Deep source transfer learning for the estimation of internal brain dynamics using scalp EEG

Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording. Estimating the internal brain activity by means of source imaging techniques can further improve the spatial resolution of EEG and enhance the rel...

Full description

Saved in:
Bibliographic Details
Published in:Cognitive neurodynamics Vol. 18; no. 6; pp. 3507 - 3520
Main Authors: Yu, Haitao, Hu, Zhiwen, Zhao, Quanfa, Liu, Jing
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.12.2024
Springer Nature B.V
Subjects:
ISSN:1871-4080, 1871-4099
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording. Estimating the internal brain activity by means of source imaging techniques can further improve the spatial resolution of EEG and enhance the reliability of neural decoding and brain-computer interaction. In this work, we propose a novel EEG data-driven source imaging scheme for precise and efficient estimation of macroscale spatiotemporal brain dynamics across thalamus and cortical regions with deep learning methods. A deep source imaging framework with a convolutional-recurrent neural network is designed to estimate the internal brain dynamics from high-density EEG recordings. Moreover, a brain model including 210 cortical regions and 16 thalamic nuclei is established based on human brain connectome to provide synthetic training data, which manifests intrinsic characteristics of underlying brain dynamics in spontaneous, stimulation-evoked, and pathological states. Transfer learning algorithm is further applied to the trained network to reduce the dynamical differences between synthetic and realistic EEG. Extensive experiments exhibit that the proposed deep-learning method can accurately estimate the spatial and temporal activity of brain sources and achieves superior performance compared to the state-of-the-art approaches. Moreover, the EEG data-driven source imaging framework is effective in the location of seizure onset zone in epilepsy and reconstruction of dynamical thalamocortical interactions during sensory processing of acupuncture stimulation, implying its applicability in brain-computer interfacing for neuroscience research and clinical applications.
AbstractList Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording. Estimating the internal brain activity by means of source imaging techniques can further improve the spatial resolution of EEG and enhance the reliability of neural decoding and brain-computer interaction. In this work, we propose a novel EEG data-driven source imaging scheme for precise and efficient estimation of macroscale spatiotemporal brain dynamics across thalamus and cortical regions with deep learning methods. A deep source imaging framework with a convolutional-recurrent neural network is designed to estimate the internal brain dynamics from high-density EEG recordings. Moreover, a brain model including 210 cortical regions and 16 thalamic nuclei is established based on human brain connectome to provide synthetic training data, which manifests intrinsic characteristics of underlying brain dynamics in spontaneous, stimulation-evoked, and pathological states. Transfer learning algorithm is further applied to the trained network to reduce the dynamical differences between synthetic and realistic EEG. Extensive experiments exhibit that the proposed deep-learning method can accurately estimate the spatial and temporal activity of brain sources and achieves superior performance compared to the state-of-the-art approaches. Moreover, the EEG data-driven source imaging framework is effective in the location of seizure onset zone in epilepsy and reconstruction of dynamical thalamocortical interactions during sensory processing of acupuncture stimulation, implying its applicability in brain-computer interfacing for neuroscience research and clinical applications.Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording. Estimating the internal brain activity by means of source imaging techniques can further improve the spatial resolution of EEG and enhance the reliability of neural decoding and brain-computer interaction. In this work, we propose a novel EEG data-driven source imaging scheme for precise and efficient estimation of macroscale spatiotemporal brain dynamics across thalamus and cortical regions with deep learning methods. A deep source imaging framework with a convolutional-recurrent neural network is designed to estimate the internal brain dynamics from high-density EEG recordings. Moreover, a brain model including 210 cortical regions and 16 thalamic nuclei is established based on human brain connectome to provide synthetic training data, which manifests intrinsic characteristics of underlying brain dynamics in spontaneous, stimulation-evoked, and pathological states. Transfer learning algorithm is further applied to the trained network to reduce the dynamical differences between synthetic and realistic EEG. Extensive experiments exhibit that the proposed deep-learning method can accurately estimate the spatial and temporal activity of brain sources and achieves superior performance compared to the state-of-the-art approaches. Moreover, the EEG data-driven source imaging framework is effective in the location of seizure onset zone in epilepsy and reconstruction of dynamical thalamocortical interactions during sensory processing of acupuncture stimulation, implying its applicability in brain-computer interfacing for neuroscience research and clinical applications.
Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording. Estimating the internal brain activity by means of source imaging techniques can further improve the spatial resolution of EEG and enhance the reliability of neural decoding and brain-computer interaction. In this work, we propose a novel EEG data-driven source imaging scheme for precise and efficient estimation of macroscale spatiotemporal brain dynamics across thalamus and cortical regions with deep learning methods. A deep source imaging framework with a convolutional-recurrent neural network is designed to estimate the internal brain dynamics from high-density EEG recordings. Moreover, a brain model including 210 cortical regions and 16 thalamic nuclei is established based on human brain connectome to provide synthetic training data, which manifests intrinsic characteristics of underlying brain dynamics in spontaneous, stimulation-evoked, and pathological states. Transfer learning algorithm is further applied to the trained network to reduce the dynamical differences between synthetic and realistic EEG. Extensive experiments exhibit that the proposed deep-learning method can accurately estimate the spatial and temporal activity of brain sources and achieves superior performance compared to the state-of-the-art approaches. Moreover, the EEG data-driven source imaging framework is effective in the location of seizure onset zone in epilepsy and reconstruction of dynamical thalamocortical interactions during sensory processing of acupuncture stimulation, implying its applicability in brain-computer interfacing for neuroscience research and clinical applications.
Author Zhao, Quanfa
Liu, Jing
Yu, Haitao
Hu, Zhiwen
Author_xml – sequence: 1
  givenname: Haitao
  surname: Yu
  fullname: Yu, Haitao
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 2
  givenname: Zhiwen
  surname: Hu
  fullname: Hu, Zhiwen
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 3
  givenname: Quanfa
  surname: Zhao
  fullname: Zhao, Quanfa
  organization: School of Electrical and Information Engineering, Tianjin University
– sequence: 4
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
  email: angel.jsea@163.com
  organization: Department of Neurology, Tangshan Gongren Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39712104$$D View this record in MEDLINE/PubMed
BookMark eNp9kT9PHDEQxS0E4o4_XyBFZClNmgXP2rtrlxE5DiQkGqgoLNs3JkZ73ou9W_Dt8d1BIlFQeWT93mjeeyfkMA4RCfkG7AIY6y4zQNNBxWpRAQOhqvqAzEGWL8GUOvw3SzYjJzm_MNa0EsQxmXHVQQ1MzMnTb8QNzcOUHNIxmZg9JtqjSTHEZ-qHRMc_SDGPYW3GMEQ6eBriiCmantpkQqSr12jWwWU65a0mO9Nv6GKxPCNH3vQZz9_fU_J4vXi4uqnu7pe3V7_uKse7ZqzsSnHrASx3xoBo2roWwjhkNazazgF3DYBEL7iVHJj3vPGKC7AWreq45afk537vJg1_p3KqXofssO9NxGHKmoOQQkkmVEF_fEJfivViZUe1bSNb4IX6_k5Ndo0rvUnFfHrVH7EVQO4Bl4acE3rtwriLp0QYeg1MbxvS-4Z0aUjvGtJ1kdafpB_bvxTxvSgXOD5j-n_2F6o3B62hqA
CitedBy_id crossref_primary_10_1016_j_cmpb_2025_108767
crossref_primary_10_1007_s41870_025_02536_7
crossref_primary_10_1016_j_bspc_2024_107335
Cites_doi 10.1016/j.clinph.2004.06.001
10.1146/annurev-bioeng-062117-120853
10.1109/TBME.2008.2008637
10.1016/0168-5597(86)90014-6
10.1088/1361-6420/ad14a1
10.1073/pnas.2201128119
10.1504/IJBET.2020.111471
10.1007/s13534-017-0019-2
10.1038/s41467-019-08725-w
10.1097/00004691-200007000-00007
10.3389/fnins.2018.00309
10.1523/JNEUROSCI.18-10-03870.1998
10.1111/ene.13676
10.1016/j.jneumeth.2020.108740
10.1109/TMI.2021.3097758
10.1523/JNEUROSCI.16-17-05290.1996
10.1016/j.neuroimage.2004.09.036
10.3389/fnbot.2019.00037
10.1016/j.neuroimage.2017.12.004
10.1016/j.neuroimage.2020.116797
10.1016/j.tibtech.2020.03.003
10.1016/j.neuroimage.2007.09.048
10.1088/1741-2552/abcc48
10.1109/CVPR.2018.00745
10.1109/TBME.2014.2300164
10.1109/MSP.2015.2413711
10.1109/TBME.1987.326056
10.1007/BF00239597
10.3390/s21134278
10.1088/1361-6560/ad25c3
10.1016/j.eswa.2022.119429
10.1016/j.neuroimage.2019.01.078
10.1016/0167-8760(84)90014-X
10.1038/s41597-022-01596-9
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Dec 2024
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Dec 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0S
M7P
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
7X8
DOI 10.1007/s11571-024-10149-2
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Biological Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest One Psychology

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
EISSN 1871-4099
EndPage 3520
ExternalDocumentID 39712104
10_1007_s11571_024_10149_2
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62271348
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67N
67Z
6NX
7X7
875
8FI
8FJ
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARAPS
ARMRJ
AXYYD
B-.
BA0
BAWUL
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GX1
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HYE
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KPH
LLZTM
M4Y
M7P
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
OK1
OVD
P2P
PF0
PSYQQ
PT4
QOR
QOS
R89
R9I
ROL
RPM
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TEORI
TR2
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
AGGLG
NPM
3V.
7XB
8FE
8FG
8FH
8FK
AZQEC
DWQXO
GNUQQ
JQ2
K9.
LK8
P62
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-bd93bf11b3caa14562244ace021d67c13c5118ef43b8310ff35f9341bbeb973b3
IEDL.DBID 7X7
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001267608400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1871-4080
IngestDate Sun Nov 09 09:42:30 EST 2025
Tue Dec 02 05:32:04 EST 2025
Wed Dec 10 10:57:59 EST 2025
Sat Nov 29 04:10:23 EST 2025
Tue Nov 18 20:54:01 EST 2025
Fri Feb 21 02:36:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Deep source imaging
Transfer learning
Thalamocortical dynamics
EEG
Brain model
Language English
License The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-bd93bf11b3caa14562244ace021d67c13c5118ef43b8310ff35f9341bbeb973b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 39712104
PQID 3146658613
PQPubID 2043944
PageCount 14
ParticipantIDs proquest_miscellaneous_3148498049
proquest_journals_3146658613
pubmed_primary_39712104
crossref_citationtrail_10_1007_s11571_024_10149_2
crossref_primary_10_1007_s11571_024_10149_2
springer_journals_10_1007_s11571_024_10149_2
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
2024-Dec
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationTitle Cognitive neurodynamics
PublicationTitleAbbrev Cogn Neurodyn
PublicationTitleAlternate Cogn Neurodyn
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References DW Gross (10149_CR10) 2000; 17
LD Cioppa (10149_CR5) 2024; 40
10149_CR16
10149_CR14
YS Nejad (10149_CR24) 2021; 18
10149_CR35
10149_CR34
J Li (10149_CR15) 2023; 215
10149_CR33
JM Phillips (10149_CR22) 2019; 189
10149_CR30
10149_CR7
M Scherg (10149_CR25) 1986; 65
M Seeber (10149_CR26) 2019; 10
JC Bore (10149_CR4) 2021; 40
CM Michel (10149_CR18) 2004; 115
H Becker (10149_CR3) 2015; 32
A Hirata (10149_CR13) 2024; 69
BK Min (10149_CR19) 2020; 38
S Gao (10149_CR9) 2014; 61
P Sharma (10149_CR27) 2018; 25
A Škoch (10149_CR28) 2022; 9
K Majumdar (10149_CR17) 2009; 56
B He (10149_CR11) 1987; 34
N Veena (10149_CR31) 2020; 34
10149_CR23
S Asadzadeh (10149_CR1) 2020; 339
M Fuchs (10149_CR8) 2017; 7
D Pantazis (10149_CR20) 2021; 21
F Babiloni (10149_CR2) 2005; 24
X Xing (10149_CR32) 2019; 13
M Stropahl (10149_CR29) 2018; 12
RDP Marqui (10149_CR21) 1994; 18
N Forss (10149_CR6) 1994; 99
B He (10149_CR12) 2018; 20
References_xml – volume: 115
  start-page: 2195
  issue: 10
  year: 2004
  ident: 10149_CR18
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2004.06.001
– volume: 20
  start-page: 171
  year: 2018
  ident: 10149_CR12
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-062117-120853
– volume: 56
  start-page: 1228
  issue: 4
  year: 2009
  ident: 10149_CR17
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.2008637
– volume: 65
  start-page: 344
  issue: 5
  year: 1986
  ident: 10149_CR25
  publication-title: Electroencephalogr Clin Neurophysiology/Evoked Potentials Sect
  doi: 10.1016/0168-5597(86)90014-6
– volume: 40
  start-page: 025006
  issue: 2
  year: 2024
  ident: 10149_CR5
  publication-title: Inverse Probl
  doi: 10.1088/1361-6420/ad14a1
– ident: 10149_CR30
  doi: 10.1073/pnas.2201128119
– volume: 34
  start-page: 205
  issue: 3
  year: 2020
  ident: 10149_CR31
  publication-title: Int J BioMed Eng Technol
  doi: 10.1504/IJBET.2020.111471
– volume: 7
  start-page: 185
  year: 2017
  ident: 10149_CR8
  publication-title: Biomed Eng Lett
  doi: 10.1007/s13534-017-0019-2
– volume: 10
  start-page: 753
  year: 2019
  ident: 10149_CR26
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-08725-w
– volume: 17
  start-page: 414
  issue: 4
  year: 2000
  ident: 10149_CR10
  publication-title: J Clin Neurophysiol
  doi: 10.1097/00004691-200007000-00007
– volume: 12
  start-page: 309
  year: 2018
  ident: 10149_CR29
  publication-title: Front NeuroSci
  doi: 10.3389/fnins.2018.00309
– ident: 10149_CR35
  doi: 10.1523/JNEUROSCI.18-10-03870.1998
– volume: 25
  start-page: 1154
  issue: 9
  year: 2018
  ident: 10149_CR27
  publication-title: Eur J Neurol
  doi: 10.1111/ene.13676
– volume: 339
  start-page: 108740
  year: 2020
  ident: 10149_CR1
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2020.108740
– volume: 40
  start-page: 3787
  issue: 12
  year: 2021
  ident: 10149_CR4
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3097758
– ident: 10149_CR33
  doi: 10.1523/JNEUROSCI.16-17-05290.1996
– volume: 24
  start-page: 118
  issue: 1
  year: 2005
  ident: 10149_CR2
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.09.036
– volume: 13
  start-page: 37
  year: 2019
  ident: 10149_CR32
  publication-title: Front Neurorobotics
  doi: 10.3389/fnbot.2019.00037
– ident: 10149_CR16
  doi: 10.1016/j.neuroimage.2017.12.004
– ident: 10149_CR14
  doi: 10.1016/j.neuroimage.2020.116797
– volume: 38
  start-page: 952
  issue: 9
  year: 2020
  ident: 10149_CR19
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2020.03.003
– ident: 10149_CR7
  doi: 10.1016/j.neuroimage.2007.09.048
– volume: 18
  start-page: 016013
  year: 2021
  ident: 10149_CR24
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/abcc48
– ident: 10149_CR34
  doi: 10.1109/CVPR.2018.00745
– ident: 10149_CR23
– volume: 61
  start-page: 1436
  issue: 5
  year: 2014
  ident: 10149_CR9
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2300164
– volume: 32
  start-page: 100
  issue: 6
  year: 2015
  ident: 10149_CR3
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2015.2413711
– volume: 34
  start-page: 406
  issue: 6
  year: 1987
  ident: 10149_CR11
  publication-title: IEEE Trans Bio Med Eng
  doi: 10.1109/TBME.1987.326056
– volume: 99
  start-page: 309
  year: 1994
  ident: 10149_CR6
  publication-title: Exp Brain Res
  doi: 10.1007/BF00239597
– volume: 21
  start-page: 4278
  issue: 13
  year: 2021
  ident: 10149_CR20
  publication-title: Sensors
  doi: 10.3390/s21134278
– volume: 69
  start-page: 055013
  issue: 5
  year: 2024
  ident: 10149_CR13
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ad25c3
– volume: 215
  start-page: 119429
  year: 2023
  ident: 10149_CR15
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119429
– volume: 189
  start-page: 832
  year: 2019
  ident: 10149_CR22
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.01.078
– volume: 18
  start-page: 49
  issue: 1
  year: 1994
  ident: 10149_CR21
  publication-title: Int J Psychophysiol
  doi: 10.1016/0167-8760(84)90014-X
– volume: 9
  start-page: 486
  year: 2022
  ident: 10149_CR28
  publication-title: Sci Data
  doi: 10.1038/s41597-022-01596-9
SSID ssj0056814
Score 2.3506365
Snippet Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3507
SubjectTerms Accuracy
Acupuncture
Algorithms
Artificial Intelligence
Biochemistry
Biochips
Biomedical and Life Sciences
Biomedicine
Brain
Cognitive Psychology
Computer applications
Computer Science
Decoding
Deep learning
Dynamics
EEG
Electroencephalography
Electrophysiological recording
Epilepsy
Estimates
Estimation
Human-computer interface
Imaging techniques
Implants
Information processing
Localization
Machine learning
Medical imaging
Neural coding
Neural networks
Neuroimaging
Neurosciences
Recurrent neural networks
Research Article
Seizures
Sensory integration
Spatial discrimination learning
Spatial resolution
Spatiotemporal data
Stimulation
Temporal resolution
Thalamic nuclei
Thalamus
Transfer learning
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD6I-uCL081LvXEE8UUDbdPro-jUJxG8MPChNGk6BrMb6xT8956k7YZMBX1OmobknOT7cpLzAZwEBEHcSIZMJ5diXmBzRjwkY75KOdEJrmyRG7GJ8O4u6vXi-_pRWNncdm9Ckmalnj92c_yQqK_rMa0vGzNaeFd8nW1Gc_SH52b91Rm1TCyZqACxo8iun8p838bX7WgBYy7ER822c936X4c3YL2GmXhR2cUmLKmiDZ2Lgij26weeorn4aU7U29BqlB2wdvQOvFwpNcbqYB-nBttSca0w0UcCukjAEXWGjurpI45yHFSHi0MUWnYCs0rrvkR9tb6PJRnDGLvdmy14uu4-Xt6yWoaBSR76UyaymIvccQSXaepoxkSQIJWK0EEWhNLhUrMUlXtcaNWyPOd-HtPmKIQSNDuCb8NyMSrULqAtCWF4SpLhpF4WqJjwh1RuFimHqyjMLHCa2UhknaNcS2UMk3l2ZT2oCQ1qYgY1cS04m30zrjJ0_Fr7oJnkpPbWMuG0XRASI2RjwfGsmPxMB0_SQo3eTJ3IiyMiVBbsVMYx-x1hOp2HzbPgvLGEeeM_92Xvb9X3Yc01xqTv0hzA8nTypg5hVb5PB-XkyPjAJ5QG_X0
  priority: 102
  providerName: Springer Nature
Title Deep source transfer learning for the estimation of internal brain dynamics using scalp EEG
URI https://link.springer.com/article/10.1007/s11571-024-10149-2
https://www.ncbi.nlm.nih.gov/pubmed/39712104
https://www.proquest.com/docview/3146658613
https://www.proquest.com/docview/3148498049
Volume 18
WOSCitedRecordID wos001267608400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1871-4099
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: M7P
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1871-4099
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: K7-
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1871-4099
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: 7X7
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1871-4099
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: BENPR
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1871-4099
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056814
  issn: 1871-4080
  databaseCode: RSV
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEB3y0UMubdM0rZrUTKH0ki6xtLIlnULaOAkEjEk_MPQgtKtRCKSyazmF_vvOrNY2ISSXXASW1_LCzGrem52dB_CxzxAkSm2ipLmUivtdrZiHlKpHhWY6oalrKic2kQyH6XicjXzCrfFllYt3ontRlxMrOfJDzUuaoyVHn6PpHyWqUbK76iU01mFTZLPFz5PxknBJby23q8ykgHlS2vWHZtqjc2GP73KEUqJWm6nobmC6hzbv7ZS6AHT64qlTfwnPPfTE49ZXtmGN6lewc1wz7f79Dz-hKwZ1WfYd-HVCNMU2s49zB25phl5i4goZ6SIjR5QWHe3ZR5xUeN1mF2_QiO4Elq3YfYNSW3-FDXvDFAeDs9fw43Tw_eu58joMyuqkN1emzLSpwtBoWxShUCbGBIUlhgdlP7GhtkJTqIq1EdmyqtK9KuPoaAyZLNFG78JGPanpLWDXMsSIybLnFHHZp4wBiKWoTCnUlCZlAOHCCLn1TcpFK-MmX7VXFsPlbLjcGS6PAjhY_mbatuh4dPT-wki5X65NvrJQAB-WX_NCk92ToqbJrRuTxlnKjCqAN61PLP-OQZ00YosD-LxwktXDH57Lu8fnsgdbkXNQKZ7Zh4357JbewzP7d37dzDrO1d017cDml8FwdMmfLhLVkfrVEV8vv_38D9s_Bqg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQXXuVhKDBIwAVW2F4ntg8IVTSlVUvUQ5EqcTDe9biK1NohcUH5U_xGZtZ2IlTRWw9cE8fx45uZb3Z25gN4NWQKEiY2VjJcSkVDXyvOQwo1oFxzOqHJN6UTm4jH4-T4OD1cg999L4xsq-x9onPURW1ljfy9ZpPmaMnR5-P0hxLVKKmu9hIaLSz2afGLU7b5h71tfr-vw3BndPRpV3WqAsrqeNAoU6TalEFgtM3zQBIAjnC5JQ52xTC2gbZCuqmMtBERrrLUgzJlX28MmTTWRvN5r8F1phGh77YKHvaeX2Z5uSo2JyGclyV-16TTtuoFA_6UI6ISddxUhX8Hwgvs9kJl1gW8nTv_26O6C7c7ao1brS3cgzWq7sPGVpU39dkC36Db7OqqCBvwbZtoim3lAhtH3mmGnYTGCTKTR2bGKCNI2t5OrEuctKunp2hEVwOLRZWfTewcpXfgBOeM9imORp8fwNcruc2HsF7VFT0G9C1TqIgsW0YeFUNKmWBZCouEAk1JXHgQ9C89s90QdtECOc1W46MFKBkDJXNAyUIP3i5_M21HkFx69GYPiqxzR_NshQgPXi6_Zkci1aG8ovrcHZNEacIZowePWgwu_45Jqwyaizx414NydfJ_X8uTy6_lBdzcPfpykB3sjfefwq3QGYdsFNqE9WZ2Ts_ghv3ZTOaz587MEL5fNVj_ABCZXiQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6IivjivFudegTxRYNr063t49BNRRniDcGH0qSpDLQbrgr7956k7aZ4AfE5aRqSk5zvy7kB7DYIgji-9JhOLsXcRo0z4iExq6uIE53gqiYSU2zC63T8-_vg8kMUv_F2L02SeUyDztKUZof9ODkcB77ZdY9osOMyXWs2YHQJT7nEZLRT19X1XXkX6-xaxq5MtICYkl8rwma-H-OzavqCN7_YSo0Kalf-P_l5mCvgJzZzeVmACZUuwlIzJer9PMQ9NA6h5qV9ESplxQcsLoAleDhWqo_5gz9mBvNSc1F54hEJACMBStSZO_KQSOwl2M0fHZ9Q6HIUGA_T6LkrB6hd7h9xQELSx1brZBlu262bo1NWlGdgknv1jIk44CKxbcFlFNmaSRFUiKQi1BA3PGlzqdmLSlwudDWzJOH1JCClKYQSgccFX4HJtJeqNcCaJOThKkkCFblxQwWES6RyYl_ZXPlebIFd7kwoi9zluoTGUzjOuqwXNaRFDc2iho4F-6Nv-nnmjl97V8sND4tTPAg5qRFCaIR4LNgZNdP500aVKFW9V9PHdwOfiJYFq7mgjH5HWE_nZ3MtOCilYjz4z3NZ_1v3bZi5PG6HF2ed8w2YdYxcaXebKkxmL69qE6blW9YdvGyZo_EObqIJVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+source+transfer+learning+for+the+estimation+of+internal+brain+dynamics+using+scalp+EEG&rft.jtitle=Cognitive+neurodynamics&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1871-4080&rft.eissn=1871-4099&rft.volume=18&rft.issue=6&rft.spage=3507&rft.epage=3520&rft_id=info:doi/10.1007%2Fs11571-024-10149-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1871-4080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1871-4080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1871-4080&client=summon