The impact of iterative reconstruction algorithms on machine learning-based coronary CT angiography-derived fractional flow reserve (CT-FFRML) values

To evaluate the impact of an iterative reconstruction (IR) algorithm (advanced modeled iterative reconstruction, ADMIRE) on machine learning-based coronary computed tomography angiography–derived fractional flow reserve (CT-FFR ML ) measurements compared with filtered back projection (FBP). 170 plaq...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The International Journal of Cardiovascular Imaging Ročník 36; číslo 6; s. 1177 - 1185
Hlavní autoři: Li, Shujiao, Chen, Chihua, Qin, Le, Gu, Shengjia, Zhang, Huan, Yan, Fuhua, Yang, Wenjie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.06.2020
Springer Nature B.V
Témata:
ISSN:1569-5794, 1875-8312, 1573-0743, 1875-8312
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To evaluate the impact of an iterative reconstruction (IR) algorithm (advanced modeled iterative reconstruction, ADMIRE) on machine learning-based coronary computed tomography angiography–derived fractional flow reserve (CT-FFR ML ) measurements compared with filtered back projection (FBP). 170 plaque-containing vessels in 107 patients were included. CT-FFR ML values were measured and compared among 5 imaging reconstruction algorithms (FBP and ADMIRE at strength levels of 1, 2, 3 and 5). The plaques were classified as, ‘calcified” or “noncalcified” and “≥ 50% stenosis” or “< 50% stenosis’, a total of four subgroups by consensus. There were no significant differences of CT-FFR ML values among the FBP and ADMIRE 1, 2, 3 and 5 groups wherever comparisons were done at the level of subgroups (P = 0.676, 0.414, 0.849, 0.873, respectively) or overall (P = 0.072). There were 20, 21, 19, 19 and 29 vessels with lesion-specific ischemia (CT-FFR ML  ≤ 0.80) in FBP and ADMIRE 1, 2, 3 and 5 datasets, respectively, but no statistical differences were found (P = 0.437). Compared with CT-FFR ML value of FBP dataset, the CT-FFR ML values of 9 (5.3%) vessels from 8 patients (7.5%) in ADMIRE5 dataset switched from above 0.8 to below or equal to 0.8. There were no significant differences of the CT-FFR ML values among the FBP and IR image algorithms at different strength levels. However, high iterative strength level (ADMIRE 5) was not recommended, which might have an impact on diagnosis of lesion-specific ischemia, although changes only occurred in a modest number of subjects.
AbstractList To evaluate the impact of an iterative reconstruction (IR) algorithm (advanced modeled iterative reconstruction, ADMIRE) on machine learning-based coronary computed tomography angiography-derived fractional flow reserve (CT-FFRML) measurements compared with filtered back projection (FBP). 170 plaque-containing vessels in 107 patients were included. CT-FFRML values were measured and compared among 5 imaging reconstruction algorithms (FBP and ADMIRE at strength levels of 1, 2, 3 and 5). The plaques were classified as, 'calcified" or "noncalcified" and "≥ 50% stenosis" or "< 50% stenosis', a total of four subgroups by consensus. There were no significant differences of CT-FFRML values among the FBP and ADMIRE 1, 2, 3 and 5 groups wherever comparisons were done at the level of subgroups (P = 0.676, 0.414, 0.849, 0.873, respectively) or overall (P = 0.072). There were 20, 21, 19, 19 and 29 vessels with lesion-specific ischemia (CT-FFRML ≤ 0.80) in FBP and ADMIRE 1, 2, 3 and 5 datasets, respectively, but no statistical differences were found (P = 0.437). Compared with CT-FFRML value of FBP dataset, the CT-FFRML values of 9 (5.3%) vessels from 8 patients (7.5%) in ADMIRE5 dataset switched from above 0.8 to below or equal to 0.8. There were no significant differences of the CT-FFRML values among the FBP and IR image algorithms at different strength levels. However, high iterative strength level (ADMIRE 5) was not recommended, which might have an impact on diagnosis of lesion-specific ischemia, although changes only occurred in a modest number of subjects.To evaluate the impact of an iterative reconstruction (IR) algorithm (advanced modeled iterative reconstruction, ADMIRE) on machine learning-based coronary computed tomography angiography-derived fractional flow reserve (CT-FFRML) measurements compared with filtered back projection (FBP). 170 plaque-containing vessels in 107 patients were included. CT-FFRML values were measured and compared among 5 imaging reconstruction algorithms (FBP and ADMIRE at strength levels of 1, 2, 3 and 5). The plaques were classified as, 'calcified" or "noncalcified" and "≥ 50% stenosis" or "< 50% stenosis', a total of four subgroups by consensus. There were no significant differences of CT-FFRML values among the FBP and ADMIRE 1, 2, 3 and 5 groups wherever comparisons were done at the level of subgroups (P = 0.676, 0.414, 0.849, 0.873, respectively) or overall (P = 0.072). There were 20, 21, 19, 19 and 29 vessels with lesion-specific ischemia (CT-FFRML ≤ 0.80) in FBP and ADMIRE 1, 2, 3 and 5 datasets, respectively, but no statistical differences were found (P = 0.437). Compared with CT-FFRML value of FBP dataset, the CT-FFRML values of 9 (5.3%) vessels from 8 patients (7.5%) in ADMIRE5 dataset switched from above 0.8 to below or equal to 0.8. There were no significant differences of the CT-FFRML values among the FBP and IR image algorithms at different strength levels. However, high iterative strength level (ADMIRE 5) was not recommended, which might have an impact on diagnosis of lesion-specific ischemia, although changes only occurred in a modest number of subjects.
To evaluate the impact of an iterative reconstruction (IR) algorithm (advanced modeled iterative reconstruction, ADMIRE) on machine learning-based coronary computed tomography angiography-derived fractional flow reserve (CT-FFR ) measurements compared with filtered back projection (FBP). 170 plaque-containing vessels in 107 patients were included. CT-FFR values were measured and compared among 5 imaging reconstruction algorithms (FBP and ADMIRE at strength levels of 1, 2, 3 and 5). The plaques were classified as, 'calcified" or "noncalcified" and "≥ 50% stenosis" or "< 50% stenosis', a total of four subgroups by consensus. There were no significant differences of CT-FFR values among the FBP and ADMIRE 1, 2, 3 and 5 groups wherever comparisons were done at the level of subgroups (P = 0.676, 0.414, 0.849, 0.873, respectively) or overall (P = 0.072). There were 20, 21, 19, 19 and 29 vessels with lesion-specific ischemia (CT-FFR  ≤ 0.80) in FBP and ADMIRE 1, 2, 3 and 5 datasets, respectively, but no statistical differences were found (P = 0.437). Compared with CT-FFR value of FBP dataset, the CT-FFR values of 9 (5.3%) vessels from 8 patients (7.5%) in ADMIRE5 dataset switched from above 0.8 to below or equal to 0.8. There were no significant differences of the CT-FFR values among the FBP and IR image algorithms at different strength levels. However, high iterative strength level (ADMIRE 5) was not recommended, which might have an impact on diagnosis of lesion-specific ischemia, although changes only occurred in a modest number of subjects.
To evaluate the impact of an iterative reconstruction (IR) algorithm (advanced modeled iterative reconstruction, ADMIRE) on machine learning-based coronary computed tomography angiography–derived fractional flow reserve (CT-FFRML) measurements compared with filtered back projection (FBP). 170 plaque-containing vessels in 107 patients were included. CT-FFRML values were measured and compared among 5 imaging reconstruction algorithms (FBP and ADMIRE at strength levels of 1, 2, 3 and 5). The plaques were classified as, ‘calcified” or “noncalcified” and “≥ 50% stenosis” or “< 50% stenosis’, a total of four subgroups by consensus. There were no significant differences of CT-FFRML values among the FBP and ADMIRE 1, 2, 3 and 5 groups wherever comparisons were done at the level of subgroups (P = 0.676, 0.414, 0.849, 0.873, respectively) or overall (P = 0.072). There were 20, 21, 19, 19 and 29 vessels with lesion-specific ischemia (CT-FFRML ≤ 0.80) in FBP and ADMIRE 1, 2, 3 and 5 datasets, respectively, but no statistical differences were found (P = 0.437). Compared with CT-FFRML value of FBP dataset, the CT-FFRML values of 9 (5.3%) vessels from 8 patients (7.5%) in ADMIRE5 dataset switched from above 0.8 to below or equal to 0.8. There were no significant differences of the CT-FFRML values among the FBP and IR image algorithms at different strength levels. However, high iterative strength level (ADMIRE 5) was not recommended, which might have an impact on diagnosis of lesion-specific ischemia, although changes only occurred in a modest number of subjects.
To evaluate the impact of an iterative reconstruction (IR) algorithm (advanced modeled iterative reconstruction, ADMIRE) on machine learning-based coronary computed tomography angiography–derived fractional flow reserve (CT-FFR ML ) measurements compared with filtered back projection (FBP). 170 plaque-containing vessels in 107 patients were included. CT-FFR ML values were measured and compared among 5 imaging reconstruction algorithms (FBP and ADMIRE at strength levels of 1, 2, 3 and 5). The plaques were classified as, ‘calcified” or “noncalcified” and “≥ 50% stenosis” or “< 50% stenosis’, a total of four subgroups by consensus. There were no significant differences of CT-FFR ML values among the FBP and ADMIRE 1, 2, 3 and 5 groups wherever comparisons were done at the level of subgroups (P = 0.676, 0.414, 0.849, 0.873, respectively) or overall (P = 0.072). There were 20, 21, 19, 19 and 29 vessels with lesion-specific ischemia (CT-FFR ML  ≤ 0.80) in FBP and ADMIRE 1, 2, 3 and 5 datasets, respectively, but no statistical differences were found (P = 0.437). Compared with CT-FFR ML value of FBP dataset, the CT-FFR ML values of 9 (5.3%) vessels from 8 patients (7.5%) in ADMIRE5 dataset switched from above 0.8 to below or equal to 0.8. There were no significant differences of the CT-FFR ML values among the FBP and IR image algorithms at different strength levels. However, high iterative strength level (ADMIRE 5) was not recommended, which might have an impact on diagnosis of lesion-specific ischemia, although changes only occurred in a modest number of subjects.
Author Li, Shujiao
Chen, Chihua
Gu, Shengjia
Zhang, Huan
Qin, Le
Yan, Fuhua
Yang, Wenjie
Author_xml – sequence: 1
  givenname: Shujiao
  orcidid: 0000-0001-5139-3893
  surname: Li
  fullname: Li, Shujiao
  organization: Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
– sequence: 2
  givenname: Chihua
  orcidid: 0000-0002-3547-7584
  surname: Chen
  fullname: Chen, Chihua
  organization: Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
– sequence: 3
  givenname: Le
  orcidid: 0000-0002-8244-8217
  surname: Qin
  fullname: Qin, Le
  organization: Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
– sequence: 4
  givenname: Shengjia
  orcidid: 0000-0002-5659-5133
  surname: Gu
  fullname: Gu, Shengjia
  organization: Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
– sequence: 5
  givenname: Huan
  orcidid: 0000-0001-5506-5627
  surname: Zhang
  fullname: Zhang, Huan
  organization: Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
– sequence: 6
  givenname: Fuhua
  orcidid: 0000-0003-4503-5007
  surname: Yan
  fullname: Yan, Fuhua
  organization: Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
– sequence: 7
  givenname: Wenjie
  orcidid: 0000-0002-3959-5043
  surname: Yang
  fullname: Yang, Wenjie
  email: lisa_ywj@163.com
  organization: Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32130576$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1q3DAUhU1JaX7aF-iiCLpJF2r1Y1meZRk6bWBKoUzX4o507VGwpalkJ-RB-r7VZBICWWQlCb5zru4559VJiAGr6j1nnzlj-kvmTKmaMsEo4y3TVL-qzrjSkjJdy5PDvVlQpRf1aXWe8zVjBRXyTXUqBZdM6eas-rfZIfHjHuxEYkf8hAkmf4MkoY0hT2m2k4-BwNDH5KfdmEl5jWB3PiAZEFLwoadbyOiIjSkGSHdkuSEQeh_7BPvdHXWYiqUjXYJ7NxhIN8TbMiNjKrMulxu6Wv3-uf5EbmCYMb-tXncwZHz3cF5Uf1bfNssfdP3r-9Xy65paqdVEwXWSdWzLWgCLouZWOOE0dBwbVTsnVMdbVWtsWw1Wtco5vkDdleUtaCXkRXV59N2n-LfMnczos8VhgIBxzkZIzduGFY-CfnyGXsc5lVUKVTMpaiGatlAfHqh5O6Iz--THEoh5DLwA7RGwKeacsDPWT3AIZUrgB8OZOXRrjt2aUpi579boIhXPpI_uL4rkUZQLHHpMT99-QfUfNtW3yw
CitedBy_id crossref_primary_10_1007_s00330_022_08796_2
crossref_primary_10_1155_2021_2670793
crossref_primary_10_1007_s00508_021_01970_4
Cites_doi 10.1152/japplphysiol.00752.2015
10.1056/NEJM199606273342604
10.1016/j.jcmg.2018.05.004
10.1016/j.jcct.2014.07.003
10.1148/radiol.2018171291
10.1016/j.jcct.2012.04.010
10.1093/ehjci/jex008
10.1001/2012.jama.11274
10.1097/RLI.0000000000000037
10.1148/radiol.14140992
10.1118/1.4923172
10.1161/circimaging.111.964155
10.1016/j.ejrad.2017.06.029
10.1007/s10554-013-0293-8
10.1148/radiol.2015132766
10.1161/CIRCIMAGING.117.007217
10.1016/j.crad.2014.08.012
10.1007/s00330-017-5223-z
10.1007/s00330-014-3404-6
10.1016/j.jacc.2013.11.043
10.1016/j.jcct.2016.03.002
10.1016/j.jcct.2018.10.026
10.1148/radiol.11103574
10.1097/Rct.0000000000000005
10.1016/j.jcct.2018.01.012
10.1016/j.acra.2016.05.016
10.1056/NEJMoa0806576
10.1007/s00261-018-1687-9
10.1118/1.4901670
10.1148/radiol.15142005
10.1056/NEJMoa0807611
10.1093/eurheartj/ehw188
ContentType Journal Article
Copyright Springer Nature B.V. 2020
Springer Nature B.V. 2020.
Copyright_xml – notice: Springer Nature B.V. 2020
– notice: Springer Nature B.V. 2020.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FR3
FYUFA
GHDGH
K9.
M0S
M1P
M7Z
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s10554-020-01807-7
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Biochemistry Abstracts 1
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1573-0743
1875-8312
EndPage 1185
ExternalDocumentID 32130576
10_1007_s10554_020_01807_7
Genre Journal Article
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KM
2LR
2P1
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7X7
88E
8AO
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AAWTL
AAYIU
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACAOD
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFRAH
AFWTZ
AFZKB
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AOCGG
ARMRJ
ASPBG
AXYYD
AZFZN
B-.
BA0
BDATZ
BENPR
BGNMA
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M1P
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOR
QOS
R89
R9I
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S26
S27
S28
S37
S3B
SAP
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SRMVM
SSLCW
SSXJD
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z82
Z87
Z8O
Z8V
Z91
ZMTXR
ZOVNA
~A9
AAPKM
AAUYE
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
NPM
7XB
8FD
8FK
FR3
K9.
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c375t-adf30f0b08aace241c2d2d7af1e654dd25f18547e887ac585dd19e7f130ca7523
IEDL.DBID BENPR
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000533883500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1569-5794
1875-8312
IngestDate Thu Sep 04 15:17:58 EDT 2025
Tue Nov 04 23:12:19 EST 2025
Wed Feb 19 02:30:55 EST 2025
Sat Nov 29 05:50:03 EST 2025
Tue Nov 18 21:25:26 EST 2025
Fri Feb 21 02:41:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Myocardial fractional flow reserve
Coronary computed tomography angiography
Image reconstruction
Machine learning
Coronary stenosis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-adf30f0b08aace241c2d2d7af1e654dd25f18547e887ac585dd19e7f130ca7523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5659-5133
0000-0003-4503-5007
0000-0001-5506-5627
0000-0002-8244-8217
0000-0002-3959-5043
0000-0001-5139-3893
0000-0002-3547-7584
PMID 32130576
PQID 2403242268
PQPubID 43205
PageCount 9
ParticipantIDs proquest_miscellaneous_2371860854
proquest_journals_2403242268
pubmed_primary_32130576
crossref_citationtrail_10_1007_s10554_020_01807_7
crossref_primary_10_1007_s10554_020_01807_7
springer_journals_10_1007_s10554_020_01807_7
PublicationCentury 2000
PublicationDate 20200600
2020-06-00
2020-Jun
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200600
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: United States
PublicationSubtitle X-Ray Imaging, Intravascular Imaging, Echocardiography, Nuclear Cardiology, Computed Tomography and Magnetic Resonance Imaging
PublicationTitle The International Journal of Cardiovascular Imaging
PublicationTitleAbbrev Int J Cardiovasc Imaging
PublicationTitleAlternate Int J Cardiovasc Imaging
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Min, Leipsic, Pencina, Berman, Koo, van Mieghem, Erglis, Lin, Dunning, Apruzzese, Budoff, Cole, Jaffer, Leon, Malpeso, Mancini, Park, Schwartz, Shaw, Mauri (CR31) 2012; 308
Solomon, Mileto, Ramirez-Giraldo, Samei (CR14) 2015; 275
Tonino, De-Bruyne, Pijls, Siebert, Ikeno, van’t Veer, Klauss, Manoharan, Engstrom, Oldroyd, Ver Lee, MacCarthy, Fearon, Investigators (CR19) 2009; 360
Min, Koo, Erglis, Doh, Daniels, Jegere, Kim, Dunning, Defrance, Leipsic (CR18) 2012; 6
Wang, Schoepf, Wu, Nance, Lv, Yang, Li, Lu, Zhang (CR26) 2014; 38
Choy, Parhar, Lian, Schmiedeskamp, Louis, O'Connell, McLaughlin, Nicolaou (CR10) 2019; 44
Puchner, Ferencik, Maurovich-Horvat, Nakano, Otsuka, Kauczor, Virmani, Hoffmann, Schlett (CR25) 2014; 25
Sand, Veien, Nielsen, Norgaard, Larsen, Johansen, Hess, Deibjerg, Husain, Junker, Thomsen, Rohold, Jensen (CR28) 2018; 11
Coenen, Lubbers, Kurata, Kono, Dedic, Chelu, Dijkshoorn, Gijsen, Ouhlous, van Geuns, Nieman (CR29) 2015; 274
Benz, Fuchs, Grani, Studer Bruengger, Clerc, Mikulicic, Messerli, Stehli, Possner, Pazhenkottil, Gaemperli, Kaufmann, Buechel (CR24) 2018; 19
Schaller, Sedlmair, Raupach, Uder, Leii (CR15) 2016; 23
Renker, Nance, Schoepf, O'Brien, Zwerner, Meyer, Kerl, Bauer, Fink, Vogl, Henzler (CR22) 2011; 260
Chow, Small, Yam, Chen, Achenbach, Al-Mallah, Berman, Budoff, Cademartiri, Callister, Chang, Cheng, Chinnaiyan, Delago, Dunning, Hadamitzky, Hausleiter, Kaufmann, Lin, Maffei, Raff, Shaw, Villines, Min (CR2) 2011; 4
Pijls, De Bruyne, Peels, Van Der Voort, Bonnier, Bartunek, Koolen (CR27) 1996; 334
Chen, Ramirez Giraldo, Solomon, Samei (CR23) 2014; 41
Geyer, Schoepf, Meinel, Nance, Bastarrika, Leipsic, Paul, Rengo, Laghi, De Cecco (CR7) 2015; 276
Gordic, Desbiolles, Stolzmann, Gantner, Leschka, Husarik, Alkadhi (CR9) 2014; 69
Gassenmaier, Distelmaier, Weng, Bley, Klink (CR13) 2017; 94
Takx, Willemink, Nathoe, Schilham, Budde, de Jong, Leiner (CR12) 2014; 30
Coenen, Kim, Kruk, Tesche, De Geer, Kurata, Lubbers, Daemen, Itu, Rapaka, Sharma, Schwemmer, Persson, Schoepf, Kepka, Hyun Yang, Nieman (CR6) 2018; 11
Tesche, De Cecco, Baumann, Renker, McLaurin, Duguay, Bayer, Steinberg, Grant, Canstein, Schwemmer, Schoebinger, Itu, Rapaka, Sharma, Schoepf (CR5) 2018; 288
Solomon, Wilson, Samei (CR11) 2015; 42
Mastrodicasa, Albrecht, Schoepf, Varga-Szemes, Jacobs, Gassenmaier, De Santis, Eid, van Assen, Tesche, Mantini, De Cecco (CR16) 2018
Miller, Rochitte, Dewey, Arbab-Zadeh, Niinuma, Gottlieb, Paul, Clouse, Shapiro, Hoe, Lardo, Bush, de Roos, Cox, Brinker, Lima (CR3) 2008; 359
Tesche, De Cecco, Caruso, Baumann, Renker, Mangold, Dyer, Varga-Szemes, Baquet, Jochheim, Ebersberger, Bayer, Hoffmann, Steinberg, Schoepf (CR1) 2016; 10
Gordic, Morsbach, Schmidt, Allmendinger, Flohr, Husarik, Baumueller, Raupach, Stolzmann, Leschka, Frauenfelder, Alkadhi (CR8) 2014; 49
Norgaard, Leipsic, Gaur, Seneviratne, Ko, Ito, Jensen, Mauri, De Bruyne, Bezerra, Osawa, Marwan, Naber, Erglis, Park, Christiansen, Kaltoft, Lassen, Botker, Achenbach, Grp (CR32) 2014; 63
Leipsic, Abbara, Achenbach, Cury, Earls, Mancini, Nieman, Pontone, Raff (CR17) 2014; 8
Dey, Gaur, Ovrehus, Slomka, Betancur, Goeller, Hell, Gransar, Berman, Achenbach, Botker, Jensen, Lassen, Norgaard (CR20) 2018; 28
Rother, Moshage, Dey, Schwemmer, Trobs, Blachutzik, Achenbach, Schlundt, Marwan (CR30) 2018; 12
Itu, Rapaka, Passerini, Georgescu, Schwemmer, Schoebinger, Flohr, Sharma (CR4) 1985; 121
Motwani, Dey, Berman, Germano, Achenbach, Al-Mallah, Andreini, Budoff, Cademartiri, Callister, Chang, Chinnaiyan, Chow, Cury, Delago, Gomez, Gransar, Hadamitzky, Hausleiter, Hindoyan, Feuchtner, Kaufmann, Kim, Leipsic, Lin, Maffei, Marques, Pontone, Raff, Rubinshtein, Shaw, Stehli, Villines, Dunning, Min, Slomka (CR21) 2017; 38
A Coenen (1807_CR6) 2018; 11
M Motwani (1807_CR21) 2017; 38
LL Geyer (1807_CR7) 2015; 276
T Gassenmaier (1807_CR13) 2017; 94
JM Miller (1807_CR3) 2008; 359
C Tesche (1807_CR1) 2016; 10
PA Tonino (1807_CR19) 2009; 360
S Gordic (1807_CR8) 2014; 49
M Renker (1807_CR22) 2011; 260
C Tesche (1807_CR5) 2018; 288
NH Pijls (1807_CR27) 1996; 334
J Leipsic (1807_CR17) 2014; 8
D Dey (1807_CR20) 2018; 28
J Solomon (1807_CR14) 2015; 275
L Itu (1807_CR4) 1985; 121
R Wang (1807_CR26) 2014; 38
SB Puchner (1807_CR25) 2014; 25
A Coenen (1807_CR29) 2015; 274
J Rother (1807_CR30) 2018; 12
DC Benz (1807_CR24) 2018; 19
BJ Chow (1807_CR2) 2011; 4
S Choy (1807_CR10) 2019; 44
NPR Sand (1807_CR28) 2018; 11
JK Min (1807_CR31) 2012; 308
F Schaller (1807_CR15) 2016; 23
BL Norgaard (1807_CR32) 2014; 63
S Gordic (1807_CR9) 2014; 69
J Solomon (1807_CR11) 2015; 42
D Mastrodicasa (1807_CR16) 2018
B Chen (1807_CR23) 2014; 41
RA Takx (1807_CR12) 2014; 30
JK Min (1807_CR18) 2012; 6
References_xml – volume: 121
  start-page: 42
  issue: 1
  year: 1985
  end-page: 52
  ident: CR4
  article-title: Comaniciu D (2016) A machine-learning approach for computation of fractional flow reserve from coronary computed tomography
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00752.2015
– volume: 334
  start-page: 1703
  issue: 26
  year: 1996
  end-page: 1708
  ident: CR27
  article-title: Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199606273342604
– volume: 11
  start-page: 1640
  issue: 11
  year: 2018
  end-page: 1650
  ident: CR28
  article-title: Prospective comparison of FFR derived from coronary CT angiography with SPECT perfusion imaging in stable coronary artery disease. The ReASSESS study
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2018.05.004
– volume: 8
  start-page: 342
  issue: 5
  year: 2014
  end-page: 358
  ident: CR17
  article-title: SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2014.07.003
– volume: 288
  start-page: 64
  issue: 1
  year: 2018
  end-page: 72
  ident: CR5
  article-title: Coronary CT angiography-derived fractional flow reserve: machine learning algorithm versus computational fluid dynamics modeling
  publication-title: Radiology
  doi: 10.1148/radiol.2018171291
– volume: 6
  start-page: 191
  issue: 3
  year: 2012
  end-page: 199
  ident: CR18
  article-title: Effect of image quality on diagnostic accuracy of noninvasive fractional flow reserve: results from the prospective multicenter international DISCOVER-FLOW study
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2012.04.010
– volume: 19
  start-page: 193
  issue: 2
  year: 2018
  end-page: 198
  ident: CR24
  article-title: Head-to-head comparison of adaptive statistical and model-based iterative reconstruction algorithms for submillisievert coronary CT angiography
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jex008
– volume: 308
  start-page: 1237
  issue: 12
  year: 2012
  end-page: 1245
  ident: CR31
  article-title: Diagnostic accuracy of fractional flow reserve from anatomic CT angiography
  publication-title: JAMA J Am Med Assoc
  doi: 10.1001/2012.jama.11274
– volume: 49
  start-page: 465
  issue: 7
  year: 2014
  end-page: 473
  ident: CR8
  article-title: Ultralow-dose chest computed tomography for pulmonary nodule detection: first performance evaluation of single energy scanning with spectral shaping
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000037
– volume: 274
  start-page: 674
  issue: 3
  year: 2015
  end-page: 683
  ident: CR29
  article-title: Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm
  publication-title: Radiology
  doi: 10.1148/radiol.14140992
– volume: 42
  start-page: 4941
  issue: 8
  year: 2015
  end-page: 4953
  ident: CR11
  article-title: Characteristic image quality of a third generation dual-source MDCT scanner: noise, resolution, and detectability
  publication-title: Med Phys
  doi: 10.1118/1.4923172
– volume: 4
  start-page: 463
  issue: 5
  year: 2011
  end-page: 472
  ident: CR2
  article-title: Incremental prognostic value of cardiac computed tomography in coronary artery disease using CONFIRM: COroNary computed tomography angiography evaluation for clinical outcomes: an InteRnational Multicenter registry
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/circimaging.111.964155
– volume: 94
  start-page: 201
  year: 2017
  end-page: 208
  ident: CR13
  article-title: Impact of advanced modeled iterative reconstruction on interreader agreement in coronary artery measurements
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2017.06.029
– volume: 30
  start-page: 155
  issue: 1
  year: 2014
  end-page: 163
  ident: CR12
  article-title: The effect of iterative reconstruction on quantitative computed tomography assessment of coronary plaque composition
  publication-title: Int J Cardiovasc Imaging
  doi: 10.1007/s10554-013-0293-8
– volume: 276
  start-page: 338
  issue: 2
  year: 2015
  end-page: 356
  ident: CR7
  article-title: State of the art: iterative CT reconstruction techniques
  publication-title: Radiology
  doi: 10.1148/radiol.2015132766
– volume: 11
  start-page: e007217
  issue: 6
  year: 2018
  ident: CR6
  article-title: Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: result from the MACHINE consortium
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.117.007217
– volume: 69
  start-page: E497
  issue: 12
  year: 2014
  end-page: E504
  ident: CR9
  article-title: Advanced modelled iterative reconstruction for abdominal CT: qualitative and quantitative evaluation
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2014.08.012
– volume: 28
  start-page: 2655
  issue: 6
  year: 2018
  end-page: 2664
  ident: CR20
  article-title: Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-5223-z
– volume: 25
  start-page: 15
  issue: 1
  year: 2014
  end-page: 23
  ident: CR25
  article-title: Iterative image reconstruction algorithms in coronary CT angiography improve the detection of lipid-core plaque—a comparison with histology
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3404-6
– volume: 63
  start-page: 1145
  issue: 12
  year: 2014
  end-page: 1155
  ident: CR32
  article-title: Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps)
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2013.11.043
– volume: 10
  start-page: 199
  issue: 3
  year: 2016
  end-page: 206
  ident: CR1
  article-title: Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2016.03.002
– year: 2018
  ident: CR16
  article-title: Artificial intelligence machine learning-based coronary CT fractional flow reserve (CT-FFRML): Impact of iterative and filtered back projection reconstruction techniques
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2018.10.026
– volume: 260
  start-page: 390
  issue: 2
  year: 2011
  end-page: 399
  ident: CR22
  article-title: Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction
  publication-title: Radiology
  doi: 10.1148/radiol.11103574
– volume: 38
  start-page: 179
  issue: 2
  year: 2014
  end-page: 184
  ident: CR26
  article-title: Diagnostic accuracy of coronary CT angiography: comparison of filtered back projection and iterative reconstruction with different strengths
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/Rct.0000000000000005
– volume: 12
  start-page: 101
  issue: 2
  year: 2018
  end-page: 107
  ident: CR30
  article-title: Comparison of invasively measured FFR with FFR derived from coronary CT angiography for detection of lesion-specific ischemia: results from a PC-based prototype algorithm
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2018.01.012
– volume: 23
  start-page: 1230
  issue: 10
  year: 2016
  end-page: 1238
  ident: CR15
  article-title: Noise reduction in abdominal computed tomography applying iterative reconstruction (ADMIRE)
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2016.05.016
– volume: 359
  start-page: 2324
  issue: 22
  year: 2008
  end-page: 2336
  ident: CR3
  article-title: Diagnostic performance of coronary angiography by 64-row CT
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0806576
– volume: 44
  start-page: 355
  issue: 1
  year: 2019
  end-page: 361
  ident: CR10
  article-title: Comparison of image noise and image quality between full-dose abdominal computed tomography scans reconstructed with weighted filtered back projection and half-dose scans reconstructed with improved sinogram-affirmed iterative reconstruction (SAFIRE*)
  publication-title: Abdom Radiol
  doi: 10.1007/s00261-018-1687-9
– volume: 41
  start-page: 121913
  issue: 12
  year: 2014
  ident: CR23
  article-title: Evaluating iterative reconstruction performance in computed tomography
  publication-title: Med Phys
  doi: 10.1118/1.4901670
– volume: 275
  start-page: 735
  issue: 3
  year: 2015
  end-page: 745
  ident: CR14
  article-title: Diagnostic performance of an advanced modeled iterative reconstruction algorithm for low-contrast detectability with a third-generation dual-source multidetector CT scanner: potential for radiation dose reduction in a multireader study
  publication-title: Radiology
  doi: 10.1148/radiol.15142005
– volume: 360
  start-page: 213
  issue: 3
  year: 2009
  end-page: 224
  ident: CR19
  article-title: Fractional flow reserve versus angiography for guiding percutaneous coronary intervention
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0807611
– volume: 38
  start-page: 500
  issue: 7
  year: 2017
  end-page: 507
  ident: CR21
  article-title: Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehw188
– volume: 44
  start-page: 355
  issue: 1
  year: 2019
  ident: 1807_CR10
  publication-title: Abdom Radiol
  doi: 10.1007/s00261-018-1687-9
– volume: 288
  start-page: 64
  issue: 1
  year: 2018
  ident: 1807_CR5
  publication-title: Radiology
  doi: 10.1148/radiol.2018171291
– volume: 274
  start-page: 674
  issue: 3
  year: 2015
  ident: 1807_CR29
  publication-title: Radiology
  doi: 10.1148/radiol.14140992
– volume: 12
  start-page: 101
  issue: 2
  year: 2018
  ident: 1807_CR30
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2018.01.012
– volume: 8
  start-page: 342
  issue: 5
  year: 2014
  ident: 1807_CR17
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2014.07.003
– volume: 63
  start-page: 1145
  issue: 12
  year: 2014
  ident: 1807_CR32
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2013.11.043
– volume: 6
  start-page: 191
  issue: 3
  year: 2012
  ident: 1807_CR18
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2012.04.010
– volume: 11
  start-page: 1640
  issue: 11
  year: 2018
  ident: 1807_CR28
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2018.05.004
– volume: 4
  start-page: 463
  issue: 5
  year: 2011
  ident: 1807_CR2
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/circimaging.111.964155
– volume: 121
  start-page: 42
  issue: 1
  year: 1985
  ident: 1807_CR4
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00752.2015
– volume: 276
  start-page: 338
  issue: 2
  year: 2015
  ident: 1807_CR7
  publication-title: Radiology
  doi: 10.1148/radiol.2015132766
– volume: 49
  start-page: 465
  issue: 7
  year: 2014
  ident: 1807_CR8
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000037
– volume: 42
  start-page: 4941
  issue: 8
  year: 2015
  ident: 1807_CR11
  publication-title: Med Phys
  doi: 10.1118/1.4923172
– volume: 28
  start-page: 2655
  issue: 6
  year: 2018
  ident: 1807_CR20
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-5223-z
– year: 2018
  ident: 1807_CR16
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2018.10.026
– volume: 359
  start-page: 2324
  issue: 22
  year: 2008
  ident: 1807_CR3
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0806576
– volume: 11
  start-page: e007217
  issue: 6
  year: 2018
  ident: 1807_CR6
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.117.007217
– volume: 38
  start-page: 500
  issue: 7
  year: 2017
  ident: 1807_CR21
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehw188
– volume: 41
  start-page: 121913
  issue: 12
  year: 2014
  ident: 1807_CR23
  publication-title: Med Phys
  doi: 10.1118/1.4901670
– volume: 94
  start-page: 201
  year: 2017
  ident: 1807_CR13
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2017.06.029
– volume: 275
  start-page: 735
  issue: 3
  year: 2015
  ident: 1807_CR14
  publication-title: Radiology
  doi: 10.1148/radiol.15142005
– volume: 23
  start-page: 1230
  issue: 10
  year: 2016
  ident: 1807_CR15
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2016.05.016
– volume: 334
  start-page: 1703
  issue: 26
  year: 1996
  ident: 1807_CR27
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199606273342604
– volume: 260
  start-page: 390
  issue: 2
  year: 2011
  ident: 1807_CR22
  publication-title: Radiology
  doi: 10.1148/radiol.11103574
– volume: 38
  start-page: 179
  issue: 2
  year: 2014
  ident: 1807_CR26
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/Rct.0000000000000005
– volume: 308
  start-page: 1237
  issue: 12
  year: 2012
  ident: 1807_CR31
  publication-title: JAMA J Am Med Assoc
  doi: 10.1001/2012.jama.11274
– volume: 69
  start-page: E497
  issue: 12
  year: 2014
  ident: 1807_CR9
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2014.08.012
– volume: 19
  start-page: 193
  issue: 2
  year: 2018
  ident: 1807_CR24
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jex008
– volume: 30
  start-page: 155
  issue: 1
  year: 2014
  ident: 1807_CR12
  publication-title: Int J Cardiovasc Imaging
  doi: 10.1007/s10554-013-0293-8
– volume: 25
  start-page: 15
  issue: 1
  year: 2014
  ident: 1807_CR25
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3404-6
– volume: 360
  start-page: 213
  issue: 3
  year: 2009
  ident: 1807_CR19
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0807611
– volume: 10
  start-page: 199
  issue: 3
  year: 2016
  ident: 1807_CR1
  publication-title: J Cardiovasc Comput Tomogr
  doi: 10.1016/j.jcct.2016.03.002
SSID ssj0002023
ssj0017399
Score 2.2524467
Snippet To evaluate the impact of an iterative reconstruction (IR) algorithm (advanced modeled iterative reconstruction, ADMIRE) on machine learning-based coronary...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1177
SubjectTerms Algorithms
Angiography
Blood vessels
Cardiac Imaging
Cardiology
Computed tomography
Datasets
Image reconstruction
Imaging
Ischemia
Iterative methods
Learning algorithms
Machine learning
Medical imaging
Medicine
Medicine & Public Health
Original Paper
Plaques
Radiology
Stenosis
Subgroups
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQYgLlHegrVypBxBYysbO2jmiFSsObYXaLeotcvxYVtomKFmK-CH8X8aOk4IKSHCM7NiOPc-M5xuAAzaVFvU6p4wbSXmhLJXKVlQxXlSyEEwxFYpNiONjeX5efIhJYd1w230ISQZJ_VOyG6o-6t0dDzolqLgJt1DdSc-OJ6cfR_nbFwSPgQTBQglJ9FIKmiPtxbyZ3w_4q266ZnBeC5YGHTS__3-r34Z70eYkb3sieQA3bP0Q7hzFqPoj-I60Qvp0SdI40gMtoxQkwVseEWaJWi-bdrX5dNERfLoI1zAtiXUnltQrREO0h0RQ7TcyWxBVL1cREpsaJPVLbHdtn0qBC3Lr5ivx6U8tzvVytqDz-cnR4SviAcht9xjO5u8Ws_c0lmugmol8Q5VxLHVplUqltEXLQGcmM0K5iZ3m3Jgsd2gccGFRrimNbooxk8IKh1pUK4EO8RPYqpvaPgMilXNZrlmVVzmv0MhMLeeVNZXRPEv1NIHJcFCljljmvqTGurxCYfb7XeJ-l2G_S5HA6_Gdzz2Sx1977wznX0au7kqPXZj51GOZwP7YjPzogyyqts0X7MNQ20_RkOUJPO3pZpyOZfit6OAl8GYgkqvB_7yW5__W_QXczQKd-V9FO7CFVGJ34ba-3Ky6di_wyg9QHQyn
  priority: 102
  providerName: Springer Nature
Title The impact of iterative reconstruction algorithms on machine learning-based coronary CT angiography-derived fractional flow reserve (CT-FFRML) values
URI https://link.springer.com/article/10.1007/s10554-020-01807-7
https://www.ncbi.nlm.nih.gov/pubmed/32130576
https://www.proquest.com/docview/2403242268
https://www.proquest.com/docview/2371860854
Volume 36
WOSCitedRecordID wos000533883500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1573-0743
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017399
  issn: 1569-5794
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xXYS48H4ElpWROIDAIo2d2jkhqLbiwFarUlBvkeNHWambLE1ZxA_h_zJ23FRoxV64RLLi2BPN2DPj8XwD8IKNpEW9zinjRlJeKEulshVVjBeVLARTTIViE2I6lYtFcRIP3Np4rXK7J4aN2jTan5G_9bhxmU_7lO_Ov1NfNcpHV2MJjT3Y90hlfAD7H46mJ7M-jiBYqCCJTkpBcxS9mDYTk-dQlVLvPnkQK0HF36rpkr15KVYaVNDk9v8SfwduReOTvO-k5S5cs_U9uHEcw-v34TcKDenyJknjSIe4jNshCW5zDzVL1GqJo2--nbUEW2fhPqYlsQDFknrNaIj22Ahq_YuM50TVy9OIjU0NyvwFvnfrLqcCCXKr5ifxeVBrnOvleE4nk9nxp1fEI5Hb9gF8mRzNxx9prNtANRP5hirjWOrSKpVKaYsmgs5MZoRyQzvKuTFZ7tBK4MLiBqc0-ivGDAsrHKpTrQR6xg9hUDe1fQxEKueyXLMqr3JeobWZWs4rayqjeZbqUQLDLctKHUHNfW2NVbmDY_ZsLpHNZWBzKRJ43X9z3kF6XNn7YMvSMi7vttzxM4Hn_WtcmD7aomrb_MA-DNX-CC1ansCjToL66ViG_4qeXgJvtiK1G_zftDy5mpancDML4uzPiA5ggFJhn8F1fbE5bdeHsCcWIjzlYVwm2Jp9_voHKCYYIQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aNgS8cL9kDDASSCCwSG2nTh4QQoVq09oKoSL1LTi-lEldsjXdpv0Q_ga_kePcKjSxtz3wGMWJ7eQ7N9vnOwAveT-2aNcF5cLEVCTK0ljZjCoukixOJFdcVcUm5GQSz2bJ1w343ebC-GOVrU6sFLUptF8jf-9545hP-4w_Hh1TXzXK7662JTRqWOzb8zMM2coPe5_x_75ibPhlOtilTVUBqrmMVlQZx0MXZmGslLZowDQzzEjlerYfCWNY5NCGCWlR_JRGb9qYXmKlQ2WvlYw80QGq_C3U49IfIZOzLsDrSV7Vq8SQKKERAr1J0mlS9dBwUx-secosSeXfhvCCd3thZ7YyeMPb_9unugO3GteafKpl4S5s2PweXB83hwfuwy8UCVJnhZLCkZpPGpU9qRYFOiJdohZznM3q52FJ8OqwOm1qSVNeY0693TdEe-YHtTwngylR-fygYf6mBiX6FO-7ZZ0xggNyi-KM-CyvJfb1ejClw-G38egN8TzrtnwA36_kozyEzbzI7WMgsXKORZpnURaJDH3p0AqRWZMZLVio-wH0WoikuqFs95VDFumabNrDKkVYpRWsUhnA2-6Zo5qw5NLWOy2E0kZ5lekaPwG86G6j2vF7SSq3xQm24ejU9NFfFwE8qhHbdccZzhXj2ADetRBev_zfY9m-fCzP4cbudDxKR3uT_Sdwk1Wi5FfDdmATEWKfwjV9ujool88qoSTw46qh_QemeHIR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qpqhiw_sRKGAkkEBgNZM4cbJACKaNqNqORtUgdRccP4ZK06RMhlb9EH6Gr-M6cTJCFd11wTKxk9jOuQ8_7rkAr8I40WjXGQ2ZSihLhaaJ0AUVIUuLJOWhCEWTbIKPx8nRUTpZg99dLIw9VtnpxEZRq0raNfItyxsX2LDPZMu4YxGT7ezj6Q9qM0jZndYunUYLkT19cY7Tt_rD7jb-69dBkO1MR1-oyzBAZcijJRXKhL7xCz8RQmo0ZjJQgeLCDHUcMaWCyKA9Y1yjKAqJnrVSw1Rzg4pfCh5Z0gNU_-scnYxoAOufd8aTw34PA--mDVtrnNIIYe9CdlzgHppxaqdulkCLU_63Wbzk617ap23MX3b7fx64O3DLOd3kUysld2FNl_dg48AdK7gPv1BYSBsvSipDWqZpNAOkWS7oKXaJmM-wN8vvJzXBq5PmHKomLvHGjFqPQBFpOSHE4oKMpkSUs2PHCU4VyvoZlptFG0uCDTLz6pzY-K8FfuvNaEqz7PBg_y2xDOy6fgBfr2VQHsKgrEr9GEgijAkiGRZREbECvWxfM1ZoVSjJAl_GHgw7uOTSkbnbnCLzfEVDbSGWI8TyBmI59-Bd_8xpS2VyZe3NDk65U2t1vsKSBy_7YlRIdpdJlLr6iXVCdHdi9OSZB49a9PafCwPsK85wPXjfwXn18n-35cnVbXkBG4jofH93vPcUbgaNVNllsk0YIED0M7ghz5bH9eK5k1AC364b238ATBx8MQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+iterative+reconstruction+algorithms+on+machine+learning-based+coronary+CT+angiography-derived+fractional+flow+reserve+%28CT-FFRML%29+values&rft.jtitle=The+international+journal+of+cardiovascular+imaging&rft.au=Li+Shujiao&rft.au=Chen+Chihua&rft.au=Le%2C+Qin&rft.au=Gu+Shengjia&rft.date=2020-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1569-5794&rft.eissn=1573-0743&rft.volume=36&rft.issue=6&rft.spage=1177&rft.epage=1185&rft_id=info:doi/10.1007%2Fs10554-020-01807-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-5794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-5794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-5794&client=summon