42R1
  doi: 10.1007/BF01608499
– ident: PhysRevResearch.3.013017Cc97R1
  doi: 10.1088/2058-9565/aadccd
– ident: PhysRevResearch.3.013017Cc101R1
  doi: 10.1103/PhysRevA.85.043836
– ident: PhysRevResearch.3.013017Cc65R1
  doi: 10.1103/PhysRevA.47.642
– ident: PhysRevResearch.3.013017Cc88R1
  doi: 10.1016/j.cpc.2012.02.021
– volume-title: Proceedings of the IEEE Conference on Decision and Control
  year: 2007
  ident: PhysRevResearch.3.013017Cc107R1
– ident: PhysRevResearch.3.013017Cc110R1
  doi: 10.1103/PhysRevA.75.022103
– volume-title: Quantum Information Theory
  year: 2013
  ident: PhysRevResearch.3.013017Cc68R1
  doi: 10.1017/CBO9781139525343
– ident: PhysRevResearch.3.013017Cc23R1
  doi: 10.1063/1.481295
– ident: PhysRevResearch.3.013017Cc26R1
  doi: 10.1147/rd.321.0127
SSID ssj0002511485
Score 2.217104
Snippet We introduce a new technique for the simulation of dissipative quantum systems. This method is composed of an approximate decomposition of the Lindblad...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 013017
Title Fast computation of dissipative quantum systems with ensemble rank truncation
URI https://doaj.org/article/26b2bbd145e741e6a62923f16c6af0b5
Volume 3
WOSCitedRecordID wos000606325200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2643-1564
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511485
  issn: 2643-1564
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2643-1564
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511485
  issn: 2643-1564
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQBRIL4inKSx5Y09qx48cIqBUDrRAC1C2yHVtC6gOatCPfju2kpWKBgSVDFFvRyVXuPddH5wJwLYUzWKckkanwBIVJkggdLPe1z8UGIydiv-P1gQ-HYjSSjxujvoImrLYHroHrpkynWheYZtYnP8sUS31N4jAzTDmko3sp4nKDTIV_cCicqchW0h1EukFQ-WSXKz1bh3TCmV2cU_adjzZs-2N-6e-DvaYwhDf1Cx2ALTs9BDtRoGnKIzDoq7KCJs5giGDCmYPhMD1KopcWfiw8RosJrK2ZSxgarNBzVDvRYwvDaHZYzRfTukN3DF76vee7-6QZhZAYwrMqMYVTUljJDeXaI6G49sRGU6yQ5qygSEhqlNPKeoaiGZVGCmGcsYVUReZLphPQms6m9hTAjHNsFVfYeXbkd1TUUl_lWKSZZSRFbcBXgOSm8QkP4yrGeeQLiOQ_oMxJXkPZBni98r32yvjDmtuA-fr54HYdb_gYyJsYyH-LgbP_2OQc7KZBrxLaK-ICtPw3sZdg2yyrt3J-FcPLXwefvS-0Atk-
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+computation+of+dissipative+quantum+systems+with+ensemble+rank+truncation&rft.jtitle=Physical+review+research&rft.au=Gerard+McCaul&rft.au=Kurt+Jacobs&rft.au=Denys+I.+Bondar&rft.date=2021-01-08&rft.pub=American+Physical+Society&rft.eissn=2643-1564&rft.volume=3&rft.issue=1&rft.spage=013017&rft_id=info:doi/10.1103%2FPhysRevResearch.3.013017&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_26b2bbd145e741e6a62923f16c6af0b5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon