Artificial Neural Network-Based Activities Classification, Gait Phase Estimation, and Prediction

Gait patterns are critical to health monitoring, gait impairment assessment, and wearable device control. Unrhythmic gait pattern detection under community-based conditions is a new frontier in this area. The present paper describes a high-accuracy gait phase estimation and prediction algorithm buil...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Annals of biomedical engineering Ročník 51; číslo 7; s. 1471 - 1484
Hlavní autori: Yu, Shuangyue, Yang, Jianfu, Huang, Tzu-Hao, Zhu, Junxi, Visco, Christopher J., Hameed, Farah, Stein, Joel, Zhou, Xianlian, Su, Hao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.07.2023
Springer Nature B.V
Predmet:
ISSN:0090-6964, 1573-9686, 1573-9686
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Gait patterns are critical to health monitoring, gait impairment assessment, and wearable device control. Unrhythmic gait pattern detection under community-based conditions is a new frontier in this area. The present paper describes a high-accuracy gait phase estimation and prediction algorithm built on a two-stage artificial neural network. This work targets to develop an algorithm that can estimate and predict the gait cycle in real time using a portable controller with only two IMU sensors (one on each thigh) in the community setting. Our algorithm can detect the gait phase in unrhythmic conditions during walking, stair ascending, and stair descending, and classify these activities with standing. Moreover, our algorithm is able to predict both future intra- and inter-stride gait phases, offering a potential means to improve wearable device controller performance. The proposed data-driven algorithm is based on a dataset consisting of 5 able-bodied subjects and validated on 3 different able-bodied subjects. Under unrhythmic activity situations, validation shows that the algorithm can accurately identify multiple activities with 99.55% accuracy, and estimate ( rRMSE 0 : 6.3%) and predict 200-ms-ahead ( rRMSE 200 ms : 8.6%) the gait phase percentage in real time, which are on average 57.7 and 54.0% smaller than the error from the event-based method in the same conditions. This study showcases a solution to estimate and predict gait status for multiple unrhythmic activities, which may be deployed to controllers for wearable robots or health monitoring devices.
AbstractList Gait patterns are critical to health monitoring, gait impairment assessment, and wearable device control. Unrhythmic gait pattern detection under community-based conditions is a new frontier in this area. The present paper describes a high-accuracy gait phase estimation and prediction algorithm built on a two-stage artificial neural network. This work targets to develop an algorithm that can estimate and predict the gait cycle in real time using a portable controller with only two IMU sensors (one on each thigh) in the community setting. Our algorithm can detect the gait phase in unrhythmic conditions during walking, stair ascending, and stair descending, and classify these activities with standing. Moreover, our algorithm is able to predict both future intra- and inter-stride gait phases, offering a potential means to improve wearable device controller performance. The proposed data-driven algorithm is based on a dataset consisting of 5 able-bodied subjects and validated on 3 different able-bodied subjects. Under unrhythmic activity situations, validation shows that the algorithm can accurately identify multiple activities with 99.55% accuracy, and estimate (rRMSE0: 6.3%) and predict 200-ms-ahead (rRMSE200ms: 8.6%) the gait phase percentage in real time, which are on average 57.7 and 54.0% smaller than the error from the event-based method in the same conditions. This study showcases a solution to estimate and predict gait status for multiple unrhythmic activities, which may be deployed to controllers for wearable robots or health monitoring devices.
Gait patterns are critical to health monitoring, gait impairment assessment, and wearable device control. Unrhythmic gait pattern detection under community-based conditions is a new frontier in this area. The present paper describes a high-accuracy gait phase estimation and prediction algorithm built on a two-stage artificial neural network. This work targets to develop an algorithm that can estimate and predict the gait cycle in real time using a portable controller with only two IMU sensors (one on each thigh) in the community setting. Our algorithm can detect the gait phase in unrhythmic conditions during walking, stair ascending, and stair descending, and classify these activities with standing. Moreover, our algorithm is able to predict both future intra- and inter-stride gait phases, offering a potential means to improve wearable device controller performance. The proposed data-driven algorithm is based on a dataset consisting of 5 able-bodied subjects and validated on 3 different able-bodied subjects. Under unrhythmic activity situations, validation shows that the algorithm can accurately identify multiple activities with 99.55% accuracy, and estimate ( rRMSE 0 : 6.3%) and predict 200-ms-ahead ( rRMSE 200 ms : 8.6%) the gait phase percentage in real time, which are on average 57.7 and 54.0% smaller than the error from the event-based method in the same conditions. This study showcases a solution to estimate and predict gait status for multiple unrhythmic activities, which may be deployed to controllers for wearable robots or health monitoring devices.
Gait patterns are critical to health monitoring, gait impairment assessment, and wearable device control. Unrhythmic gait pattern detection under community-based conditions is a new frontier in this area. The present paper describes a high-accuracy gait phase estimation and prediction algorithm built on a two-stage artificial neural network. This work targets to develop an algorithm that can estimate and predict the gait cycle in real time using a portable controller with only two IMU sensors (one on each thigh) in the community setting. Our algorithm can detect the gait phase in unrhythmic conditions during walking, stair ascending, and stair descending, and classify these activities with standing. Moreover, our algorithm is able to predict both future intra- and inter-stride gait phases, offering a potential means to improve wearable device controller performance. The proposed data-driven algorithm is based on a dataset consisting of 5 able-bodied subjects and validated on 3 different able-bodied subjects. Under unrhythmic activity situations, validation shows that the algorithm can accurately identify multiple activities with 99.55% accuracy, and estimate ([Formula: see text]: 6.3%) and predict 200-ms-ahead ([Formula: see text]: 8.6%) the gait phase percentage in real time, which are on average 57.7 and 54.0% smaller than the error from the event-based method in the same conditions. This study showcases a solution to estimate and predict gait status for multiple unrhythmic activities, which may be deployed to controllers for wearable robots or health monitoring devices.Gait patterns are critical to health monitoring, gait impairment assessment, and wearable device control. Unrhythmic gait pattern detection under community-based conditions is a new frontier in this area. The present paper describes a high-accuracy gait phase estimation and prediction algorithm built on a two-stage artificial neural network. This work targets to develop an algorithm that can estimate and predict the gait cycle in real time using a portable controller with only two IMU sensors (one on each thigh) in the community setting. Our algorithm can detect the gait phase in unrhythmic conditions during walking, stair ascending, and stair descending, and classify these activities with standing. Moreover, our algorithm is able to predict both future intra- and inter-stride gait phases, offering a potential means to improve wearable device controller performance. The proposed data-driven algorithm is based on a dataset consisting of 5 able-bodied subjects and validated on 3 different able-bodied subjects. Under unrhythmic activity situations, validation shows that the algorithm can accurately identify multiple activities with 99.55% accuracy, and estimate ([Formula: see text]: 6.3%) and predict 200-ms-ahead ([Formula: see text]: 8.6%) the gait phase percentage in real time, which are on average 57.7 and 54.0% smaller than the error from the event-based method in the same conditions. This study showcases a solution to estimate and predict gait status for multiple unrhythmic activities, which may be deployed to controllers for wearable robots or health monitoring devices.
Gait patterns are critical to health monitoring, gait impairment assessment, and wearable device control. Unrhythmic gait pattern detection under community-based conditions is a new frontier in this area. The present paper describes a high-accuracy gait phase estimation and prediction algorithm built on a two-stage artificial neural network. This work targets to develop an algorithm that can estimate and predict the gait cycle in real time using a portable controller with only two IMU sensors (one on each thigh) in the community setting. Our algorithm can detect the gait phase in unrhythmic conditions during walking, stair ascending, and stair descending, and classify these activities with standing. Moreover, our algorithm is able to predict both future intra- and inter-stride gait phases, offering a potential means to improve wearable device controller performance. The proposed data-driven algorithm is based on a dataset consisting of 5 able-bodied subjects and validated on 3 different able-bodied subjects. Under unrhythmic activity situations, validation shows that the algorithm can accurately identify multiple activities with 99.55% accuracy, and estimate ([Formula: see text]: 6.3%) and predict 200-ms-ahead ([Formula: see text]: 8.6%) the gait phase percentage in real time, which are on average 57.7 and 54.0% smaller than the error from the event-based method in the same conditions. This study showcases a solution to estimate and predict gait status for multiple unrhythmic activities, which may be deployed to controllers for wearable robots or health monitoring devices.
Author Hameed, Farah
Zhu, Junxi
Su, Hao
Yang, Jianfu
Visco, Christopher J.
Stein, Joel
Zhou, Xianlian
Huang, Tzu-Hao
Yu, Shuangyue
Author_xml – sequence: 1
  givenname: Shuangyue
  surname: Yu
  fullname: Yu, Shuangyue
  organization: Lab of Biomechatronics and Intelligent Robotics (BIRO), Department of Mechanical and Aerospace Engineering, North Carolina State University
– sequence: 2
  givenname: Jianfu
  surname: Yang
  fullname: Yang, Jianfu
  organization: Lab of Biomechatronics and Intelligent Robotics (BIRO), Department of Mechanical and Aerospace Engineering, North Carolina State University
– sequence: 3
  givenname: Tzu-Hao
  surname: Huang
  fullname: Huang, Tzu-Hao
  organization: Lab of Biomechatronics and Intelligent Robotics (BIRO), Department of Mechanical and Aerospace Engineering, North Carolina State University
– sequence: 4
  givenname: Junxi
  surname: Zhu
  fullname: Zhu, Junxi
  organization: Lab of Biomechatronics and Intelligent Robotics (BIRO), Department of Mechanical and Aerospace Engineering, North Carolina State University
– sequence: 5
  givenname: Christopher J.
  surname: Visco
  fullname: Visco, Christopher J.
  organization: Department of Rehabilitation and Regenerative Medicine, Columbia University Vagelos College of Physicians and Surgeons
– sequence: 6
  givenname: Farah
  surname: Hameed
  fullname: Hameed, Farah
  organization: Department of Rehabilitation and Regenerative Medicine, Columbia University Vagelos College of Physicians and Surgeons
– sequence: 7
  givenname: Joel
  surname: Stein
  fullname: Stein, Joel
  organization: Department of Rehabilitation and Regenerative Medicine, Columbia University Vagelos College of Physicians and Surgeons
– sequence: 8
  givenname: Xianlian
  surname: Zhou
  fullname: Zhou, Xianlian
  organization: Department of Biomedical Engineering, New Jersey Institute of Technology
– sequence: 9
  givenname: Hao
  orcidid: 0000-0003-3299-7418
  surname: Su
  fullname: Su, Hao
  email: hao.su796@ncsu.edu
  organization: Lab of Biomechatronics and Intelligent Robotics (BIRO), Department of Mechanical and Aerospace Engineering, North Carolina State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36681749$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuFDEQRa0oKJkM_EAWqCU2LGJw2e3XcjLKS4ogC1gbt9sNDj3dwXaD5u_xPJJIWWRVKuvcctW9J-hwGAeP0CmQT0CI_JyA1ExjQhkmDDjg9QGaAZcMa6HEIZoRogkWWtTH6CSle0IAFONH6JgJoUDWeoZ-LGIOXXDB9tUXP8Vtyf_G-Buf2-TbauFy-Bty8Kla9jalDWxzGIez6sqGXN39Klh1kXJY7Z_t0FZ30bfBbfq36E1n--Tf7escfb-8-La8xrdfr26Wi1vsmOQZN5SBpB1lXhLNuK-1Bc47UI2H2lJh68bVDVjfdFIQ1jAgTrlWSd1BTZljc_RxN_chjn8mn7JZheR839vBj1MyVApFmdbACvrhBXo_TnEo2xmqKOeK6-LTHL3fU1Oz8q15iOXCuDaP3hWA7gAXx5Si754QIGYTkNkFZEpAZhuQWReReiFyIW-Ny9GG_nUp20lT-Wf46ePz2q-o_gO24KQw
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3297724
crossref_primary_10_3390_s23063032
crossref_primary_10_1109_TNSRE_2025_3595496
crossref_primary_10_1007_s11063_023_11324_y
crossref_primary_10_3390_s25144302
crossref_primary_10_1088_2516_1091_ada333
crossref_primary_10_1109_JSEN_2024_3406596
crossref_primary_10_1109_TASE_2025_3545899
crossref_primary_10_1109_TIM_2025_3548067
crossref_primary_10_1109_ACCESS_2025_3580867
crossref_primary_10_1109_TIM_2025_3580898
crossref_primary_10_1109_JBHI_2024_3380099
crossref_primary_10_1007_s42235_025_00723_7
crossref_primary_10_1109_ACCESS_2024_3414175
crossref_primary_10_1109_JBHI_2025_3561380
crossref_primary_10_3390_s24196318
Cites_doi 10.1109/TBME.2021.3065809
10.1016/j.neucom.2019.06.081
10.1109/TBME.2008.2003293
10.1089/soro.2016.0030
10.1109/LRA.2017.2734239
10.1126/science.aav7536
10.1109/JBHI.2018.2865218
10.1038/s41598-021-94449-1
10.1109/TNSRE.2020.2987155
10.3390/s18020394
10.1109/TRO.2020.3005533
10.1109/TBME.2011.2161671
10.3390/s19132988
10.1109/TBME.2017.2750139
10.3390/s151229858
10.1109/TNSRE.2018.2819508
10.1371/journal.pone.0056137
10.1016/j.jbiomech.2011.01.030
10.1109/LRA.2019.2931427
10.1126/science.aal5054
10.1038/s41598-018-22676-0
10.1115/1.4029336
10.1038/323533a0
10.3389/frobt.2018.00078
10.1109/TMRB.2020.3021132
10.1109/TMRB.2019.2961749
10.1109/IROS.2015.7354129
10.1109/ICORR.2019.8779554
10.1115/DMD2019-3266
10.1109/ICRA.2018.8460841
10.1109/BioRob49111.2020.9224359
10.1145/3219819.3220124
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Biomedical Engineering Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s) under exclusive licence to Biomedical Engineering Society.
Copyright_xml – notice: The Author(s) under exclusive licence to Biomedical Engineering Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7X7
7XB
88E
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0S
M1P
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
DOI 10.1007/s10439-023-03151-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1573-9686
EndPage 1484
ExternalDocumentID 36681749
10_1007_s10439_023_03151_y
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: CMMI 1944655; 2026622
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: National Institute on Disability, Independent Living, and Rehabilitation Research
  grantid: 90DPGE0011
  funderid: http://dx.doi.org/10.13039/100009157
– fundername: National Institutes of Health
  grantid: R01EB029765
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: ACL HHS
  grantid: 90DPGE0011
– fundername: NIH HHS
  grantid: R01EB029765
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6J9
6NX
78A
7X7
85S
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L6V
L7B
LAK
LK8
LLZTM
M1P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UKR
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8N
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
ZY4
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
7X8
PUEGO
ID FETCH-LOGICAL-c375t-b23172f23e70935e49a155f18be14a26a4bc4b1aebf7603b310c8cd879f1423c3
IEDL.DBID M7P
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000932319200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-6964
1573-9686
IngestDate Thu Oct 02 10:10:32 EDT 2025
Wed Nov 05 14:51:53 EST 2025
Mon Jul 21 06:06:16 EDT 2025
Tue Nov 18 22:31:40 EST 2025
Sat Nov 29 01:37:17 EST 2025
Fri Feb 21 02:43:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Gait phase detection
Exoskeleton
Activities classification
Artificial neural networks
Language English
License 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-b23172f23e70935e49a155f18be14a26a4bc4b1aebf7603b310c8cd879f1423c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3299-7418
PMID 36681749
PQID 2825585918
PQPubID 54090
PageCount 14
ParticipantIDs proquest_miscellaneous_2768239913
proquest_journals_2825585918
pubmed_primary_36681749
crossref_primary_10_1007_s10439_023_03151_y
crossref_citationtrail_10_1007_s10439_023_03151_y
springer_journals_10_1007_s10439_023_03151_y
PublicationCentury 2000
PublicationDate 20230700
2023-07-00
2023-Jul
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 7
  year: 2023
  text: 20230700
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
– name: New York
PublicationSubtitle The Journal of the Biomedical Engineering Society
PublicationTitle Annals of biomedical engineering
PublicationTitleAbbrev Ann Biomed Eng
PublicationTitleAlternate Ann Biomed Eng
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Sugar, Bates, Holgate, Kerestes, Mignolet, New, Ramachandran, Redkar, Wheeler (CR27) 2015; 7
Carcreff, Gerber, Paraschiv-Ionescu, De Coulon, Newman, Armand, Aminian (CR5) 2018; 18
Filli, Sutter, Easthope, Killeen, Meyer, Reuter, Lörincz, Bolliger, Weller, Curt (CR9) 2018; 8
Attal, Mohammed, Dedabrishvili, Chamroukhi, Oukhellou, Amirat (CR1) 2015; 15
CR18
Gao, Liu, Liang, Liao (CR10) 2020; 28
CR16
Swami, Lenhard, Kang (CR28) 2021; 11
Huang, Zhang, Hargrove, Dou, Rogers, Englehart (CR14) 2011; 58
CR11
Yu, Huang, Wang, Lynn, Sayd, Silivanov, Park, Tian, Su (CR32) 2019; 4
CR30
Choi, Park, Seo, Lee, Lee, Shim (CR6) 2017; 3
Elery, Rezazadeh, Nesler, Gregg (CR8) 2020; 36
Camargo, Flanagan, Csomay-Shanklin, Kanwar, Young (CR3) 2021; 68
Zhang, Fiers, Witte, Jackson, Poggensee, Atkeson, Collins (CR33) 2017; 356
Wang, Yan, Xiao (CR29) 2019; 31
Culver, Bartlett, Shultz, Goldfarb (CR7) 2018; 26
Huang, Kuiken, Lipschutz (CR13) 2008; 56
Hu, Rouse, Hargrove (CR12) 2018; 5
CR26
Kang, Kunapuli, Young (CR17) 2019; 2
CR25
Li, Derrode, Pieczynski (CR21) 2019; 362
Malcolm, Derave, Galle, De Clercq (CR22) 2013; 8
Rumelhart, Hinton, Williams (CR23) 1986; 323
Yap, Ng, Yeow (CR31) 2016; 3
Bartlett, Goldfarb (CR2) 2017; 65
Kim, Lee, Heimgartner, Revi, Karavas, Nathanson, Galiana, Eckert-Erdheim, Murphy, Perry (CR19) 2019; 365
Sánchez Manchola, Bernal, Munera, Cifuentes (CR24) 2019; 19
Hutabarat, Owaki, Hayashibe (CR15) 2020; 2
Caramia, Torricelli, Schmid, Muñoz-Gonzalez, Gonzalez-Vargas, Grandas, Pons (CR4) 2018; 22
Lewis, Ferris (CR20) 2011; 44
H Huang (3151_CR14) 2011; 58
TG Sugar (3151_CR27) 2015; 7
HL Bartlett (3151_CR2) 2017; 65
3151_CR26
P Malcolm (3151_CR22) 2013; 8
HK Yap (3151_CR31) 2016; 3
3151_CR25
J Zhang (3151_CR33) 2017; 356
MD Sánchez Manchola (3151_CR24) 2019; 19
H Li (3151_CR21) 2019; 362
J Camargo (3151_CR3) 2021; 68
L Filli (3151_CR9) 2018; 8
H Choi (3151_CR6) 2017; 3
DE Rumelhart (3151_CR23) 1986; 323
L Carcreff (3151_CR5) 2018; 18
H Huang (3151_CR13) 2008; 56
I Kang (3151_CR17) 2019; 2
S Culver (3151_CR7) 2018; 26
J Kim (3151_CR19) 2019; 365
CL Lewis (3151_CR20) 2011; 44
F Attal (3151_CR1) 2015; 15
3151_CR16
Y Hutabarat (3151_CR15) 2020; 2
3151_CR18
F Wang (3151_CR29) 2019; 31
3151_CR11
T Elery (3151_CR8) 2020; 36
3151_CR30
F Gao (3151_CR10) 2020; 28
B Hu (3151_CR12) 2018; 5
CP Swami (3151_CR28) 2021; 11
S Yu (3151_CR32) 2019; 4
C Caramia (3151_CR4) 2018; 22
References_xml – ident: CR18
– volume: 68
  start-page: 1569
  issue: 5
  year: 2021
  end-page: 1578
  ident: CR3
  article-title: A machine learning strategy for locomotion classification and parameter estimation using fusion of wearable sensors
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3065809
– volume: 362
  start-page: 94
  year: 2019
  end-page: 105
  ident: CR21
  article-title: An adaptive and on-line IMU-based locomotion activity classification method using a triplet Markov model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.06.081
– volume: 56
  start-page: 65
  issue: 1
  year: 2008
  end-page: 73
  ident: CR13
  article-title: A strategy for identifying locomotion modes using surface electromyography
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2003293
– volume: 3
  start-page: 144
  issue: 3
  year: 2016
  end-page: 158
  ident: CR31
  article-title: High-force soft printable pneumatics for soft robotic applications
  publication-title: Soft Robot.
  doi: 10.1089/soro.2016.0030
– volume: 3
  start-page: 411
  issue: 1
  year: 2017
  end-page: 418
  ident: CR6
  article-title: A multifunctional ankle exoskeleton for mobility enhancement of gait-impaired individuals and seniors
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2017.2734239
– volume: 365
  start-page: 668
  issue: 6454
  year: 2019
  end-page: 672
  ident: CR19
  article-title: Reducing the metabolic rate of walking and running with a versatile, portable exosuit
  publication-title: Science
  doi: 10.1126/science.aav7536
– ident: CR16
– volume: 22
  start-page: 1765
  issue: 6
  year: 2018
  end-page: 1774
  ident: CR4
  article-title: IMU-based classification of Parkinson's disease from gait: a sensitivity analysis on sensor location and feature selection
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2865218
– ident: CR30
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 13
  ident: CR28
  article-title: A novel framework for designing a multi-DoF prosthetic wrist control using machine learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-94449-1
– volume: 28
  start-page: 1334
  issue: 6
  year: 2020
  end-page: 1343
  ident: CR10
  article-title: IMU-based locomotion mode identification for transtibial prostheses, orthoses, and exoskeletons
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2987155
– volume: 31
  start-page: 3041
  issue: 10
  year: 2019
  end-page: 3054
  ident: CR29
  article-title: Recognition of the gait phase based on new deep learning algorithm using multisensor information fusion
  publication-title: Sens. Mater.
– volume: 18
  start-page: 394
  issue: 2
  year: 2018
  ident: CR5
  article-title: What is the best configuration of wearable sensors to measure spatiotemporal gait parameters in children with cerebral palsy?
  publication-title: Sensors
  doi: 10.3390/s18020394
– volume: 36
  start-page: 1649
  issue: 6
  year: 2020
  end-page: 1668
  ident: CR8
  article-title: Design and validation of a powered knee–ankle prosthesis with high-torque, low-impedance actuators
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2020.3005533
– volume: 58
  start-page: 2867
  issue: 10
  year: 2011
  end-page: 2875
  ident: CR14
  article-title: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular–mechanical fusion
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2161671
– volume: 19
  start-page: 2988
  issue: 13
  year: 2019
  ident: CR24
  article-title: Gait phase detection for lower-limb exoskeletons using foot motion data from a single inertial measurement unit in hemiparetic individuals
  publication-title: Sensors
  doi: 10.3390/s19132988
– volume: 65
  start-page: 1330
  issue: 6
  year: 2017
  end-page: 1338
  ident: CR2
  article-title: A phase variable approach for IMU-based locomotion activity recognition
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2750139
– ident: CR25
– volume: 15
  start-page: 31314
  issue: 12
  year: 2015
  end-page: 31338
  ident: CR1
  article-title: Physical human activity recognition using wearable sensors
  publication-title: Sensors
  doi: 10.3390/s151229858
– volume: 26
  start-page: 993
  issue: 5
  year: 2018
  end-page: 1002
  ident: CR7
  article-title: A stair ascent and descent controller for a powered ankle prosthesis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2819508
– volume: 8
  issue: 2
  year: 2013
  ident: CR22
  article-title: A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0056137
– volume: 44
  start-page: 789
  issue: 5
  year: 2011
  end-page: 793
  ident: CR20
  article-title: Invariant hip moment pattern while walking with a robotic hip exoskeleton
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.01.030
– ident: CR11
– volume: 4
  start-page: 4579
  issue: 4
  year: 2019
  end-page: 4586
  ident: CR32
  article-title: Design and control of a high-torque and highly backdriveable hybrid soft exoskeleton for knee injury prevention during squatting
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2931427
– volume: 356
  start-page: 1280
  issue: 6344
  year: 2017
  end-page: 1284
  ident: CR33
  article-title: Human-in-the-loop optimization of exoskeleton assistance during walking
  publication-title: Science
  doi: 10.1126/science.aal5054
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 13
  ident: CR9
  article-title: Profiling walking dysfunction in multiple sclerosis: characterisation, classification and progression over time
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22676-0
– volume: 7
  issue: 1
  year: 2015
  ident: CR27
  article-title: Limit cycles to enhance human performance based on phase oscillators
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4029336
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  end-page: 536
  ident: CR23
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: CR26
– volume: 5
  start-page: 78
  year: 2018
  ident: CR12
  article-title: Fusion of bilateral lower-limb neuromechanical signals improves prediction of locomotor activities
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2018.00078
– volume: 2
  start-page: 639
  issue: 4
  year: 2020
  end-page: 648
  ident: CR15
  article-title: Quantitative gait assessment with feature-rich diversity using two IMU sensors
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2020.3021132
– volume: 2
  start-page: 28
  issue: 1
  year: 2019
  end-page: 37
  ident: CR17
  article-title: Real-time neural network-based gait phase estimation using a robotic hip exoskeleton
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2019.2961749
– volume: 36
  start-page: 1649
  issue: 6
  year: 2020
  ident: 3151_CR8
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2020.3005533
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 3151_CR28
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-94449-1
– volume: 31
  start-page: 3041
  issue: 10
  year: 2019
  ident: 3151_CR29
  publication-title: Sens. Mater.
– volume: 26
  start-page: 993
  issue: 5
  year: 2018
  ident: 3151_CR7
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2819508
– volume: 18
  start-page: 394
  issue: 2
  year: 2018
  ident: 3151_CR5
  publication-title: Sensors
  doi: 10.3390/s18020394
– volume: 15
  start-page: 31314
  issue: 12
  year: 2015
  ident: 3151_CR1
  publication-title: Sensors
  doi: 10.3390/s151229858
– ident: 3151_CR16
  doi: 10.1109/IROS.2015.7354129
– volume: 28
  start-page: 1334
  issue: 6
  year: 2020
  ident: 3151_CR10
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2987155
– volume: 65
  start-page: 1330
  issue: 6
  year: 2017
  ident: 3151_CR2
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2750139
– volume: 58
  start-page: 2867
  issue: 10
  year: 2011
  ident: 3151_CR14
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2161671
– volume: 44
  start-page: 789
  issue: 5
  year: 2011
  ident: 3151_CR20
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.01.030
– volume: 56
  start-page: 65
  issue: 1
  year: 2008
  ident: 3151_CR13
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2003293
– volume: 3
  start-page: 144
  issue: 3
  year: 2016
  ident: 3151_CR31
  publication-title: Soft Robot.
  doi: 10.1089/soro.2016.0030
– ident: 3151_CR26
  doi: 10.1109/ICORR.2019.8779554
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 3151_CR23
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 3
  start-page: 411
  issue: 1
  year: 2017
  ident: 3151_CR6
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2017.2734239
– volume: 5
  start-page: 78
  year: 2018
  ident: 3151_CR12
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2018.00078
– ident: 3151_CR30
  doi: 10.1115/DMD2019-3266
– volume: 4
  start-page: 4579
  issue: 4
  year: 2019
  ident: 3151_CR32
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2931427
– volume: 68
  start-page: 1569
  issue: 5
  year: 2021
  ident: 3151_CR3
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3065809
– volume: 2
  start-page: 639
  issue: 4
  year: 2020
  ident: 3151_CR15
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2020.3021132
– volume: 2
  start-page: 28
  issue: 1
  year: 2019
  ident: 3151_CR17
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2019.2961749
– volume: 362
  start-page: 94
  year: 2019
  ident: 3151_CR21
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.06.081
– ident: 3151_CR25
  doi: 10.1109/ICRA.2018.8460841
– volume: 7
  issue: 1
  year: 2015
  ident: 3151_CR27
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4029336
– volume: 19
  start-page: 2988
  issue: 13
  year: 2019
  ident: 3151_CR24
  publication-title: Sensors
  doi: 10.3390/s19132988
– ident: 3151_CR18
  doi: 10.1109/BioRob49111.2020.9224359
– volume: 356
  start-page: 1280
  issue: 6344
  year: 2017
  ident: 3151_CR33
  publication-title: Science
  doi: 10.1126/science.aal5054
– volume: 22
  start-page: 1765
  issue: 6
  year: 2018
  ident: 3151_CR4
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2865218
– ident: 3151_CR11
  doi: 10.1145/3219819.3220124
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 3151_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22676-0
– volume: 365
  start-page: 668
  issue: 6454
  year: 2019
  ident: 3151_CR19
  publication-title: Science
  doi: 10.1126/science.aav7536
– volume: 8
  issue: 2
  year: 2013
  ident: 3151_CR22
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0056137
SSID ssj0011835
Score 2.5048783
Snippet Gait patterns are critical to health monitoring, gait impairment assessment, and wearable device control. Unrhythmic gait pattern detection under...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1471
SubjectTerms Algorithms
Artificial neural networks
Biochemistry
Biological and Medical Physics
Biomechanical Phenomena
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Classical Mechanics
Controllers
Gait
Humans
Lower Extremity
Movement Disorders
Neural networks
Neural Networks, Computer
Original Article
Real time
Thigh
Walking
Wearable computers
Wearable technology
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6xMk3wAKxjI4whT9rbsIST1D8ey0ThYVQVsIm3zE4cgcQCasuk_vfcOUnbiW0Se4qSXGLLPvvudL7vA_hkClNIH2suCYEwVVJyh0EPjz06477URtoA4vpVDYf66sqMmqKwSXvavU1Jhp16qdgNjSdHG8OJmUDw2QtYRXOnibDh_OL7PHeASlrzFhgMjIxMm1KZP__jd3P0xMd8kh8NZmew-X8d3oKNxs1k_VovXsOKr7qwvgQ-2IVXZ01a_Q38ILkaSoIRWke4hOPh_AitXMH6eSCZwKiaBRZNEg5TesBO7M2Uja5RjB3jdvGzeWyrgo3G1ALdb8O3wfHll1PeUC_wPFG9KXfo9qm4jBOvKFPqU2PR8SiFdl6kNpY2dXnqhPWuVPIwcegk5jovtDKlQActT95Cp7qr_A6w0rrYeWWJ7Cp1SrhCl6Iok55T1h72XASinYEsb3DJiR7jNlsgKtNAZjiQWRjIbBbB5_k39zUqxz-l99qJzZoVOsmoZrdH4H06go_z17i2KGFiK3_3gDIYi1Htr0gieFcrxLy5REqN0ZyJ4KCd_cXP_96X3eeJv4e1OCgQnQ_eg850_OA_wMv81_RmMt4Pev8IfoP7DQ
  priority: 102
  providerName: Springer Nature
Title Artificial Neural Network-Based Activities Classification, Gait Phase Estimation, and Prediction
URI https://link.springer.com/article/10.1007/s10439-023-03151-y
https://www.ncbi.nlm.nih.gov/pubmed/36681749
https://www.proquest.com/docview/2825585918
https://www.proquest.com/docview/2768239913
Volume 51
WOSCitedRecordID wos000932319200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-9686
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011835
  issn: 0090-6964
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFqFy4FEoDZRVkLhRizoPP06oRVs4wCpqAa24BNtx1Eol2-5ukfrvmXG8u6CKXrg4SjJJLM3YM5Oxvw_gtW50I3ymmCAEwkIKwSwmPSzzGIz7VmlhAojrJzkaqfFYV_GH2ywuq1zMiWGibiaO_pG_pT2WJYGtqXcXl4xYo6i6Gik01mCDUBKysHSvWlYR0Fx7BgONKZIWRdw0E7fOoStm6LEY8Rxwdv23Y7oRbd6olAYHdPTwf7v-CB7E0DM96G3lMdzx3Rbc_wOQcAvufY6l9ifwg-R6eImUEDzCISwZZ4fo-Zr0wAXiCcy008CsScJBzXvpB3M2T6tTFEuHOIX8jJdN16TVlL5A50_h69Hwy_uPLNIxMJfLcs4shoIya7PcS6qe-kIbDEZarqznhcmEKawrLDfetlLs5xYDR6dco6RuOQZtLt-G9W7S-R1IW2Mz66UhAqzCSm4b1fKmzUsrjdkvbQJ8oYvaRaxyosw4r1coy6S_GvVXB_3V1wm8WT5z0SN13Cq9u9BVHUftrF4pKoFXy9s43qiIYjo_uUIZzM9oPzDPE3jWm8byc7kQCjM8ncDewlZWL_93X57f3pcXsJkFO6U1wruwPp9e-Zdw1_2an82mA1iTYxlaNYCNw-GoOh6EURDaE2yr8ju2xyfffgM70gsI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgngceBQKhgKLBCe6Il6vd70HhAq0tGoa5VCkiou7a6_VSOCUJAXlT_EbmVnbCaiitx44WbEnthN_8_LsfAPw0pSmVF5kXBEDodRKcYdJDxceg3FfZUbZQOLa14NBdnRkhivwq-uFoWWVnU0MhrocF_SO_A31WKZEtpa9O_3OaWoUVVe7ERoNLPb9_CembNO3ex_x-b4SYmf78MMub6cK8CLR6Yw7jGi0qETiNRUBvTQWfWoVZ87H0gplpSuki613lVa9xGH8U2RFmWlTxRh7FAme9wpclVL0SIuG6ZdF1QLVo5mYYDAlM0q2TTptqx66fo4ektNchZjP_3aE56Lbc5XZ4PB27vxvf9VduN2G1myr0YV7sOLrNbj1B-HiGlw_aJcS3IdjkmvoMxgxlIRNWBLP36NnL9lWEQZrjPyUhcmhJBxgvMk-2dGMDU9QjG2jifzW7rZ1yYYTugJ9fgCfL-XXrsNqPa79I2CVdcJ5bWnAl3Q6dmVWxWWVpE5b20tdBHH37POi5WKnkSBf8yWLNOElR7zkAS_5PILXi--cNkwkF0pvdNjIW6s0zZfAiODF4jDaEyoS2dqPz1AG80_qd46TCB42UFxcLlEqwwzWRLDZYXN58n_fy-OL7-U53Ng9POjn_b3B_hO4KYKO0HroDVidTc78U7hW_JiNppNnQdsYHF82Zn8DJiJgcw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qBVVwYCmbocAgwYmO2vEyYx8QKrSBqiXyAaSqF3fGnhGRwClJCspf49fx3nicgCp664GTFed5SfzNW_yWD-BF0RSNtHHOJU0gTJWU3GDQw2OLzrh1eSG1H-J6qIbD_OioKFfgV98LQ2WVvU70iroZ1_SOfIt6LDMatpZvuVAWUe4O3px-58QgRZnWnk6jg8iBnf_E8G36en8Xn_XLOB7sfXr3gQeGAV4nKptxg96Nil2cWEUJQZsWGu2rE7mxItWx1KmpUyO0NU7J7cSgL1TndZOrwgn0Q-oEz3sFriqMMamcsMyOFxkMXCode0KB4Vkh09CwE9r20A3gaC05cSwIPv_bKJ7zdM9lab3xG9z6n_-223AzuNxsp1sjd2DFtutw449BjOuw9jGUGNyFE5LrxmowmlziN75Unr9Fi9-wndoTbozslHlGURL28N5k7_VoxsovKMb2UHV-C7t127ByQlegz_fg86X82vuw2o5b-xCY0yY2Vmki_kqNEqbJnWhckhml9XZmIhA9Dqo6zGgnqpCv1XK6NGGnQuxUHjvVPIJXi2NOuwklF0pv9DipgraaVkuQRPB88TXqGUoe6daOz1AG41LqgxZJBA86WC4ul0iZY2RbRLDZ43R58n_fy6OL7-UZrCFUq8P94cFjuB775UJl0huwOpuc2Sdwrf4xG00nT_3CY3By2ZD9DTy2aT0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Network-Based+Activities+Classification%2C+Gait+Phase+Estimation%2C+and+Prediction&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Yu%2C+Shuangyue&rft.au=Yang%2C+Jianfu&rft.au=Huang%2C+Tzu-Hao&rft.au=Zhu%2C+Junxi&rft.date=2023-07-01&rft.issn=1573-9686&rft.eissn=1573-9686&rft.volume=51&rft.issue=7&rft.spage=1471&rft_id=info:doi/10.1007%2Fs10439-023-03151-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon