Deep source transfer learning for the estimation of internal brain dynamics using scalp EEG
Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording. Estimating the internal brain activity by means of source imaging techniques can further improve the spatial resolution of EEG and enhance the rel...
Saved in:
| Published in: | Cognitive neurodynamics Vol. 18; no. 6; pp. 3507 - 3520 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.12.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1871-4080, 1871-4099 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording. Estimating the internal brain activity by means of source imaging techniques can further improve the spatial resolution of EEG and enhance the reliability of neural decoding and brain-computer interaction. In this work, we propose a novel EEG data-driven source imaging scheme for precise and efficient estimation of macroscale spatiotemporal brain dynamics across thalamus and cortical regions with deep learning methods. A deep source imaging framework with a convolutional-recurrent neural network is designed to estimate the internal brain dynamics from high-density EEG recordings. Moreover, a brain model including 210 cortical regions and 16 thalamic nuclei is established based on human brain connectome to provide synthetic training data, which manifests intrinsic characteristics of underlying brain dynamics in spontaneous, stimulation-evoked, and pathological states. Transfer learning algorithm is further applied to the trained network to reduce the dynamical differences between synthetic and realistic EEG. Extensive experiments exhibit that the proposed deep-learning method can accurately estimate the spatial and temporal activity of brain sources and achieves superior performance compared to the state-of-the-art approaches. Moreover, the EEG data-driven source imaging framework is effective in the location of seizure onset zone in epilepsy and reconstruction of dynamical thalamocortical interactions during sensory processing of acupuncture stimulation, implying its applicability in brain-computer interfacing for neuroscience research and clinical applications. |
|---|---|
| AbstractList | Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording. Estimating the internal brain activity by means of source imaging techniques can further improve the spatial resolution of EEG and enhance the reliability of neural decoding and brain-computer interaction. In this work, we propose a novel EEG data-driven source imaging scheme for precise and efficient estimation of macroscale spatiotemporal brain dynamics across thalamus and cortical regions with deep learning methods. A deep source imaging framework with a convolutional-recurrent neural network is designed to estimate the internal brain dynamics from high-density EEG recordings. Moreover, a brain model including 210 cortical regions and 16 thalamic nuclei is established based on human brain connectome to provide synthetic training data, which manifests intrinsic characteristics of underlying brain dynamics in spontaneous, stimulation-evoked, and pathological states. Transfer learning algorithm is further applied to the trained network to reduce the dynamical differences between synthetic and realistic EEG. Extensive experiments exhibit that the proposed deep-learning method can accurately estimate the spatial and temporal activity of brain sources and achieves superior performance compared to the state-of-the-art approaches. Moreover, the EEG data-driven source imaging framework is effective in the location of seizure onset zone in epilepsy and reconstruction of dynamical thalamocortical interactions during sensory processing of acupuncture stimulation, implying its applicability in brain-computer interfacing for neuroscience research and clinical applications.Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording. Estimating the internal brain activity by means of source imaging techniques can further improve the spatial resolution of EEG and enhance the reliability of neural decoding and brain-computer interaction. In this work, we propose a novel EEG data-driven source imaging scheme for precise and efficient estimation of macroscale spatiotemporal brain dynamics across thalamus and cortical regions with deep learning methods. A deep source imaging framework with a convolutional-recurrent neural network is designed to estimate the internal brain dynamics from high-density EEG recordings. Moreover, a brain model including 210 cortical regions and 16 thalamic nuclei is established based on human brain connectome to provide synthetic training data, which manifests intrinsic characteristics of underlying brain dynamics in spontaneous, stimulation-evoked, and pathological states. Transfer learning algorithm is further applied to the trained network to reduce the dynamical differences between synthetic and realistic EEG. Extensive experiments exhibit that the proposed deep-learning method can accurately estimate the spatial and temporal activity of brain sources and achieves superior performance compared to the state-of-the-art approaches. Moreover, the EEG data-driven source imaging framework is effective in the location of seizure onset zone in epilepsy and reconstruction of dynamical thalamocortical interactions during sensory processing of acupuncture stimulation, implying its applicability in brain-computer interfacing for neuroscience research and clinical applications. Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording. Estimating the internal brain activity by means of source imaging techniques can further improve the spatial resolution of EEG and enhance the reliability of neural decoding and brain-computer interaction. In this work, we propose a novel EEG data-driven source imaging scheme for precise and efficient estimation of macroscale spatiotemporal brain dynamics across thalamus and cortical regions with deep learning methods. A deep source imaging framework with a convolutional-recurrent neural network is designed to estimate the internal brain dynamics from high-density EEG recordings. Moreover, a brain model including 210 cortical regions and 16 thalamic nuclei is established based on human brain connectome to provide synthetic training data, which manifests intrinsic characteristics of underlying brain dynamics in spontaneous, stimulation-evoked, and pathological states. Transfer learning algorithm is further applied to the trained network to reduce the dynamical differences between synthetic and realistic EEG. Extensive experiments exhibit that the proposed deep-learning method can accurately estimate the spatial and temporal activity of brain sources and achieves superior performance compared to the state-of-the-art approaches. Moreover, the EEG data-driven source imaging framework is effective in the location of seizure onset zone in epilepsy and reconstruction of dynamical thalamocortical interactions during sensory processing of acupuncture stimulation, implying its applicability in brain-computer interfacing for neuroscience research and clinical applications. |
| Author | Zhao, Quanfa Liu, Jing Yu, Haitao Hu, Zhiwen |
| Author_xml | – sequence: 1 givenname: Haitao surname: Yu fullname: Yu, Haitao organization: School of Electrical and Information Engineering, Tianjin University – sequence: 2 givenname: Zhiwen surname: Hu fullname: Hu, Zhiwen organization: School of Electrical and Information Engineering, Tianjin University – sequence: 3 givenname: Quanfa surname: Zhao fullname: Zhao, Quanfa organization: School of Electrical and Information Engineering, Tianjin University – sequence: 4 givenname: Jing surname: Liu fullname: Liu, Jing email: angel.jsea@163.com organization: Department of Neurology, Tangshan Gongren Hospital |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39712104$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kT9PHDEQxS0E4o4_XyBFZClNmgXP2rtrlxE5DiQkGqgoLNs3JkZ73ou9W_Dt8d1BIlFQeWT93mjeeyfkMA4RCfkG7AIY6y4zQNNBxWpRAQOhqvqAzEGWL8GUOvw3SzYjJzm_MNa0EsQxmXHVQQ1MzMnTb8QNzcOUHNIxmZg9JtqjSTHEZ-qHRMc_SDGPYW3GMEQ6eBriiCmantpkQqSr12jWwWU65a0mO9Nv6GKxPCNH3vQZz9_fU_J4vXi4uqnu7pe3V7_uKse7ZqzsSnHrASx3xoBo2roWwjhkNazazgF3DYBEL7iVHJj3vPGKC7AWreq45afk537vJg1_p3KqXofssO9NxGHKmoOQQkkmVEF_fEJfivViZUe1bSNb4IX6_k5Ndo0rvUnFfHrVH7EVQO4Bl4acE3rtwriLp0QYeg1MbxvS-4Z0aUjvGtJ1kdafpB_bvxTxvSgXOD5j-n_2F6o3B62hqA |
| CitedBy_id | crossref_primary_10_1016_j_cmpb_2025_108767 crossref_primary_10_1007_s41870_025_02536_7 crossref_primary_10_1016_j_bspc_2024_107335 |
| Cites_doi | 10.1016/j.clinph.2004.06.001 10.1146/annurev-bioeng-062117-120853 10.1109/TBME.2008.2008637 10.1016/0168-5597(86)90014-6 10.1088/1361-6420/ad14a1 10.1073/pnas.2201128119 10.1504/IJBET.2020.111471 10.1007/s13534-017-0019-2 10.1038/s41467-019-08725-w 10.1097/00004691-200007000-00007 10.3389/fnins.2018.00309 10.1523/JNEUROSCI.18-10-03870.1998 10.1111/ene.13676 10.1016/j.jneumeth.2020.108740 10.1109/TMI.2021.3097758 10.1523/JNEUROSCI.16-17-05290.1996 10.1016/j.neuroimage.2004.09.036 10.3389/fnbot.2019.00037 10.1016/j.neuroimage.2017.12.004 10.1016/j.neuroimage.2020.116797 10.1016/j.tibtech.2020.03.003 10.1016/j.neuroimage.2007.09.048 10.1088/1741-2552/abcc48 10.1109/CVPR.2018.00745 10.1109/TBME.2014.2300164 10.1109/MSP.2015.2413711 10.1109/TBME.1987.326056 10.1007/BF00239597 10.3390/s21134278 10.1088/1361-6560/ad25c3 10.1016/j.eswa.2022.119429 10.1016/j.neuroimage.2019.01.078 10.1016/0167-8760(84)90014-X 10.1038/s41597-022-01596-9 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Dec 2024 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Dec 2024 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0S M7P P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ 7X8 |
| DOI | 10.1007/s11571-024-10149-2 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Biological Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Computer Science |
| EISSN | 1871-4099 |
| EndPage | 3520 |
| ExternalDocumentID | 39712104 10_1007_s11571_024_10149_2 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62271348 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67N 67Z 6NX 7X7 875 8FI 8FJ 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOIJS ARAPS ARMRJ AXYYD B-. BA0 BAWUL BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI CAG CCPQU COF CS3 CSCUP DDRTE DIK DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EN4 ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GX1 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HYE HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KPH LLZTM M4Y M7P MA- NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OK1 OVD P2P PF0 PSYQQ PT4 QOR QOS R89 R9I ROL RPM RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TEORI TR2 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB AGGLG NPM 3V. 7XB 8FE 8FG 8FH 8FK AZQEC DWQXO GNUQQ JQ2 K9. LK8 P62 PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
| ID | FETCH-LOGICAL-c375t-bd93bf11b3caa14562244ace021d67c13c5118ef43b8310ff35f9341bbeb973b3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001267608400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1871-4080 |
| IngestDate | Sun Nov 09 09:42:30 EST 2025 Tue Dec 02 05:32:04 EST 2025 Wed Dec 10 10:57:59 EST 2025 Sat Nov 29 04:10:23 EST 2025 Tue Nov 18 20:54:01 EST 2025 Fri Feb 21 02:36:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Deep source imaging Transfer learning Thalamocortical dynamics EEG Brain model |
| Language | English |
| License | The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-bd93bf11b3caa14562244ace021d67c13c5118ef43b8310ff35f9341bbeb973b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 39712104 |
| PQID | 3146658613 |
| PQPubID | 2043944 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_3148498049 proquest_journals_3146658613 pubmed_primary_39712104 crossref_citationtrail_10_1007_s11571_024_10149_2 crossref_primary_10_1007_s11571_024_10149_2 springer_journals_10_1007_s11571_024_10149_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20241200 2024-12-00 2024-Dec 20241201 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht – name: Netherlands |
| PublicationTitle | Cognitive neurodynamics |
| PublicationTitleAbbrev | Cogn Neurodyn |
| PublicationTitleAlternate | Cogn Neurodyn |
| PublicationYear | 2024 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | DW Gross (10149_CR10) 2000; 17 LD Cioppa (10149_CR5) 2024; 40 10149_CR16 10149_CR14 YS Nejad (10149_CR24) 2021; 18 10149_CR35 10149_CR34 J Li (10149_CR15) 2023; 215 10149_CR33 JM Phillips (10149_CR22) 2019; 189 10149_CR30 10149_CR7 M Scherg (10149_CR25) 1986; 65 M Seeber (10149_CR26) 2019; 10 JC Bore (10149_CR4) 2021; 40 CM Michel (10149_CR18) 2004; 115 H Becker (10149_CR3) 2015; 32 A Hirata (10149_CR13) 2024; 69 BK Min (10149_CR19) 2020; 38 S Gao (10149_CR9) 2014; 61 P Sharma (10149_CR27) 2018; 25 A Škoch (10149_CR28) 2022; 9 K Majumdar (10149_CR17) 2009; 56 B He (10149_CR11) 1987; 34 N Veena (10149_CR31) 2020; 34 10149_CR23 S Asadzadeh (10149_CR1) 2020; 339 M Fuchs (10149_CR8) 2017; 7 D Pantazis (10149_CR20) 2021; 21 F Babiloni (10149_CR2) 2005; 24 X Xing (10149_CR32) 2019; 13 M Stropahl (10149_CR29) 2018; 12 RDP Marqui (10149_CR21) 1994; 18 N Forss (10149_CR6) 1994; 99 B He (10149_CR12) 2018; 20 |
| References_xml | – volume: 115 start-page: 2195 issue: 10 year: 2004 ident: 10149_CR18 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2004.06.001 – volume: 20 start-page: 171 year: 2018 ident: 10149_CR12 publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev-bioeng-062117-120853 – volume: 56 start-page: 1228 issue: 4 year: 2009 ident: 10149_CR17 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.2008637 – volume: 65 start-page: 344 issue: 5 year: 1986 ident: 10149_CR25 publication-title: Electroencephalogr Clin Neurophysiology/Evoked Potentials Sect doi: 10.1016/0168-5597(86)90014-6 – volume: 40 start-page: 025006 issue: 2 year: 2024 ident: 10149_CR5 publication-title: Inverse Probl doi: 10.1088/1361-6420/ad14a1 – ident: 10149_CR30 doi: 10.1073/pnas.2201128119 – volume: 34 start-page: 205 issue: 3 year: 2020 ident: 10149_CR31 publication-title: Int J BioMed Eng Technol doi: 10.1504/IJBET.2020.111471 – volume: 7 start-page: 185 year: 2017 ident: 10149_CR8 publication-title: Biomed Eng Lett doi: 10.1007/s13534-017-0019-2 – volume: 10 start-page: 753 year: 2019 ident: 10149_CR26 publication-title: Nat Commun doi: 10.1038/s41467-019-08725-w – volume: 17 start-page: 414 issue: 4 year: 2000 ident: 10149_CR10 publication-title: J Clin Neurophysiol doi: 10.1097/00004691-200007000-00007 – volume: 12 start-page: 309 year: 2018 ident: 10149_CR29 publication-title: Front NeuroSci doi: 10.3389/fnins.2018.00309 – ident: 10149_CR35 doi: 10.1523/JNEUROSCI.18-10-03870.1998 – volume: 25 start-page: 1154 issue: 9 year: 2018 ident: 10149_CR27 publication-title: Eur J Neurol doi: 10.1111/ene.13676 – volume: 339 start-page: 108740 year: 2020 ident: 10149_CR1 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2020.108740 – volume: 40 start-page: 3787 issue: 12 year: 2021 ident: 10149_CR4 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3097758 – ident: 10149_CR33 doi: 10.1523/JNEUROSCI.16-17-05290.1996 – volume: 24 start-page: 118 issue: 1 year: 2005 ident: 10149_CR2 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.09.036 – volume: 13 start-page: 37 year: 2019 ident: 10149_CR32 publication-title: Front Neurorobotics doi: 10.3389/fnbot.2019.00037 – ident: 10149_CR16 doi: 10.1016/j.neuroimage.2017.12.004 – ident: 10149_CR14 doi: 10.1016/j.neuroimage.2020.116797 – volume: 38 start-page: 952 issue: 9 year: 2020 ident: 10149_CR19 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2020.03.003 – ident: 10149_CR7 doi: 10.1016/j.neuroimage.2007.09.048 – volume: 18 start-page: 016013 year: 2021 ident: 10149_CR24 publication-title: J Neural Eng doi: 10.1088/1741-2552/abcc48 – ident: 10149_CR34 doi: 10.1109/CVPR.2018.00745 – ident: 10149_CR23 – volume: 61 start-page: 1436 issue: 5 year: 2014 ident: 10149_CR9 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2300164 – volume: 32 start-page: 100 issue: 6 year: 2015 ident: 10149_CR3 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2015.2413711 – volume: 34 start-page: 406 issue: 6 year: 1987 ident: 10149_CR11 publication-title: IEEE Trans Bio Med Eng doi: 10.1109/TBME.1987.326056 – volume: 99 start-page: 309 year: 1994 ident: 10149_CR6 publication-title: Exp Brain Res doi: 10.1007/BF00239597 – volume: 21 start-page: 4278 issue: 13 year: 2021 ident: 10149_CR20 publication-title: Sensors doi: 10.3390/s21134278 – volume: 69 start-page: 055013 issue: 5 year: 2024 ident: 10149_CR13 publication-title: Phys Med Biol doi: 10.1088/1361-6560/ad25c3 – volume: 215 start-page: 119429 year: 2023 ident: 10149_CR15 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.119429 – volume: 189 start-page: 832 year: 2019 ident: 10149_CR22 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.01.078 – volume: 18 start-page: 49 issue: 1 year: 1994 ident: 10149_CR21 publication-title: Int J Psychophysiol doi: 10.1016/0167-8760(84)90014-X – volume: 9 start-page: 486 year: 2022 ident: 10149_CR28 publication-title: Sci Data doi: 10.1038/s41597-022-01596-9 |
| SSID | ssj0056814 |
| Score | 2.3506365 |
| Snippet | Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording.... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3507 |
| SubjectTerms | Accuracy Acupuncture Algorithms Artificial Intelligence Biochemistry Biochips Biomedical and Life Sciences Biomedicine Brain Cognitive Psychology Computer applications Computer Science Decoding Deep learning Dynamics EEG Electroencephalography Electrophysiological recording Epilepsy Estimates Estimation Human-computer interface Imaging techniques Implants Information processing Localization Machine learning Medical imaging Neural coding Neural networks Neuroimaging Neurosciences Recurrent neural networks Research Article Seizures Sensory integration Spatial discrimination learning Spatial resolution Spatiotemporal data Stimulation Temporal resolution Thalamic nuclei Thalamus Transfer learning |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD6I-uCL081LvXEE8UUDbdPro-jUJxG8MPChNGk6BrMb6xT8956k7YZMBX1OmobknOT7cpLzAZwEBEHcSIZMJ5diXmBzRjwkY75KOdEJrmyRG7GJ8O4u6vXi-_pRWNncdm9Ckmalnj92c_yQqK_rMa0vGzNaeFd8nW1Gc_SH52b91Rm1TCyZqACxo8iun8p838bX7WgBYy7ER822c936X4c3YL2GmXhR2cUmLKmiDZ2Lgij26weeorn4aU7U29BqlB2wdvQOvFwpNcbqYB-nBttSca0w0UcCukjAEXWGjurpI45yHFSHi0MUWnYCs0rrvkR9tb6PJRnDGLvdmy14uu4-Xt6yWoaBSR76UyaymIvccQSXaepoxkSQIJWK0EEWhNLhUrMUlXtcaNWyPOd-HtPmKIQSNDuCb8NyMSrULqAtCWF4SpLhpF4WqJjwh1RuFimHqyjMLHCa2UhknaNcS2UMk3l2ZT2oCQ1qYgY1cS04m30zrjJ0_Fr7oJnkpPbWMuG0XRASI2RjwfGsmPxMB0_SQo3eTJ3IiyMiVBbsVMYx-x1hOp2HzbPgvLGEeeM_92Xvb9X3Yc01xqTv0hzA8nTypg5hVb5PB-XkyPjAJ5QG_X0 priority: 102 providerName: Springer Nature |
| Title | Deep source transfer learning for the estimation of internal brain dynamics using scalp EEG |
| URI | https://link.springer.com/article/10.1007/s11571-024-10149-2 https://www.ncbi.nlm.nih.gov/pubmed/39712104 https://www.proquest.com/docview/3146658613 https://www.proquest.com/docview/3148498049 |
| Volume | 18 |
| WOSCitedRecordID | wos001267608400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1871-4099 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: M7P dateStart: 20070301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1871-4099 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: K7- dateStart: 20070301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1871-4099 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: 7X7 dateStart: 20070301 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1871-4099 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: BENPR dateStart: 20070301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1871-4099 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056814 issn: 1871-4080 databaseCode: RSV dateStart: 20070301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEB3y0UMubdM0rZrUTKH0ki6xtLIlnULaOAkEjEk_MPQgtKtRCKSyazmF_vvOrNY2ISSXXASW1_LCzGrem52dB_CxzxAkSm2ipLmUivtdrZiHlKpHhWY6oalrKic2kQyH6XicjXzCrfFllYt3ontRlxMrOfJDzUuaoyVHn6PpHyWqUbK76iU01mFTZLPFz5PxknBJby23q8ykgHlS2vWHZtqjc2GP73KEUqJWm6nobmC6hzbv7ZS6AHT64qlTfwnPPfTE49ZXtmGN6lewc1wz7f79Dz-hKwZ1WfYd-HVCNMU2s49zB25phl5i4goZ6SIjR5QWHe3ZR5xUeN1mF2_QiO4Elq3YfYNSW3-FDXvDFAeDs9fw43Tw_eu58joMyuqkN1emzLSpwtBoWxShUCbGBIUlhgdlP7GhtkJTqIq1EdmyqtK9KuPoaAyZLNFG78JGPanpLWDXMsSIybLnFHHZp4wBiKWoTCnUlCZlAOHCCLn1TcpFK-MmX7VXFsPlbLjcGS6PAjhY_mbatuh4dPT-wki5X65NvrJQAB-WX_NCk92ToqbJrRuTxlnKjCqAN61PLP-OQZ00YosD-LxwktXDH57Lu8fnsgdbkXNQKZ7Zh4357JbewzP7d37dzDrO1d017cDml8FwdMmfLhLVkfrVEV8vv_38D9s_Bqg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQXXuVhKDBIwAVW2F4ntg8IVTSlVUvUQ5EqcTDe9biK1NohcUH5U_xGZtZ2IlTRWw9cE8fx45uZb3Z25gN4NWQKEiY2VjJcSkVDXyvOQwo1oFxzOqHJN6UTm4jH4-T4OD1cg999L4xsq-x9onPURW1ljfy9ZpPmaMnR5-P0hxLVKKmu9hIaLSz2afGLU7b5h71tfr-vw3BndPRpV3WqAsrqeNAoU6TalEFgtM3zQBIAjnC5JQ52xTC2gbZCuqmMtBERrrLUgzJlX28MmTTWRvN5r8F1phGh77YKHvaeX2Z5uSo2JyGclyV-16TTtuoFA_6UI6ISddxUhX8Hwgvs9kJl1gW8nTv_26O6C7c7ao1brS3cgzWq7sPGVpU39dkC36Db7OqqCBvwbZtoim3lAhtH3mmGnYTGCTKTR2bGKCNI2t5OrEuctKunp2hEVwOLRZWfTewcpXfgBOeM9imORp8fwNcruc2HsF7VFT0G9C1TqIgsW0YeFUNKmWBZCouEAk1JXHgQ9C89s90QdtECOc1W46MFKBkDJXNAyUIP3i5_M21HkFx69GYPiqxzR_NshQgPXi6_Zkci1aG8ovrcHZNEacIZowePWgwu_45Jqwyaizx414NydfJ_X8uTy6_lBdzcPfpykB3sjfefwq3QGYdsFNqE9WZ2Ts_ghv3ZTOaz587MEL5fNVj_ABCZXiQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6IivjivFudegTxRYNr063t49BNRRniDcGH0qSpDLQbrgr7956k7aZ4AfE5aRqSk5zvy7kB7DYIgji-9JhOLsXcRo0z4iExq6uIE53gqiYSU2zC63T8-_vg8kMUv_F2L02SeUyDztKUZof9ODkcB77ZdY9osOMyXWs2YHQJT7nEZLRT19X1XXkX6-xaxq5MtICYkl8rwma-H-OzavqCN7_YSo0Kalf-P_l5mCvgJzZzeVmACZUuwlIzJer9PMQ9NA6h5qV9ESplxQcsLoAleDhWqo_5gz9mBvNSc1F54hEJACMBStSZO_KQSOwl2M0fHZ9Q6HIUGA_T6LkrB6hd7h9xQELSx1brZBlu262bo1NWlGdgknv1jIk44CKxbcFlFNmaSRFUiKQi1BA3PGlzqdmLSlwudDWzJOH1JCClKYQSgccFX4HJtJeqNcCaJOThKkkCFblxQwWES6RyYl_ZXPlebIFd7kwoi9zluoTGUzjOuqwXNaRFDc2iho4F-6Nv-nnmjl97V8sND4tTPAg5qRFCaIR4LNgZNdP500aVKFW9V9PHdwOfiJYFq7mgjH5HWE_nZ3MtOCilYjz4z3NZ_1v3bZi5PG6HF2ed8w2YdYxcaXebKkxmL69qE6blW9YdvGyZo_EObqIJVA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+source+transfer+learning+for+the+estimation+of+internal+brain+dynamics+using+scalp+EEG&rft.jtitle=Cognitive+neurodynamics&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1871-4080&rft.eissn=1871-4099&rft.volume=18&rft.issue=6&rft.spage=3507&rft.epage=3520&rft_id=info:doi/10.1007%2Fs11571-024-10149-2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1871-4080&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1871-4080&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1871-4080&client=summon |