Fuzzy ruling between core porosity and petrophysical logs: Subtractive clustering vs. genetic algorithm–pattern search

Porosity, the void portion of reservoir rocks, determines the volume of hydrocarbon accumulation and has a great control on assessment and development of hydrocarbon reservoirs. Accurate determination of porosity from core analysis is highly cost, time, and labor intensive. Therefore, the mission of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of applied geophysics Ročník 99; s. 35 - 41
Hlavní autori: Bagheripour, Parisa, Asoodeh, Mojtaba
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.12.2013
Predmet:
ISSN:0926-9851, 1879-1859
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Porosity, the void portion of reservoir rocks, determines the volume of hydrocarbon accumulation and has a great control on assessment and development of hydrocarbon reservoirs. Accurate determination of porosity from core analysis is highly cost, time, and labor intensive. Therefore, the mission of finding an accurate, fast and cheap way of determining porosity is unavoidable. On the other hand, conventional well log data, available in almost all wells contain invaluable implicit information about the porosity. Therefore, an intelligent system can explicate this information. Fuzzy logic is a powerful tool for handling geosciences problem which is associated with uncertainty. However, determination of the best fuzzy formulation is still an issue. This study purposes an improved strategy, called hybrid genetic algorithm–pattern search (GA–PS) technique, against the widely held subtractive clustering (SC) method for setting up fuzzy rules between core porosity and petrophysical logs. Hybrid GA–PS technique is capable of extracting optimal parameters for fuzzy clusters (membership functions) which consequently results in the best fuzzy formulation. Results indicate that GA–PS technique manipulates both mean and variance of Gaussian membership functions contrary to SC that only has a control on mean of Gaussian membership functions. A comparison between hybrid GA–PS technique and SC method confirmed the superiority of GA–PS technique in setting up fuzzy rules. The proposed strategy was successfully applied to one of the Iranian carbonate reservoir rocks. •Fuzzy logic (FL) method was used for formulating conventional logs to porosity.•Fuzzy rules traditionally were extracted by subtractive clustering (SC) method.•FL model was optimized by hybrid genetic algorithm-pattern search (GA–PS) technique.•Comparison between GA–PS and SC methods showed superiority of GA–PS.
AbstractList Porosity, the void portion of reservoir rocks, determines the volume of hydrocarbon accumulation and has a great control on assessment and development of hydrocarbon reservoirs. Accurate determination of porosity from core analysis is highly cost, time, and labor intensive. Therefore, the mission of finding an accurate, fast and cheap way of determining porosity is unavoidable. On the other hand, conventional well log data, available in almost all wells contain invaluable implicit information about the porosity. Therefore, an intelligent system can explicate this information. Fuzzy logic is a powerful tool for handling geosciences problem which is associated with uncertainty. However, determination of the best fuzzy formulation is still an issue. This study purposes an improved strategy, called hybrid genetic algorithm-pattern search (GA-PS) technique, against the widely held subtractive clustering (SC) method for setting up fuzzy rules between core porosity and petrophysical logs. Hybrid GA-PS technique is capable of extracting optimal parameters for fuzzy clusters (membership functions) which consequently results in the best fuzzy formulation. Results indicate that GA-PS technique manipulates both mean and variance of Gaussian membership functions contrary to SC that only has a control on mean of Gaussian membership functions. A comparison between hybrid GA-PS technique and SC method confirmed the superiority of GA-PS technique in setting up fuzzy rules. The proposed strategy was successfully applied to one of the Iranian carbonate reservoir rocks.
Porosity, the void portion of reservoir rocks, determines the volume of hydrocarbon accumulation and has a great control on assessment and development of hydrocarbon reservoirs. Accurate determination of porosity from core analysis is highly cost, time, and labor intensive. Therefore, the mission of finding an accurate, fast and cheap way of determining porosity is unavoidable. On the other hand, conventional well log data, available in almost all wells contain invaluable implicit information about the porosity. Therefore, an intelligent system can explicate this information. Fuzzy logic is a powerful tool for handling geosciences problem which is associated with uncertainty. However, determination of the best fuzzy formulation is still an issue. This study purposes an improved strategy, called hybrid genetic algorithm–pattern search (GA–PS) technique, against the widely held subtractive clustering (SC) method for setting up fuzzy rules between core porosity and petrophysical logs. Hybrid GA–PS technique is capable of extracting optimal parameters for fuzzy clusters (membership functions) which consequently results in the best fuzzy formulation. Results indicate that GA–PS technique manipulates both mean and variance of Gaussian membership functions contrary to SC that only has a control on mean of Gaussian membership functions. A comparison between hybrid GA–PS technique and SC method confirmed the superiority of GA–PS technique in setting up fuzzy rules. The proposed strategy was successfully applied to one of the Iranian carbonate reservoir rocks. •Fuzzy logic (FL) method was used for formulating conventional logs to porosity.•Fuzzy rules traditionally were extracted by subtractive clustering (SC) method.•FL model was optimized by hybrid genetic algorithm-pattern search (GA–PS) technique.•Comparison between GA–PS and SC methods showed superiority of GA–PS.
Author Asoodeh, Mojtaba
Bagheripour, Parisa
Author_xml – sequence: 1
  givenname: Parisa
  surname: Bagheripour
  fullname: Bagheripour, Parisa
– sequence: 2
  givenname: Mojtaba
  surname: Asoodeh
  fullname: Asoodeh, Mojtaba
  email: asoodeh.mojtaba@gmail.com
BookMark eNqFkbGO1DAURS20SMwufAKSS5oEO3ESGwqEViwgrUQB1Jbz8pLxKGMH2xmYrfgH_pAvwaPZimaq25x7i3uuyZXzDgl5yVnJGW9f78qdWZYJfVkxXpdMlYyLJ2TDZacKLht1RTZMVW2hZMOfkesYd4xlkokN-XW3PjwcaVhn6ybaY_qJ6Cj4gHTxwUebjtS4gS6Ygl-2x2jBzHT2U3xDv659CgaSPSCFeY0Jw2nkEEs6ocNkgZp58sGm7f7v7z-LSZlwNKIJsH1Ono5mjvjiMW_I97sP324_FfdfPn6-fX9fQN01qQA2tEy2nTDCMKx6WbEaGl6Z0XSCQW9EXyNIaFvZ9FzWg5ENcGNGNYyKK6xvyKvz7hL8jxVj0nsbAefZOPRr1LwVVX5CSnEZbSpRK1GxLqPNGYX8UQw46iXYvQlHzZk-SdE7_ShFn6RopnSWkntv_-uBTSZZ7_KTdr7YfnduYz7sYDHoCBYd4GADQtKDtxcW_gHTt7JJ
CitedBy_id crossref_primary_10_1016_j_petrol_2014_08_025
crossref_primary_10_1016_j_jafrearsci_2022_104732
crossref_primary_10_1007_s11269_024_03734_x
crossref_primary_10_1016_j_fuel_2016_05_009
crossref_primary_10_1016_j_ijsrc_2022_08_001
crossref_primary_10_1016_j_jngse_2020_103493
crossref_primary_10_1007_s00521_015_1992_y
crossref_primary_10_1016_j_apenergy_2020_115407
crossref_primary_10_1016_j_jappgeo_2018_04_023
crossref_primary_10_1016_j_jappgeo_2014_02_002
crossref_primary_10_1515_acgeo_2016_0099
crossref_primary_10_1016_j_geoen_2023_211933
crossref_primary_10_3390_w11071461
crossref_primary_10_1016_j_jafrearsci_2016_11_016
crossref_primary_10_1002_cjce_22265
crossref_primary_10_1016_j_marpetgeo_2018_03_004
crossref_primary_10_1177_1550147719877612
crossref_primary_10_1016_j_petrol_2017_03_013
crossref_primary_10_1016_j_jappgeo_2014_05_014
crossref_primary_10_1007_s11053_025_10499_6
crossref_primary_10_1016_j_jappgeo_2014_05_009
crossref_primary_10_1016_j_matcom_2015_01_008
Cites_doi 10.1109/TSMC.1985.6313399
10.2118/62415-JPT
10.1016/S0020-7373(75)80002-2
10.1088/1742-2132/3/4/007
10.1090/S0025-5718-97-00777-1
10.1190/1.1487080
10.1109/91.928739
10.2478/s13533-012-0129-4
10.1007/s00603-011-0181-2
10.1016/S0920-4105(00)00037-1
10.1016/j.petrol.2012.04.021
10.1046/j.1365-2478.2001.00271.x
10.1016/S0004-3702(01)00141-2
10.1016/j.jappgeo.2013.06.006
10.2118/93269-MS
10.1016/S0019-9958(65)90241-X
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID AAYXX
CITATION
7TN
F1W
H96
L.G
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jappgeo.2013.09.014
DatabaseName CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1859
EndPage 41
ExternalDocumentID 10_1016_j_jappgeo_2013_09_014
S0926985113002139
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TN
F1W
H96
L.G
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c375t-c0d608674a4a0e2b8203c512afa740cba4b3ec8c6685b183da85c1aaf9df919e3
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329275400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-9851
IngestDate Wed Oct 01 14:35:39 EDT 2025
Thu Oct 02 20:23:32 EDT 2025
Tue Nov 18 20:52:01 EST 2025
Sat Nov 29 05:06:42 EST 2025
Fri Feb 23 02:30:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fuzzy logic
Core porosity
Genetic algorithm–pattern search
Carbonate reservoir rocks
Subtractive clustering
Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c375t-c0d608674a4a0e2b8203c512afa740cba4b3ec8c6685b183da85c1aaf9df919e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1524394207
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_1642304884
proquest_miscellaneous_1524394207
crossref_primary_10_1016_j_jappgeo_2013_09_014
crossref_citationtrail_10_1016_j_jappgeo_2013_09_014
elsevier_sciencedirect_doi_10_1016_j_jappgeo_2013_09_014
PublicationCentury 2000
PublicationDate December 2013
2013-12-00
20131201
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: December 2013
PublicationDecade 2010
PublicationTitle Journal of applied geophysics
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Leiphart, Hart (bb0100) 2001; 66
Asoodeh, Bagheripour (bb0035) 2012; 90–91
MATLAB user's guide (bb0110) 2011
Surmann, Selenschtschikow (bb0130) 2002
Bradley (bb0045) 1992
Mohaghegh (bb0115) 2000; 52
Ahmadi, Shadizadeh (bb0005) 2012
Taghavi (bb0135) 2005
Al-Qahtani (bb0010) 2000
Darling (bb0060) 2005
Holland (bb0080) 1975
Asoodeh, Bagheripour (bb0030) 2012; 45
Avarjani, Mahboobi, Herami (bb0040) 2011; 5
Priyono, Ridwan, Jais (bb0120) 2005; 43
Bataineh, Naji, Saqer (bb0050) 2011; 5
Conn, Gould, Toint (bb0055) 1997; 66
Kadkhodaei-Illkchi, Rezaee, Moallemi (bb0095) 2006; 3
Asoodeh, Bagheripour (bb0020) 2013; 96
Helle, Bhatt, Ursin (bb0075) 2001; 49
Jamialahmadi, Javadpour (bb0085) 2000; 26
Mamdani, Assilian (bb0105) 1975; 7
Takagi, Sugeno (bb0140) 1985; 15
Guillaume (bb0070) 2001; 9
Asoodeh, Bagheripour (bb0015) 2013; 63
Shahvar, Kharrat (bb0125) 2009
Asoodeh, Bagheripour (bb0025) 2013; 5
Zadeh (bb0145) 1965; 8
Jarrah, Halawani (bb0090) 2001; 133
Ghafoori, Roostaeian, Sajjadian (bb0065) 2008
Helle (10.1016/j.jappgeo.2013.09.014_bb0075) 2001; 49
Jamialahmadi (10.1016/j.jappgeo.2013.09.014_bb0085) 2000; 26
Kadkhodaei-Illkchi (10.1016/j.jappgeo.2013.09.014_bb0095) 2006; 3
Surmann (10.1016/j.jappgeo.2013.09.014_bb0130) 2002
Takagi (10.1016/j.jappgeo.2013.09.014_bb0140) 1985; 15
Bradley (10.1016/j.jappgeo.2013.09.014_bb0045) 1992
Jarrah (10.1016/j.jappgeo.2013.09.014_bb0090) 2001; 133
Ahmadi (10.1016/j.jappgeo.2013.09.014_bb0005) 2012
Asoodeh (10.1016/j.jappgeo.2013.09.014_bb0025) 2013; 5
Mohaghegh (10.1016/j.jappgeo.2013.09.014_bb0115) 2000; 52
MATLAB user's guide (10.1016/j.jappgeo.2013.09.014_bb0110) 2011
Asoodeh (10.1016/j.jappgeo.2013.09.014_bb0030) 2012; 45
Zadeh (10.1016/j.jappgeo.2013.09.014_bb0145) 1965; 8
Leiphart (10.1016/j.jappgeo.2013.09.014_bb0100) 2001; 66
Taghavi (10.1016/j.jappgeo.2013.09.014_bb0135) 2005
Conn (10.1016/j.jappgeo.2013.09.014_bb0055) 1997; 66
Priyono (10.1016/j.jappgeo.2013.09.014_bb0120) 2005; 43
Al-Qahtani (10.1016/j.jappgeo.2013.09.014_bb0010) 2000
Asoodeh (10.1016/j.jappgeo.2013.09.014_bb0015) 2013; 63
Darling (10.1016/j.jappgeo.2013.09.014_bb0060) 2005
Bataineh (10.1016/j.jappgeo.2013.09.014_bb0050) 2011; 5
Avarjani (10.1016/j.jappgeo.2013.09.014_bb0040) 2011; 5
Shahvar (10.1016/j.jappgeo.2013.09.014_bb0125) 2009
Asoodeh (10.1016/j.jappgeo.2013.09.014_bb0020) 2013; 96
Ghafoori (10.1016/j.jappgeo.2013.09.014_bb0065) 2008
Mamdani (10.1016/j.jappgeo.2013.09.014_bb0105) 1975; 7
Holland (10.1016/j.jappgeo.2013.09.014_bb0080) 1975
Asoodeh (10.1016/j.jappgeo.2013.09.014_bb0035) 2012; 90–91
Guillaume (10.1016/j.jappgeo.2013.09.014_bb0070) 2001; 9
References_xml – volume: 90–91
  start-page: 1
  year: 2012
  end-page: 11
  ident: bb0035
  article-title: Estimation of bubble point pressure from PVT data using a power-law committee with intelligent systems
  publication-title: J. Pet. Sci. Eng.
– start-page: 1
  year: 2000
  end-page: 3
  ident: bb0010
  article-title: Porosity Distribution Prediction Using Artificial Neural Networks
– volume: 66
  start-page: 1349
  year: 2001
  end-page: 1358
  ident: bb0100
  article-title: Comparison of linear regression and a probabilistic neural network to predict porosity from 3D seismic attributes in Lower Brushy Canyon channeled sandstones, southeast New Mexico
  publication-title: Geophysics
– volume: 26
  start-page: 235
  year: 2000
  end-page: 239
  ident: bb0085
  article-title: Relationship of permeability, porosity and depth using an artificial neural network
  publication-title: J. Pet. Sci. Eng.
– year: 2009
  ident: bb0125
  publication-title: Incorporating Fuzzy Logic and Artificial Neural Networks for Building a Hydraulic Unit-Based Model for Permeability Prediction of a Heterogeneous Carbonate Reservoir
– volume: 52
  start-page: 82
  year: 2000
  end-page: 87
  ident: bb0115
  article-title: Virtual-intelligence applications in petroleum engineering: part 3—fuzzy logic
  publication-title: J. Pet. Technol.
– volume: 133
  start-page: 117
  year: 2001
  end-page: 138
  ident: bb0090
  article-title: Recognition of gestures in Arabic sign language using neuro-fuzzy systems
  publication-title: Artif. Intell.
– volume: 96
  start-page: 7
  year: 2013
  end-page: 10
  ident: bb0020
  article-title: Fuzzy classifier based support vector regression framework for Poisson ratio determination
  publication-title: J. Appl. Geophys.
– volume: 5
  start-page: 335
  year: 2011
  end-page: 343
  ident: bb0050
  article-title: A comparison study between various fuzzy clustering algorithms
  publication-title: JJMIE
– volume: 66
  start-page: 261
  year: 1997
  end-page: 288
  ident: bb0055
  article-title: A globally convergent augmented Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds
  publication-title: Math. Comput.
– start-page: 183
  year: 1975
  ident: bb0080
  article-title: Adaptation in Natural and Artificial Systems
– volume: 5
  start-page: 45
  year: 2011
  end-page: 60
  ident: bb0040
  article-title: Lithofacies, sedimentary environment and sequence stratigraphy of Oligo-Miocene soils (Asmari Formation) in Kupal oil field, Dezful embayment
  publication-title: Iran. Geol. Mag.
– volume: 5
  start-page: 272
  year: 2013
  end-page: 284
  ident: bb0025
  article-title: Neuro-fuzzy reaping of shear wave velocity correlations derived by hybrid genetic algorithm–pattern search technique
  publication-title: Cent. Eur. J. Geosci.
– volume: 9
  start-page: 426
  year: 2001
  end-page: 444
  ident: bb0070
  article-title: Designing fuzzy inference systems from data: an interpretability-oriented review
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 63
  start-page: 11
  year: 2013
  end-page: 15
  ident: bb0015
  article-title: Core porosity estimation through different training approaches for neural network: back-propagation learning vs. genetic algorithm
  publication-title: Int. J. Comput. Appl.
– volume: 43
  start-page: 143
  year: 2005
  end-page: 153
  ident: bb0120
  article-title: Generation of fuzzy rules with subtractive clustering
  publication-title: J. Technol.
– year: 2005
  ident: bb0135
  article-title: Improved Permeability Estimation through Use of Fuzzy Logic in a Carbonate Reservoir from Southwest Iran
– volume: 15
  start-page: 116
  year: 1985
  end-page: 132
  ident: bb0140
  article-title: Identification of systems and its application to modeling and control
  publication-title: IEEE Trans. Syst. Man Cybern.
– year: 2011
  ident: bb0110
  article-title: Fuzzy Logic, Neural Network & GA and Direct Search Toolboxes, MATLAB CD-ROM, by the Mathworks, Inc
– year: 2012
  ident: bb0005
  article-title: Intelligent approach for prediction of minimum miscible pressure by evolving genetic algorithm and neural network
  publication-title: Neural Computing and Applications
– volume: 45
  start-page: 45
  year: 2012
  end-page: 63
  ident: bb0030
  article-title: Prediction of compressional, shear, and Stoneley wave velocities from conventional well log data using a committee machine with intelligent systems
  publication-title: Rock Mech. Rock. Eng.
– start-page: 326
  year: 2005
  ident: bb0060
  publication-title: Well Logging and Formation Evaluation
– start-page: 75
  year: 2002
  ident: bb0130
  publication-title: Automatic Generation of Fuzzy Logic Rule Bases: Examples I
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: bb0145
  article-title: Fuzzy sets
  publication-title: Inf. Control.
– year: 1992
  ident: bb0045
  article-title: Petroleum Engineering Handbook
– volume: 7
  start-page: 1
  year: 1975
  end-page: 13
  ident: bb0105
  article-title: An experimental in linguistic synthesis with a fuzzy logic control
  publication-title: Int. J. Man Mach. Stud.
– year: 2008
  ident: bb0065
  article-title: A state-of-the-art permeability modeling using fuzzy logic in a heterogeneous carbonate (an Iranian carbonate reservoir case study)
  publication-title: Paper IPTC 12019 Presented at the International Petroleum Technology Conference Held in Kula Lumpur, Malaysia
– volume: 49
  start-page: 431
  year: 2001
  end-page: 444
  ident: bb0075
  article-title: Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study
  publication-title: Geophys. Prospect.
– volume: 3
  start-page: 356
  year: 2006
  end-page: 369
  ident: bb0095
  article-title: A fuzzy logic approach for the estimation of permeability and rock types from conventional well log data: an example from Kangan reservoir in Iran Offshore Gas Field
  publication-title: J. Geophys. Eng.
– year: 2009
  ident: 10.1016/j.jappgeo.2013.09.014_bb0125
– volume: 15
  start-page: 116
  year: 1985
  ident: 10.1016/j.jappgeo.2013.09.014_bb0140
  article-title: Identification of systems and its application to modeling and control
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1985.6313399
– volume: 52
  start-page: 82
  year: 2000
  ident: 10.1016/j.jappgeo.2013.09.014_bb0115
  article-title: Virtual-intelligence applications in petroleum engineering: part 3—fuzzy logic
  publication-title: J. Pet. Technol.
  doi: 10.2118/62415-JPT
– volume: 7
  start-page: 1
  year: 1975
  ident: 10.1016/j.jappgeo.2013.09.014_bb0105
  article-title: An experimental in linguistic synthesis with a fuzzy logic control
  publication-title: Int. J. Man Mach. Stud.
  doi: 10.1016/S0020-7373(75)80002-2
– volume: 3
  start-page: 356
  year: 2006
  ident: 10.1016/j.jappgeo.2013.09.014_bb0095
  article-title: A fuzzy logic approach for the estimation of permeability and rock types from conventional well log data: an example from Kangan reservoir in Iran Offshore Gas Field
  publication-title: J. Geophys. Eng.
  doi: 10.1088/1742-2132/3/4/007
– volume: 66
  start-page: 261
  issue: 217
  year: 1997
  ident: 10.1016/j.jappgeo.2013.09.014_bb0055
  article-title: A globally convergent augmented Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-97-00777-1
– volume: 66
  start-page: 1349
  issue: 5
  year: 2001
  ident: 10.1016/j.jappgeo.2013.09.014_bb0100
  article-title: Comparison of linear regression and a probabilistic neural network to predict porosity from 3D seismic attributes in Lower Brushy Canyon channeled sandstones, southeast New Mexico
  publication-title: Geophysics
  doi: 10.1190/1.1487080
– volume: 9
  start-page: 426
  issue: 3
  year: 2001
  ident: 10.1016/j.jappgeo.2013.09.014_bb0070
  article-title: Designing fuzzy inference systems from data: an interpretability-oriented review
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.928739
– volume: 5
  start-page: 272
  issue: 2
  year: 2013
  ident: 10.1016/j.jappgeo.2013.09.014_bb0025
  article-title: Neuro-fuzzy reaping of shear wave velocity correlations derived by hybrid genetic algorithm–pattern search technique
  publication-title: Cent. Eur. J. Geosci.
  doi: 10.2478/s13533-012-0129-4
– volume: 45
  start-page: 45
  year: 2012
  ident: 10.1016/j.jappgeo.2013.09.014_bb0030
  article-title: Prediction of compressional, shear, and Stoneley wave velocities from conventional well log data using a committee machine with intelligent systems
  publication-title: Rock Mech. Rock. Eng.
  doi: 10.1007/s00603-011-0181-2
– volume: 5
  start-page: 335
  issue: 4
  year: 2011
  ident: 10.1016/j.jappgeo.2013.09.014_bb0050
  article-title: A comparison study between various fuzzy clustering algorithms
  publication-title: JJMIE
– volume: 26
  start-page: 235
  year: 2000
  ident: 10.1016/j.jappgeo.2013.09.014_bb0085
  article-title: Relationship of permeability, porosity and depth using an artificial neural network
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/S0920-4105(00)00037-1
– volume: 90–91
  start-page: 1
  year: 2012
  ident: 10.1016/j.jappgeo.2013.09.014_bb0035
  article-title: Estimation of bubble point pressure from PVT data using a power-law committee with intelligent systems
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2012.04.021
– year: 2012
  ident: 10.1016/j.jappgeo.2013.09.014_bb0005
  article-title: Intelligent approach for prediction of minimum miscible pressure by evolving genetic algorithm and neural network
– start-page: 1
  year: 2000
  ident: 10.1016/j.jappgeo.2013.09.014_bb0010
– volume: 49
  start-page: 431
  year: 2001
  ident: 10.1016/j.jappgeo.2013.09.014_bb0075
  article-title: Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study
  publication-title: Geophys. Prospect.
  doi: 10.1046/j.1365-2478.2001.00271.x
– volume: 43
  start-page: 143
  year: 2005
  ident: 10.1016/j.jappgeo.2013.09.014_bb0120
  article-title: Generation of fuzzy rules with subtractive clustering
  publication-title: J. Technol.
– volume: 63
  start-page: 11
  issue: 5
  year: 2013
  ident: 10.1016/j.jappgeo.2013.09.014_bb0015
  article-title: Core porosity estimation through different training approaches for neural network: back-propagation learning vs. genetic algorithm
  publication-title: Int. J. Comput. Appl.
– start-page: 326
  year: 2005
  ident: 10.1016/j.jappgeo.2013.09.014_bb0060
– volume: 133
  start-page: 117
  year: 2001
  ident: 10.1016/j.jappgeo.2013.09.014_bb0090
  article-title: Recognition of gestures in Arabic sign language using neuro-fuzzy systems
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(01)00141-2
– year: 2008
  ident: 10.1016/j.jappgeo.2013.09.014_bb0065
  article-title: A state-of-the-art permeability modeling using fuzzy logic in a heterogeneous carbonate (an Iranian carbonate reservoir case study)
– volume: 96
  start-page: 7
  year: 2013
  ident: 10.1016/j.jappgeo.2013.09.014_bb0020
  article-title: Fuzzy classifier based support vector regression framework for Poisson ratio determination
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2013.06.006
– start-page: 183
  year: 1975
  ident: 10.1016/j.jappgeo.2013.09.014_bb0080
– year: 2005
  ident: 10.1016/j.jappgeo.2013.09.014_bb0135
  article-title: Improved Permeability Estimation through Use of Fuzzy Logic in a Carbonate Reservoir from Southwest Iran
  doi: 10.2118/93269-MS
– volume: 8
  start-page: 338
  year: 1965
  ident: 10.1016/j.jappgeo.2013.09.014_bb0145
  article-title: Fuzzy sets
  publication-title: Inf. Control.
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 5
  start-page: 45
  issue: 19
  year: 2011
  ident: 10.1016/j.jappgeo.2013.09.014_bb0040
  article-title: Lithofacies, sedimentary environment and sequence stratigraphy of Oligo-Miocene soils (Asmari Formation) in Kupal oil field, Dezful embayment
  publication-title: Iran. Geol. Mag.
– year: 1992
  ident: 10.1016/j.jappgeo.2013.09.014_bb0045
– start-page: 75
  year: 2002
  ident: 10.1016/j.jappgeo.2013.09.014_bb0130
– year: 2011
  ident: 10.1016/j.jappgeo.2013.09.014_bb0110
SSID ssj0001304
Score 2.1508787
Snippet Porosity, the void portion of reservoir rocks, determines the volume of hydrocarbon accumulation and has a great control on assessment and development of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms Algorithms
Carbonate reservoir rocks
Core porosity
Fuzzy
Fuzzy logic
Fuzzy set theory
Genetic algorithm–pattern search
Logs
Optimization
Porosity
Reservoirs
Searching
Subtractive clustering
Title Fuzzy ruling between core porosity and petrophysical logs: Subtractive clustering vs. genetic algorithm–pattern search
URI https://dx.doi.org/10.1016/j.jappgeo.2013.09.014
https://www.proquest.com/docview/1524394207
https://www.proquest.com/docview/1642304884
Volume 99
WOSCitedRecordID wos000329275400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1859
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001304
  issn: 0926-9851
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLQc4IJ6ivLRI3CIH2-vHLrcKtQIEFYci5Wat1-uQKNiWY0dpTz1z5R_yS5h92HFbaOmBixVZ3s0682Xm83jmW4Rek5BwmuW-4zOVrYpy4aQ5dYHIcUCMYIRz3Sj8KT46otMp-zIa_eh6YdbLuCjoZsOq_2pqOAfGVq2zNzB3PymcgM9gdDiC2eH4T4Y_bE9PT8Z1q_vMuzIsJVY5Bqpd6hIMLQ4gm7qsOiuBB9S1ceBHGt03tZZjsWyVioKaZr2aqL2WpVZ3Xc7Ket58-97VSZBKa3QW40Fi7DLd5ZbuzqT91m1-nqtSk3kF1xpOq3R_eyCuyjKTOvfzuVw0POXDPIVHBjUfNuHoRw6jVl7W-l6zOZJ1nka3xIZhI4d1ycGbXMNisoBVz3T3pke0UK1pRT0vqH0h0PXlh11l2yKx0yRqmsRliav2RN_145CBz9zd_3Aw_djHdYj2Woysu49tP9ibP67nb0znQszXROb4HrprTYL3DXLuo5EsHqA7A13Kh2ijMYQNhrDFEFYYwh2GMGAIn8MQVhh6iwcIwlsEYUAQtgjCPYJ-nf202MEGO4_Q18OD43fvHbtFhyNIHDaOcLMIHorjgAfclX4KfJII4JA853HgipQHKZGCiiiiYQrRI-M0FB7nOcty5jFJHqOdoizkE4R9wXwZeAIecUkA06bETbnHcy_zhJvm2R4Kup8zEVa_Xm2jskyuNOcemvTDKiPgct0A2tkqsSzUsMsEMHjd0FedbRPw0urVGy9k2a4SYMmqBd134yuuiQL1hobS4OlN1_wM3d7-5Z6jnaZu5Qt0S6yb-ap-aYH8G6LszHc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+ruling+between+core+porosity+and+petrophysical+logs%3A+Subtractive+clustering+vs.+genetic+algorithm%E2%80%93pattern+search&rft.jtitle=Journal+of+applied+geophysics&rft.au=Bagheripour%2C+Parisa&rft.au=Asoodeh%2C+Mojtaba&rft.date=2013-12-01&rft.issn=0926-9851&rft.volume=99&rft.spage=35&rft.epage=41&rft_id=info:doi/10.1016%2Fj.jappgeo.2013.09.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jappgeo_2013_09_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9851&client=summon