Fuzzy ruling between core porosity and petrophysical logs: Subtractive clustering vs. genetic algorithm–pattern search
Porosity, the void portion of reservoir rocks, determines the volume of hydrocarbon accumulation and has a great control on assessment and development of hydrocarbon reservoirs. Accurate determination of porosity from core analysis is highly cost, time, and labor intensive. Therefore, the mission of...
Uložené v:
| Vydané v: | Journal of applied geophysics Ročník 99; s. 35 - 41 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.12.2013
|
| Predmet: | |
| ISSN: | 0926-9851, 1879-1859 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Porosity, the void portion of reservoir rocks, determines the volume of hydrocarbon accumulation and has a great control on assessment and development of hydrocarbon reservoirs. Accurate determination of porosity from core analysis is highly cost, time, and labor intensive. Therefore, the mission of finding an accurate, fast and cheap way of determining porosity is unavoidable. On the other hand, conventional well log data, available in almost all wells contain invaluable implicit information about the porosity. Therefore, an intelligent system can explicate this information. Fuzzy logic is a powerful tool for handling geosciences problem which is associated with uncertainty. However, determination of the best fuzzy formulation is still an issue. This study purposes an improved strategy, called hybrid genetic algorithm–pattern search (GA–PS) technique, against the widely held subtractive clustering (SC) method for setting up fuzzy rules between core porosity and petrophysical logs. Hybrid GA–PS technique is capable of extracting optimal parameters for fuzzy clusters (membership functions) which consequently results in the best fuzzy formulation. Results indicate that GA–PS technique manipulates both mean and variance of Gaussian membership functions contrary to SC that only has a control on mean of Gaussian membership functions. A comparison between hybrid GA–PS technique and SC method confirmed the superiority of GA–PS technique in setting up fuzzy rules. The proposed strategy was successfully applied to one of the Iranian carbonate reservoir rocks.
•Fuzzy logic (FL) method was used for formulating conventional logs to porosity.•Fuzzy rules traditionally were extracted by subtractive clustering (SC) method.•FL model was optimized by hybrid genetic algorithm-pattern search (GA–PS) technique.•Comparison between GA–PS and SC methods showed superiority of GA–PS. |
|---|---|
| AbstractList | Porosity, the void portion of reservoir rocks, determines the volume of hydrocarbon accumulation and has a great control on assessment and development of hydrocarbon reservoirs. Accurate determination of porosity from core analysis is highly cost, time, and labor intensive. Therefore, the mission of finding an accurate, fast and cheap way of determining porosity is unavoidable. On the other hand, conventional well log data, available in almost all wells contain invaluable implicit information about the porosity. Therefore, an intelligent system can explicate this information. Fuzzy logic is a powerful tool for handling geosciences problem which is associated with uncertainty. However, determination of the best fuzzy formulation is still an issue. This study purposes an improved strategy, called hybrid genetic algorithm-pattern search (GA-PS) technique, against the widely held subtractive clustering (SC) method for setting up fuzzy rules between core porosity and petrophysical logs. Hybrid GA-PS technique is capable of extracting optimal parameters for fuzzy clusters (membership functions) which consequently results in the best fuzzy formulation. Results indicate that GA-PS technique manipulates both mean and variance of Gaussian membership functions contrary to SC that only has a control on mean of Gaussian membership functions. A comparison between hybrid GA-PS technique and SC method confirmed the superiority of GA-PS technique in setting up fuzzy rules. The proposed strategy was successfully applied to one of the Iranian carbonate reservoir rocks. Porosity, the void portion of reservoir rocks, determines the volume of hydrocarbon accumulation and has a great control on assessment and development of hydrocarbon reservoirs. Accurate determination of porosity from core analysis is highly cost, time, and labor intensive. Therefore, the mission of finding an accurate, fast and cheap way of determining porosity is unavoidable. On the other hand, conventional well log data, available in almost all wells contain invaluable implicit information about the porosity. Therefore, an intelligent system can explicate this information. Fuzzy logic is a powerful tool for handling geosciences problem which is associated with uncertainty. However, determination of the best fuzzy formulation is still an issue. This study purposes an improved strategy, called hybrid genetic algorithm–pattern search (GA–PS) technique, against the widely held subtractive clustering (SC) method for setting up fuzzy rules between core porosity and petrophysical logs. Hybrid GA–PS technique is capable of extracting optimal parameters for fuzzy clusters (membership functions) which consequently results in the best fuzzy formulation. Results indicate that GA–PS technique manipulates both mean and variance of Gaussian membership functions contrary to SC that only has a control on mean of Gaussian membership functions. A comparison between hybrid GA–PS technique and SC method confirmed the superiority of GA–PS technique in setting up fuzzy rules. The proposed strategy was successfully applied to one of the Iranian carbonate reservoir rocks. •Fuzzy logic (FL) method was used for formulating conventional logs to porosity.•Fuzzy rules traditionally were extracted by subtractive clustering (SC) method.•FL model was optimized by hybrid genetic algorithm-pattern search (GA–PS) technique.•Comparison between GA–PS and SC methods showed superiority of GA–PS. |
| Author | Asoodeh, Mojtaba Bagheripour, Parisa |
| Author_xml | – sequence: 1 givenname: Parisa surname: Bagheripour fullname: Bagheripour, Parisa – sequence: 2 givenname: Mojtaba surname: Asoodeh fullname: Asoodeh, Mojtaba email: asoodeh.mojtaba@gmail.com |
| BookMark | eNqFkbGO1DAURS20SMwufAKSS5oEO3ESGwqEViwgrUQB1Jbz8pLxKGMH2xmYrfgH_pAvwaPZimaq25x7i3uuyZXzDgl5yVnJGW9f78qdWZYJfVkxXpdMlYyLJ2TDZacKLht1RTZMVW2hZMOfkesYd4xlkokN-XW3PjwcaVhn6ybaY_qJ6Cj4gHTxwUebjtS4gS6Ygl-2x2jBzHT2U3xDv659CgaSPSCFeY0Jw2nkEEs6ocNkgZp58sGm7f7v7z-LSZlwNKIJsH1Ono5mjvjiMW_I97sP324_FfdfPn6-fX9fQN01qQA2tEy2nTDCMKx6WbEaGl6Z0XSCQW9EXyNIaFvZ9FzWg5ENcGNGNYyKK6xvyKvz7hL8jxVj0nsbAefZOPRr1LwVVX5CSnEZbSpRK1GxLqPNGYX8UQw46iXYvQlHzZk-SdE7_ShFn6RopnSWkntv_-uBTSZZ7_KTdr7YfnduYz7sYDHoCBYd4GADQtKDtxcW_gHTt7JJ |
| CitedBy_id | crossref_primary_10_1016_j_petrol_2014_08_025 crossref_primary_10_1016_j_jafrearsci_2022_104732 crossref_primary_10_1007_s11269_024_03734_x crossref_primary_10_1016_j_fuel_2016_05_009 crossref_primary_10_1016_j_ijsrc_2022_08_001 crossref_primary_10_1016_j_jngse_2020_103493 crossref_primary_10_1007_s00521_015_1992_y crossref_primary_10_1016_j_apenergy_2020_115407 crossref_primary_10_1016_j_jappgeo_2018_04_023 crossref_primary_10_1016_j_jappgeo_2014_02_002 crossref_primary_10_1515_acgeo_2016_0099 crossref_primary_10_1016_j_geoen_2023_211933 crossref_primary_10_3390_w11071461 crossref_primary_10_1016_j_jafrearsci_2016_11_016 crossref_primary_10_1002_cjce_22265 crossref_primary_10_1016_j_marpetgeo_2018_03_004 crossref_primary_10_1177_1550147719877612 crossref_primary_10_1016_j_petrol_2017_03_013 crossref_primary_10_1016_j_jappgeo_2014_05_014 crossref_primary_10_1007_s11053_025_10499_6 crossref_primary_10_1016_j_jappgeo_2014_05_009 crossref_primary_10_1016_j_matcom_2015_01_008 |
| Cites_doi | 10.1109/TSMC.1985.6313399 10.2118/62415-JPT 10.1016/S0020-7373(75)80002-2 10.1088/1742-2132/3/4/007 10.1090/S0025-5718-97-00777-1 10.1190/1.1487080 10.1109/91.928739 10.2478/s13533-012-0129-4 10.1007/s00603-011-0181-2 10.1016/S0920-4105(00)00037-1 10.1016/j.petrol.2012.04.021 10.1046/j.1365-2478.2001.00271.x 10.1016/S0004-3702(01)00141-2 10.1016/j.jappgeo.2013.06.006 10.2118/93269-MS 10.1016/S0019-9958(65)90241-X |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier B.V. |
| Copyright_xml | – notice: 2013 Elsevier B.V. |
| DBID | AAYXX CITATION 7TN F1W H96 L.G 7SC 8FD H8D JQ2 L7M L~C L~D |
| DOI | 10.1016/j.jappgeo.2013.09.014 |
| DatabaseName | CrossRef Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1859 |
| EndPage | 41 |
| ExternalDocumentID | 10_1016_j_jappgeo_2013_09_014 S0926985113002139 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSZ T5K VH1 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TN F1W H96 L.G 7SC 8FD H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c375t-c0d608674a4a0e2b8203c512afa740cba4b3ec8c6685b183da85c1aaf9df919e3 |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329275400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-9851 |
| IngestDate | Wed Oct 01 14:35:39 EDT 2025 Thu Oct 02 20:23:32 EDT 2025 Tue Nov 18 20:52:01 EST 2025 Sat Nov 29 05:06:42 EST 2025 Fri Feb 23 02:30:09 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fuzzy logic Core porosity Genetic algorithm–pattern search Carbonate reservoir rocks Subtractive clustering Optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c375t-c0d608674a4a0e2b8203c512afa740cba4b3ec8c6685b183da85c1aaf9df919e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1524394207 |
| PQPubID | 23462 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_1642304884 proquest_miscellaneous_1524394207 crossref_primary_10_1016_j_jappgeo_2013_09_014 crossref_citationtrail_10_1016_j_jappgeo_2013_09_014 elsevier_sciencedirect_doi_10_1016_j_jappgeo_2013_09_014 |
| PublicationCentury | 2000 |
| PublicationDate | December 2013 2013-12-00 20131201 |
| PublicationDateYYYYMMDD | 2013-12-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: December 2013 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of applied geophysics |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Leiphart, Hart (bb0100) 2001; 66 Asoodeh, Bagheripour (bb0035) 2012; 90–91 MATLAB user's guide (bb0110) 2011 Surmann, Selenschtschikow (bb0130) 2002 Bradley (bb0045) 1992 Mohaghegh (bb0115) 2000; 52 Ahmadi, Shadizadeh (bb0005) 2012 Taghavi (bb0135) 2005 Al-Qahtani (bb0010) 2000 Darling (bb0060) 2005 Holland (bb0080) 1975 Asoodeh, Bagheripour (bb0030) 2012; 45 Avarjani, Mahboobi, Herami (bb0040) 2011; 5 Priyono, Ridwan, Jais (bb0120) 2005; 43 Bataineh, Naji, Saqer (bb0050) 2011; 5 Conn, Gould, Toint (bb0055) 1997; 66 Kadkhodaei-Illkchi, Rezaee, Moallemi (bb0095) 2006; 3 Asoodeh, Bagheripour (bb0020) 2013; 96 Helle, Bhatt, Ursin (bb0075) 2001; 49 Jamialahmadi, Javadpour (bb0085) 2000; 26 Mamdani, Assilian (bb0105) 1975; 7 Takagi, Sugeno (bb0140) 1985; 15 Guillaume (bb0070) 2001; 9 Asoodeh, Bagheripour (bb0015) 2013; 63 Shahvar, Kharrat (bb0125) 2009 Asoodeh, Bagheripour (bb0025) 2013; 5 Zadeh (bb0145) 1965; 8 Jarrah, Halawani (bb0090) 2001; 133 Ghafoori, Roostaeian, Sajjadian (bb0065) 2008 Helle (10.1016/j.jappgeo.2013.09.014_bb0075) 2001; 49 Jamialahmadi (10.1016/j.jappgeo.2013.09.014_bb0085) 2000; 26 Kadkhodaei-Illkchi (10.1016/j.jappgeo.2013.09.014_bb0095) 2006; 3 Surmann (10.1016/j.jappgeo.2013.09.014_bb0130) 2002 Takagi (10.1016/j.jappgeo.2013.09.014_bb0140) 1985; 15 Bradley (10.1016/j.jappgeo.2013.09.014_bb0045) 1992 Jarrah (10.1016/j.jappgeo.2013.09.014_bb0090) 2001; 133 Ahmadi (10.1016/j.jappgeo.2013.09.014_bb0005) 2012 Asoodeh (10.1016/j.jappgeo.2013.09.014_bb0025) 2013; 5 Mohaghegh (10.1016/j.jappgeo.2013.09.014_bb0115) 2000; 52 MATLAB user's guide (10.1016/j.jappgeo.2013.09.014_bb0110) 2011 Asoodeh (10.1016/j.jappgeo.2013.09.014_bb0030) 2012; 45 Zadeh (10.1016/j.jappgeo.2013.09.014_bb0145) 1965; 8 Leiphart (10.1016/j.jappgeo.2013.09.014_bb0100) 2001; 66 Taghavi (10.1016/j.jappgeo.2013.09.014_bb0135) 2005 Conn (10.1016/j.jappgeo.2013.09.014_bb0055) 1997; 66 Priyono (10.1016/j.jappgeo.2013.09.014_bb0120) 2005; 43 Al-Qahtani (10.1016/j.jappgeo.2013.09.014_bb0010) 2000 Asoodeh (10.1016/j.jappgeo.2013.09.014_bb0015) 2013; 63 Darling (10.1016/j.jappgeo.2013.09.014_bb0060) 2005 Bataineh (10.1016/j.jappgeo.2013.09.014_bb0050) 2011; 5 Avarjani (10.1016/j.jappgeo.2013.09.014_bb0040) 2011; 5 Shahvar (10.1016/j.jappgeo.2013.09.014_bb0125) 2009 Asoodeh (10.1016/j.jappgeo.2013.09.014_bb0020) 2013; 96 Ghafoori (10.1016/j.jappgeo.2013.09.014_bb0065) 2008 Mamdani (10.1016/j.jappgeo.2013.09.014_bb0105) 1975; 7 Holland (10.1016/j.jappgeo.2013.09.014_bb0080) 1975 Asoodeh (10.1016/j.jappgeo.2013.09.014_bb0035) 2012; 90–91 Guillaume (10.1016/j.jappgeo.2013.09.014_bb0070) 2001; 9 |
| References_xml | – volume: 90–91 start-page: 1 year: 2012 end-page: 11 ident: bb0035 article-title: Estimation of bubble point pressure from PVT data using a power-law committee with intelligent systems publication-title: J. Pet. Sci. Eng. – start-page: 1 year: 2000 end-page: 3 ident: bb0010 article-title: Porosity Distribution Prediction Using Artificial Neural Networks – volume: 66 start-page: 1349 year: 2001 end-page: 1358 ident: bb0100 article-title: Comparison of linear regression and a probabilistic neural network to predict porosity from 3D seismic attributes in Lower Brushy Canyon channeled sandstones, southeast New Mexico publication-title: Geophysics – volume: 26 start-page: 235 year: 2000 end-page: 239 ident: bb0085 article-title: Relationship of permeability, porosity and depth using an artificial neural network publication-title: J. Pet. Sci. Eng. – year: 2009 ident: bb0125 publication-title: Incorporating Fuzzy Logic and Artificial Neural Networks for Building a Hydraulic Unit-Based Model for Permeability Prediction of a Heterogeneous Carbonate Reservoir – volume: 52 start-page: 82 year: 2000 end-page: 87 ident: bb0115 article-title: Virtual-intelligence applications in petroleum engineering: part 3—fuzzy logic publication-title: J. Pet. Technol. – volume: 133 start-page: 117 year: 2001 end-page: 138 ident: bb0090 article-title: Recognition of gestures in Arabic sign language using neuro-fuzzy systems publication-title: Artif. Intell. – volume: 96 start-page: 7 year: 2013 end-page: 10 ident: bb0020 article-title: Fuzzy classifier based support vector regression framework for Poisson ratio determination publication-title: J. Appl. Geophys. – volume: 5 start-page: 335 year: 2011 end-page: 343 ident: bb0050 article-title: A comparison study between various fuzzy clustering algorithms publication-title: JJMIE – volume: 66 start-page: 261 year: 1997 end-page: 288 ident: bb0055 article-title: A globally convergent augmented Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds publication-title: Math. Comput. – start-page: 183 year: 1975 ident: bb0080 article-title: Adaptation in Natural and Artificial Systems – volume: 5 start-page: 45 year: 2011 end-page: 60 ident: bb0040 article-title: Lithofacies, sedimentary environment and sequence stratigraphy of Oligo-Miocene soils (Asmari Formation) in Kupal oil field, Dezful embayment publication-title: Iran. Geol. Mag. – volume: 5 start-page: 272 year: 2013 end-page: 284 ident: bb0025 article-title: Neuro-fuzzy reaping of shear wave velocity correlations derived by hybrid genetic algorithm–pattern search technique publication-title: Cent. Eur. J. Geosci. – volume: 9 start-page: 426 year: 2001 end-page: 444 ident: bb0070 article-title: Designing fuzzy inference systems from data: an interpretability-oriented review publication-title: IEEE Trans. Fuzzy Syst. – volume: 63 start-page: 11 year: 2013 end-page: 15 ident: bb0015 article-title: Core porosity estimation through different training approaches for neural network: back-propagation learning vs. genetic algorithm publication-title: Int. J. Comput. Appl. – volume: 43 start-page: 143 year: 2005 end-page: 153 ident: bb0120 article-title: Generation of fuzzy rules with subtractive clustering publication-title: J. Technol. – year: 2005 ident: bb0135 article-title: Improved Permeability Estimation through Use of Fuzzy Logic in a Carbonate Reservoir from Southwest Iran – volume: 15 start-page: 116 year: 1985 end-page: 132 ident: bb0140 article-title: Identification of systems and its application to modeling and control publication-title: IEEE Trans. Syst. Man Cybern. – year: 2011 ident: bb0110 article-title: Fuzzy Logic, Neural Network & GA and Direct Search Toolboxes, MATLAB CD-ROM, by the Mathworks, Inc – year: 2012 ident: bb0005 article-title: Intelligent approach for prediction of minimum miscible pressure by evolving genetic algorithm and neural network publication-title: Neural Computing and Applications – volume: 45 start-page: 45 year: 2012 end-page: 63 ident: bb0030 article-title: Prediction of compressional, shear, and Stoneley wave velocities from conventional well log data using a committee machine with intelligent systems publication-title: Rock Mech. Rock. Eng. – start-page: 326 year: 2005 ident: bb0060 publication-title: Well Logging and Formation Evaluation – start-page: 75 year: 2002 ident: bb0130 publication-title: Automatic Generation of Fuzzy Logic Rule Bases: Examples I – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: bb0145 article-title: Fuzzy sets publication-title: Inf. Control. – year: 1992 ident: bb0045 article-title: Petroleum Engineering Handbook – volume: 7 start-page: 1 year: 1975 end-page: 13 ident: bb0105 article-title: An experimental in linguistic synthesis with a fuzzy logic control publication-title: Int. J. Man Mach. Stud. – year: 2008 ident: bb0065 article-title: A state-of-the-art permeability modeling using fuzzy logic in a heterogeneous carbonate (an Iranian carbonate reservoir case study) publication-title: Paper IPTC 12019 Presented at the International Petroleum Technology Conference Held in Kula Lumpur, Malaysia – volume: 49 start-page: 431 year: 2001 end-page: 444 ident: bb0075 article-title: Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study publication-title: Geophys. Prospect. – volume: 3 start-page: 356 year: 2006 end-page: 369 ident: bb0095 article-title: A fuzzy logic approach for the estimation of permeability and rock types from conventional well log data: an example from Kangan reservoir in Iran Offshore Gas Field publication-title: J. Geophys. Eng. – year: 2009 ident: 10.1016/j.jappgeo.2013.09.014_bb0125 – volume: 15 start-page: 116 year: 1985 ident: 10.1016/j.jappgeo.2013.09.014_bb0140 article-title: Identification of systems and its application to modeling and control publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1985.6313399 – volume: 52 start-page: 82 year: 2000 ident: 10.1016/j.jappgeo.2013.09.014_bb0115 article-title: Virtual-intelligence applications in petroleum engineering: part 3—fuzzy logic publication-title: J. Pet. Technol. doi: 10.2118/62415-JPT – volume: 7 start-page: 1 year: 1975 ident: 10.1016/j.jappgeo.2013.09.014_bb0105 article-title: An experimental in linguistic synthesis with a fuzzy logic control publication-title: Int. J. Man Mach. Stud. doi: 10.1016/S0020-7373(75)80002-2 – volume: 3 start-page: 356 year: 2006 ident: 10.1016/j.jappgeo.2013.09.014_bb0095 article-title: A fuzzy logic approach for the estimation of permeability and rock types from conventional well log data: an example from Kangan reservoir in Iran Offshore Gas Field publication-title: J. Geophys. Eng. doi: 10.1088/1742-2132/3/4/007 – volume: 66 start-page: 261 issue: 217 year: 1997 ident: 10.1016/j.jappgeo.2013.09.014_bb0055 article-title: A globally convergent augmented Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds publication-title: Math. Comput. doi: 10.1090/S0025-5718-97-00777-1 – volume: 66 start-page: 1349 issue: 5 year: 2001 ident: 10.1016/j.jappgeo.2013.09.014_bb0100 article-title: Comparison of linear regression and a probabilistic neural network to predict porosity from 3D seismic attributes in Lower Brushy Canyon channeled sandstones, southeast New Mexico publication-title: Geophysics doi: 10.1190/1.1487080 – volume: 9 start-page: 426 issue: 3 year: 2001 ident: 10.1016/j.jappgeo.2013.09.014_bb0070 article-title: Designing fuzzy inference systems from data: an interpretability-oriented review publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.928739 – volume: 5 start-page: 272 issue: 2 year: 2013 ident: 10.1016/j.jappgeo.2013.09.014_bb0025 article-title: Neuro-fuzzy reaping of shear wave velocity correlations derived by hybrid genetic algorithm–pattern search technique publication-title: Cent. Eur. J. Geosci. doi: 10.2478/s13533-012-0129-4 – volume: 45 start-page: 45 year: 2012 ident: 10.1016/j.jappgeo.2013.09.014_bb0030 article-title: Prediction of compressional, shear, and Stoneley wave velocities from conventional well log data using a committee machine with intelligent systems publication-title: Rock Mech. Rock. Eng. doi: 10.1007/s00603-011-0181-2 – volume: 5 start-page: 335 issue: 4 year: 2011 ident: 10.1016/j.jappgeo.2013.09.014_bb0050 article-title: A comparison study between various fuzzy clustering algorithms publication-title: JJMIE – volume: 26 start-page: 235 year: 2000 ident: 10.1016/j.jappgeo.2013.09.014_bb0085 article-title: Relationship of permeability, porosity and depth using an artificial neural network publication-title: J. Pet. Sci. Eng. doi: 10.1016/S0920-4105(00)00037-1 – volume: 90–91 start-page: 1 year: 2012 ident: 10.1016/j.jappgeo.2013.09.014_bb0035 article-title: Estimation of bubble point pressure from PVT data using a power-law committee with intelligent systems publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2012.04.021 – year: 2012 ident: 10.1016/j.jappgeo.2013.09.014_bb0005 article-title: Intelligent approach for prediction of minimum miscible pressure by evolving genetic algorithm and neural network – start-page: 1 year: 2000 ident: 10.1016/j.jappgeo.2013.09.014_bb0010 – volume: 49 start-page: 431 year: 2001 ident: 10.1016/j.jappgeo.2013.09.014_bb0075 article-title: Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study publication-title: Geophys. Prospect. doi: 10.1046/j.1365-2478.2001.00271.x – volume: 43 start-page: 143 year: 2005 ident: 10.1016/j.jappgeo.2013.09.014_bb0120 article-title: Generation of fuzzy rules with subtractive clustering publication-title: J. Technol. – volume: 63 start-page: 11 issue: 5 year: 2013 ident: 10.1016/j.jappgeo.2013.09.014_bb0015 article-title: Core porosity estimation through different training approaches for neural network: back-propagation learning vs. genetic algorithm publication-title: Int. J. Comput. Appl. – start-page: 326 year: 2005 ident: 10.1016/j.jappgeo.2013.09.014_bb0060 – volume: 133 start-page: 117 year: 2001 ident: 10.1016/j.jappgeo.2013.09.014_bb0090 article-title: Recognition of gestures in Arabic sign language using neuro-fuzzy systems publication-title: Artif. Intell. doi: 10.1016/S0004-3702(01)00141-2 – year: 2008 ident: 10.1016/j.jappgeo.2013.09.014_bb0065 article-title: A state-of-the-art permeability modeling using fuzzy logic in a heterogeneous carbonate (an Iranian carbonate reservoir case study) – volume: 96 start-page: 7 year: 2013 ident: 10.1016/j.jappgeo.2013.09.014_bb0020 article-title: Fuzzy classifier based support vector regression framework for Poisson ratio determination publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2013.06.006 – start-page: 183 year: 1975 ident: 10.1016/j.jappgeo.2013.09.014_bb0080 – year: 2005 ident: 10.1016/j.jappgeo.2013.09.014_bb0135 article-title: Improved Permeability Estimation through Use of Fuzzy Logic in a Carbonate Reservoir from Southwest Iran doi: 10.2118/93269-MS – volume: 8 start-page: 338 year: 1965 ident: 10.1016/j.jappgeo.2013.09.014_bb0145 article-title: Fuzzy sets publication-title: Inf. Control. doi: 10.1016/S0019-9958(65)90241-X – volume: 5 start-page: 45 issue: 19 year: 2011 ident: 10.1016/j.jappgeo.2013.09.014_bb0040 article-title: Lithofacies, sedimentary environment and sequence stratigraphy of Oligo-Miocene soils (Asmari Formation) in Kupal oil field, Dezful embayment publication-title: Iran. Geol. Mag. – year: 1992 ident: 10.1016/j.jappgeo.2013.09.014_bb0045 – start-page: 75 year: 2002 ident: 10.1016/j.jappgeo.2013.09.014_bb0130 – year: 2011 ident: 10.1016/j.jappgeo.2013.09.014_bb0110 |
| SSID | ssj0001304 |
| Score | 2.1508787 |
| Snippet | Porosity, the void portion of reservoir rocks, determines the volume of hydrocarbon accumulation and has a great control on assessment and development of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 35 |
| SubjectTerms | Algorithms Carbonate reservoir rocks Core porosity Fuzzy Fuzzy logic Fuzzy set theory Genetic algorithm–pattern search Logs Optimization Porosity Reservoirs Searching Subtractive clustering |
| Title | Fuzzy ruling between core porosity and petrophysical logs: Subtractive clustering vs. genetic algorithm–pattern search |
| URI | https://dx.doi.org/10.1016/j.jappgeo.2013.09.014 https://www.proquest.com/docview/1524394207 https://www.proquest.com/docview/1642304884 |
| Volume | 99 |
| WOSCitedRecordID | wos000329275400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1859 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001304 issn: 0926-9851 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLQc4IJ6ivLRI3CIH2-vHLrcKtQIEFYci5Wat1-uQKNiWY0dpTz1z5R_yS5h92HFbaOmBixVZ3s0682Xm83jmW4Rek5BwmuW-4zOVrYpy4aQ5dYHIcUCMYIRz3Sj8KT46otMp-zIa_eh6YdbLuCjoZsOq_2pqOAfGVq2zNzB3PymcgM9gdDiC2eH4T4Y_bE9PT8Z1q_vMuzIsJVY5Bqpd6hIMLQ4gm7qsOiuBB9S1ceBHGt03tZZjsWyVioKaZr2aqL2WpVZ3Xc7Ket58-97VSZBKa3QW40Fi7DLd5ZbuzqT91m1-nqtSk3kF1xpOq3R_eyCuyjKTOvfzuVw0POXDPIVHBjUfNuHoRw6jVl7W-l6zOZJ1nka3xIZhI4d1ycGbXMNisoBVz3T3pke0UK1pRT0vqH0h0PXlh11l2yKx0yRqmsRliav2RN_145CBz9zd_3Aw_djHdYj2Woysu49tP9ibP67nb0znQszXROb4HrprTYL3DXLuo5EsHqA7A13Kh2ijMYQNhrDFEFYYwh2GMGAIn8MQVhh6iwcIwlsEYUAQtgjCPYJ-nf202MEGO4_Q18OD43fvHbtFhyNIHDaOcLMIHorjgAfclX4KfJII4JA853HgipQHKZGCiiiiYQrRI-M0FB7nOcty5jFJHqOdoizkE4R9wXwZeAIecUkA06bETbnHcy_zhJvm2R4Kup8zEVa_Xm2jskyuNOcemvTDKiPgct0A2tkqsSzUsMsEMHjd0FedbRPw0urVGy9k2a4SYMmqBd134yuuiQL1hobS4OlN1_wM3d7-5Z6jnaZu5Qt0S6yb-ap-aYH8G6LszHc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+ruling+between+core+porosity+and+petrophysical+logs%3A+Subtractive+clustering+vs.+genetic+algorithm%E2%80%93pattern+search&rft.jtitle=Journal+of+applied+geophysics&rft.au=Bagheripour%2C+Parisa&rft.au=Asoodeh%2C+Mojtaba&rft.date=2013-12-01&rft.issn=0926-9851&rft.volume=99&rft.spage=35&rft.epage=41&rft_id=info:doi/10.1016%2Fj.jappgeo.2013.09.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jappgeo_2013_09_014 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon |