LRT-CLUSTER: A New Clustering Algorithm Based on Likelihood Ratio Test to Identify Driving Genes

Somatic mutations often occur at high relapse sites in protein sequences, which indicates that the location clustering of somatic missense mutations can be used to identify driving genes. However, the traditional clustering algorithm has such problems as the background signal over-fitting, the clust...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Interdisciplinary sciences : computational life sciences Ročník 15; číslo 2; s. 217 - 230
Hlavní autoři: Quan, Chenxu, Liu, Fenghui, Qi, Lin, Tie, Yun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.06.2023
Springer Nature B.V
Témata:
ISSN:1913-2751, 1867-1462, 1867-1462
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Somatic mutations often occur at high relapse sites in protein sequences, which indicates that the location clustering of somatic missense mutations can be used to identify driving genes. However, the traditional clustering algorithm has such problems as the background signal over-fitting, the clustering algorithm is not suitable for mutation data, and the performance of identifying low-frequency mutation genes needs to be improved. In this paper, we propose a linear clustering algorithm based on likelihood ratio test knowledge to identify driver genes. In this experiment, firstly, the polynucleotide mutation rate is calculated based on the prior knowledge of likelihood ratio test. Then, the simulation data set is obtained through the background mutation rate model. Finally, the unsupervised peak clustering algorithm is used to, respectively, evaluate the somatic mutation data and the simulation data to identify the driver genes. The experimental results show that our method achieves a better balance of precision and sensitivity. It can also identify the driver genes missed by other methods, making it an effective supplement to other methods. We also discover some potential linkages between genes and between genes and mutation sites, which is of great value to target drug therapy research. Graphical Abstract Method framework: Our proposed model framework is as follows. a. Counting mutation sites and the number of mutations in tumor gene elements. b. The nucleotide context mutation frequency is counted based on the likelihood ratio test knowledge, and the background mutation rate model is obtained. c. Based on Monte Carlo simulation method, data sets with the same number of mutations as gene elements are randomly sampled to obtain simulated mutation data, and the sampling frequency of each mutation site is related to the mutation rate of polynucleotide. d. The original mutation data and the simulated mutation data after random reconstruction are clustered by peak density, respectively, and the corresponding clustering scores are obtained. e. We can obtain the clustering information statistics in each gene segment and score of each gene segment from the original single nucleotide mutation data through step d. f. According to the observed score and the simulated clustering score, the p-value of the corresponding gene fragment is calculated. g. We can obtain the clustering information statistics in each gene segment and score of each gene segment from the simulated single nucleotide mutation data through step d.
AbstractList Somatic mutations often occur at high relapse sites in protein sequences, which indicates that the location clustering of somatic missense mutations can be used to identify driving genes. However, the traditional clustering algorithm has such problems as the background signal over-fitting, the clustering algorithm is not suitable for mutation data, and the performance of identifying low-frequency mutation genes needs to be improved. In this paper, we propose a linear clustering algorithm based on likelihood ratio test knowledge to identify driver genes. In this experiment, firstly, the polynucleotide mutation rate is calculated based on the prior knowledge of likelihood ratio test. Then, the simulation data set is obtained through the background mutation rate model. Finally, the unsupervised peak clustering algorithm is used to, respectively, evaluate the somatic mutation data and the simulation data to identify the driver genes. The experimental results show that our method achieves a better balance of precision and sensitivity. It can also identify the driver genes missed by other methods, making it an effective supplement to other methods. We also discover some potential linkages between genes and between genes and mutation sites, which is of great value to target drug therapy research. Method framework: Our proposed model framework is as follows. a. Counting mutation sites and the number of mutations in tumor gene elements. b. The nucleotide context mutation frequency is counted based on the likelihood ratio test knowledge, and the background mutation rate model is obtained. c. Based on Monte Carlo simulation method, data sets with the same number of mutations as gene elements are randomly sampled to obtain simulated mutation data, and the sampling frequency of each mutation site is related to the mutation rate of polynucleotide. d. The original mutation data and the simulated mutation data after random reconstruction are clustered by peak density, respectively, and the corresponding clustering scores are obtained. e. We can obtain the clustering information statistics in each gene segment and score of each gene segment from the original single nucleotide mutation data through step d. f. According to the observed score and the simulated clustering score, the p-value of the corresponding gene fragment is calculated. g. We can obtain the clustering information statistics in each gene segment and score of each gene segment from the simulated single nucleotide mutation data through step d.
Somatic mutations often occur at high relapse sites in protein sequences, which indicates that the location clustering of somatic missense mutations can be used to identify driving genes. However, the traditional clustering algorithm has such problems as the background signal over-fitting, the clustering algorithm is not suitable for mutation data, and the performance of identifying low-frequency mutation genes needs to be improved. In this paper, we propose a linear clustering algorithm based on likelihood ratio test knowledge to identify driver genes. In this experiment, firstly, the polynucleotide mutation rate is calculated based on the prior knowledge of likelihood ratio test. Then, the simulation data set is obtained through the background mutation rate model. Finally, the unsupervised peak clustering algorithm is used to, respectively, evaluate the somatic mutation data and the simulation data to identify the driver genes. The experimental results show that our method achieves a better balance of precision and sensitivity. It can also identify the driver genes missed by other methods, making it an effective supplement to other methods. We also discover some potential linkages between genes and between genes and mutation sites, which is of great value to target drug therapy research. Method framework: Our proposed model framework is as follows. a. Counting mutation sites and the number of mutations in tumor gene elements. b. The nucleotide context mutation frequency is counted based on the likelihood ratio test knowledge, and the background mutation rate model is obtained. c. Based on Monte Carlo simulation method, data sets with the same number of mutations as gene elements are randomly sampled to obtain simulated mutation data, and the sampling frequency of each mutation site is related to the mutation rate of polynucleotide. d. The original mutation data and the simulated mutation data after random reconstruction are clustered by peak density, respectively, and the corresponding clustering scores are obtained. e. We can obtain the clustering information statistics in each gene segment and score of each gene segment from the original single nucleotide mutation data through step d. f. According to the observed score and the simulated clustering score, the p-value of the corresponding gene fragment is calculated. g. We can obtain the clustering information statistics in each gene segment and score of each gene segment from the simulated single nucleotide mutation data through step d.Somatic mutations often occur at high relapse sites in protein sequences, which indicates that the location clustering of somatic missense mutations can be used to identify driving genes. However, the traditional clustering algorithm has such problems as the background signal over-fitting, the clustering algorithm is not suitable for mutation data, and the performance of identifying low-frequency mutation genes needs to be improved. In this paper, we propose a linear clustering algorithm based on likelihood ratio test knowledge to identify driver genes. In this experiment, firstly, the polynucleotide mutation rate is calculated based on the prior knowledge of likelihood ratio test. Then, the simulation data set is obtained through the background mutation rate model. Finally, the unsupervised peak clustering algorithm is used to, respectively, evaluate the somatic mutation data and the simulation data to identify the driver genes. The experimental results show that our method achieves a better balance of precision and sensitivity. It can also identify the driver genes missed by other methods, making it an effective supplement to other methods. We also discover some potential linkages between genes and between genes and mutation sites, which is of great value to target drug therapy research. Method framework: Our proposed model framework is as follows. a. Counting mutation sites and the number of mutations in tumor gene elements. b. The nucleotide context mutation frequency is counted based on the likelihood ratio test knowledge, and the background mutation rate model is obtained. c. Based on Monte Carlo simulation method, data sets with the same number of mutations as gene elements are randomly sampled to obtain simulated mutation data, and the sampling frequency of each mutation site is related to the mutation rate of polynucleotide. d. The original mutation data and the simulated mutation data after random reconstruction are clustered by peak density, respectively, and the corresponding clustering scores are obtained. e. We can obtain the clustering information statistics in each gene segment and score of each gene segment from the original single nucleotide mutation data through step d. f. According to the observed score and the simulated clustering score, the p-value of the corresponding gene fragment is calculated. g. We can obtain the clustering information statistics in each gene segment and score of each gene segment from the simulated single nucleotide mutation data through step d.
Somatic mutations often occur at high relapse sites in protein sequences, which indicates that the location clustering of somatic missense mutations can be used to identify driving genes. However, the traditional clustering algorithm has such problems as the background signal over-fitting, the clustering algorithm is not suitable for mutation data, and the performance of identifying low-frequency mutation genes needs to be improved. In this paper, we propose a linear clustering algorithm based on likelihood ratio test knowledge to identify driver genes. In this experiment, firstly, the polynucleotide mutation rate is calculated based on the prior knowledge of likelihood ratio test. Then, the simulation data set is obtained through the background mutation rate model. Finally, the unsupervised peak clustering algorithm is used to, respectively, evaluate the somatic mutation data and the simulation data to identify the driver genes. The experimental results show that our method achieves a better balance of precision and sensitivity. It can also identify the driver genes missed by other methods, making it an effective supplement to other methods. We also discover some potential linkages between genes and between genes and mutation sites, which is of great value to target drug therapy research. Graphical Abstract Method framework: Our proposed model framework is as follows. a. Counting mutation sites and the number of mutations in tumor gene elements. b. The nucleotide context mutation frequency is counted based on the likelihood ratio test knowledge, and the background mutation rate model is obtained. c. Based on Monte Carlo simulation method, data sets with the same number of mutations as gene elements are randomly sampled to obtain simulated mutation data, and the sampling frequency of each mutation site is related to the mutation rate of polynucleotide. d. The original mutation data and the simulated mutation data after random reconstruction are clustered by peak density, respectively, and the corresponding clustering scores are obtained. e. We can obtain the clustering information statistics in each gene segment and score of each gene segment from the original single nucleotide mutation data through step d. f. According to the observed score and the simulated clustering score, the p-value of the corresponding gene fragment is calculated. g. We can obtain the clustering information statistics in each gene segment and score of each gene segment from the simulated single nucleotide mutation data through step d.
Author Tie, Yun
Qi, Lin
Liu, Fenghui
Quan, Chenxu
Author_xml – sequence: 1
  givenname: Chenxu
  surname: Quan
  fullname: Quan, Chenxu
  organization: School of Electrical and Information Engineering, Zhengzhou University, Department of Respiratory and Sleep Medicine, The First Affiliated Hospital of Zhengzhou University
– sequence: 2
  givenname: Fenghui
  surname: Liu
  fullname: Liu, Fenghui
  organization: Department of Respiratory and Sleep Medicine, The First Affiliated Hospital of Zhengzhou University
– sequence: 3
  givenname: Lin
  surname: Qi
  fullname: Qi, Lin
  organization: School of Electrical and Information Engineering, Zhengzhou University
– sequence: 4
  givenname: Yun
  orcidid: 0000-0002-8258-6206
  surname: Tie
  fullname: Tie, Yun
  email: ieytie@zzu.edu.cn
  organization: School of Electrical and Information Engineering, Zhengzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36848004$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URH_gBVggS2zYGPyb2OyGoZRKEUjDdG0cx2ldMvbUdqj69vUwrZC66MpX1vcdXd1zDA5CDA6AtwR_JBi3nzKhgimEKUMYC8ERfQGOiGxaRHhDD-qsCEO0FeQQHOd8jXHDJcOvwCFrJJcY8yPwu1ut0bK7-LU-XX2GC_jD3cLlNOfikg-XcDFdxuTL1QZ-MdkNMAbY-T9u8lcxDnBlio9w7XKBJcLzwYXixzv4Nfm_O_nMBZdfg5ejmbJ78_CegItvp-vld9T9PDtfLjpkWSsKMtgKSogaiHOtkNzano2tUYqIvmmUxcL1WFkm-0HgnitOR2mwkIrWf0tHdgI-7HO3Kd7MdSW98dm6aTLBxTlr2krMJRUNq-j7J-h1nFOo22lGRc1mispKvXug5n7jBr1NfmPSnX68XQXkHrAp5pzcqK0vu4uEkoyfNMF6V5Pe16RrTfpfTZpWlT5RH9OfldheyttdNy79X_sZ6x77m6F3
CitedBy_id crossref_primary_10_1109_TCBBIO_2025_3571424
crossref_primary_10_3390_en18174597
crossref_primary_10_3390_en18184809
Cites_doi 10.1093/nar/gks743
10.1186/s13059-016-0994-0
10.1186/1471-2105-15-271
10.1093/bioinformatics/btu499
10.1038/nature11017
10.1093/nar/gkz096
10.1093/bioinformatics/bty613
10.1186/s13059-014-0489-9
10.1002/wsbm.1364
10.1073/pnas.1607753113
10.1371/journal.pcbi.1005347
10.1038/s41588-019-0572-y
10.1093/bioinformatics/bty006
10.1038/nature17676
10.1101/gr.134635.111
10.1038/nrg3539
10.1093/bioinformatics/btt395
10.1186/s13059-015-0700-7
10.1093/nar/gkt1025
10.1038/nature12477
10.1186/gb-2012-13-12-r124
10.1126/science.aag0299
10.1038/s41598-021-91656-8
10.1016/j.cell.2012.04.024
10.1093/nar/gkv1314
10.1158/0008-5472.CAN-15-3190
10.3389/fgene.2017.00083
10.1038/nmeth.2642
10.1038/nature12213
ContentType Journal Article
Copyright International Association of Scientists in the Interdisciplinary Areas 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. International Association of Scientists in the Interdisciplinary Areas.
International Association of Scientists in the Interdisciplinary Areas 2023.
Copyright_xml – notice: International Association of Scientists in the Interdisciplinary Areas 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. International Association of Scientists in the Interdisciplinary Areas.
– notice: International Association of Scientists in the Interdisciplinary Areas 2023.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X2
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0K
M0S
M1P
M7P
P5Z
P62
P64
PATMY
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
DOI 10.1007/s12539-023-00554-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Agricultural Science Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Statistics
EISSN 1867-1462
EndPage 230
ExternalDocumentID 36848004
10_1007_s12539_023_00554_2
Genre Journal Article
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
1N0
29~
2KG
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
67N
6NX
7X2
7X7
7XC
88E
8CJ
8FE
8FG
8FH
8FI
8FJ
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEUYN
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
APEBS
ARAPS
ASPBG
ATCPS
AUKKA
AVWKF
AXYYD
AZFZN
BA0
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BVXVI
CAG
CCPQU
COF
D1J
D1K
DDRTE
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IZIGR
I~X
J-C
JBSCW
JCJTX
JZLTJ
K6-
KOV
LK5
LK8
LLZTM
M0K
M1P
M4Y
M7P
M7R
NPVJJ
NQJWS
NU0
O9-
O9J
P62
PATMY
PCBAR
PQQKQ
PROAC
PSQYO
PT4
PYCSY
Q2X
QOR
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SCL
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
T13
TSG
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
AFDZB
AFFHD
AFOHR
AHPBZ
ATHPR
AYFIA
CITATION
K7-
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-a0c52119d1ee7584ccb3f7a9915b669c05eb09c38bd50b4942f8a05892eb0c2f3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000941108900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1913-2751
1867-1462
IngestDate Fri Sep 05 10:27:32 EDT 2025
Sat Nov 29 14:50:45 EST 2025
Wed Feb 19 02:24:50 EST 2025
Tue Nov 18 21:06:47 EST 2025
Sat Nov 29 03:36:29 EST 2025
Fri Feb 21 02:46:07 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Somatic mutation
Kernel density estimation
Bioinformatics
Genomics
Likelihood ratio test
Cancer driver
Language English
License 2023. International Association of Scientists in the Interdisciplinary Areas.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-a0c52119d1ee7584ccb3f7a9915b669c05eb09c38bd50b4942f8a05892eb0c2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8258-6206
PMID 36848004
PQID 3254943928
PQPubID 326319
PageCount 14
ParticipantIDs proquest_miscellaneous_2780482563
proquest_journals_3254943928
pubmed_primary_36848004
crossref_citationtrail_10_1007_s12539_023_00554_2
crossref_primary_10_1007_s12539_023_00554_2
springer_journals_10_1007_s12539_023_00554_2
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
2023-Jun
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Bromont
PublicationTitle Interdisciplinary sciences : computational life sciences
PublicationTitleAbbrev Interdiscip Sci Comput Life Sci
PublicationTitleAlternate Interdiscip Sci
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Tokheim (CR24) 2016; 76
Watson (CR20) 2013; 14
Mularoni (CR16) 2016; 17
Reyna, Leiserson, Raphael (CR11) 2018; 34
Cheng (CR12) 2014; 42
Gonzalez-Perez, Lopez-Bigas (CR15) 2012; 40
Fattore (CR8) 2016; 113
Malebary, Khan (CR3) 2021; 11
Vandin (CR6) 2017; 8
Stephens (CR4) 2012; 486
Dees (CR14) 2012; 22
Gonzalez-Perez (CR26) 2013; 10
Tamborero, Gonzalez-Perez, Lopez-Bigas (CR22) 2013; 29
Zhang (CR9) 2014; 15
Chung (CR21) 2016; 44
Dietlein (CR2) 2020; 52
Poole (CR23) 2017; 13
Guo (CR13) 2018; 34
Jia (CR18) 2014; 15
Dimitrakopoulos, Beerenwinkel (CR1) 2017; 9
Nik-Zainal (CR29) 2016; 534
Lawrence (CR7) 2013; 499
Porta-Pardo, Godzik (CR19) 2014; 30
Leiserson (CR5) 2015; 16
Bashashati (CR10) 2012; 13
Alexandrov (CR25) 2013; 500
Han (CR17) 2019; 47
Nik-Zainal (CR28) 2012; 149
Alexandrov (CR27) 2016; 354
F Dietlein (554_CR2) 2020; 52
ND Dees (554_CR14) 2012; 22
C Tokheim (554_CR24) 2016; 76
W Poole (554_CR23) 2017; 13
MD Leiserson (554_CR5) 2015; 16
Y Han (554_CR17) 2019; 47
SJ Malebary (554_CR3) 2021; 11
E Porta-Pardo (554_CR19) 2014; 30
P Jia (554_CR18) 2014; 15
I-F Chung (554_CR21) 2016; 44
A Gonzalez-Perez (554_CR15) 2012; 40
MA Reyna (554_CR11) 2018; 34
S Nik-Zainal (554_CR29) 2016; 534
S Nik-Zainal (554_CR28) 2012; 149
D Tamborero (554_CR22) 2013; 29
PJ Stephens (554_CR4) 2012; 486
W-C Cheng (554_CR12) 2014; 42
F Vandin (554_CR6) 2017; 8
L Mularoni (554_CR16) 2016; 17
IR Watson (554_CR20) 2013; 14
J Zhang (554_CR9) 2014; 15
CM Dimitrakopoulos (554_CR1) 2017; 9
W-F Guo (554_CR13) 2018; 34
A Bashashati (554_CR10) 2012; 13
LB Alexandrov (554_CR25) 2013; 500
L Fattore (554_CR8) 2016; 113
A Gonzalez-Perez (554_CR26) 2013; 10
LB Alexandrov (554_CR27) 2016; 354
MS Lawrence (554_CR7) 2013; 499
References_xml – volume: 40
  start-page: e169
  issue: 21
  year: 2012
  end-page: e169
  ident: CR15
  article-title: Functional impact bias reveals cancer drivers
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks743
– volume: 17
  start-page: 1
  issue: 1
  year: 2016
  end-page: 13
  ident: CR16
  article-title: OncodriveFML: a general framework to identify coding and non-coding regions with cancer driver mutations
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0994-0
– volume: 15
  start-page: 1
  issue: 1
  year: 2014
  end-page: 14
  ident: CR9
  article-title: Discovery of co-occurring driver pathways in cancer
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-15-271
– volume: 30
  start-page: 3109
  issue: 21
  year: 2014
  end-page: 3114
  ident: CR19
  article-title: e-Driver: a novel method to identify protein regions driving cancer
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu499
– volume: 486
  start-page: 400
  issue: 7403
  year: 2012
  end-page: 404
  ident: CR4
  article-title: The landscape of cancer genes and mutational processes in breast cancer
  publication-title: Nature
  doi: 10.1038/nature11017
– volume: 47
  start-page: e45
  issue: 8
  year: 2019
  end-page: e45
  ident: CR17
  article-title: DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz096
– volume: 34
  start-page: i972
  issue: 17
  year: 2018
  end-page: i980
  ident: CR11
  article-title: Hierarchical HotNet: identifying hierarchies of altered subnetworks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty613
– volume: 15
  start-page: 1
  issue: 10
  year: 2014
  end-page: 16
  ident: CR18
  article-title: MSEA: detection and quantification of mutation hotspots through mutation set enrichment analysis
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0489-9
– volume: 9
  start-page: e1364
  issue: 1
  year: 2017
  ident: CR1
  article-title: Computational approaches for the identification of cancer genes and pathways
  publication-title: Wiley Interdiscip Rev
  doi: 10.1002/wsbm.1364
– volume: 113
  start-page: E5005
  issue: 34
  year: 2016
  end-page: E5013
  ident: CR8
  article-title: miR-579-3p controls melanoma progression and resistance to target therapy
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1607753113
– volume: 13
  start-page: e1005347
  issue: 2
  year: 2017
  ident: CR23
  article-title: Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005347
– volume: 52
  start-page: 208
  issue: 2
  year: 2020
  end-page: 218
  ident: CR2
  article-title: Identification of cancer driver genes based on nucleotide context
  publication-title: Nat Genet
  doi: 10.1038/s41588-019-0572-y
– volume: 34
  start-page: 1893
  issue: 11
  year: 2018
  end-page: 1903
  ident: CR13
  article-title: Discovering personalized driver mutation profiles of single samples in cancer by network control strategy
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty006
– volume: 534
  start-page: 47
  issue: 7605
  year: 2016
  end-page: 54
  ident: CR29
  article-title: Landscape of somatic mutations in 560 breast cancer whole-genome sequences
  publication-title: Nature
  doi: 10.1038/nature17676
– volume: 22
  start-page: 1589
  issue: 8
  year: 2012
  end-page: 1598
  ident: CR14
  article-title: MuSiC: identifying mutational significance in cancer genomes
  publication-title: Genome Res
  doi: 10.1101/gr.134635.111
– volume: 14
  start-page: 703
  issue: 10
  year: 2013
  end-page: 718
  ident: CR20
  article-title: Emerging patterns of somatic mutations in cancer
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3539
– volume: 29
  start-page: 2238
  issue: 18
  year: 2013
  end-page: 2244
  ident: CR22
  article-title: OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt395
– volume: 16
  start-page: 1
  issue: 1
  year: 2015
  end-page: 20
  ident: CR5
  article-title: CoMEt: a statistical approach to identify combinations of mutually exclusive alterations in cancer
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0700-7
– volume: 42
  start-page: D1048
  issue: D1
  year: 2014
  end-page: D1054
  ident: CR12
  article-title: DriverDB: an exome sequencing database for cancer driver gene identification
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1025
– volume: 500
  start-page: 415
  issue: 7463
  year: 2013
  end-page: 421
  ident: CR25
  article-title: Signatures of mutational processes in human cancer
  publication-title: Nature
  doi: 10.1038/nature12477
– volume: 13
  start-page: 1
  issue: 12
  year: 2012
  end-page: 14
  ident: CR10
  article-title: DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-12-r124
– volume: 354
  start-page: 618
  issue: 6312
  year: 2016
  end-page: 622
  ident: CR27
  article-title: Mutational signatures associated with tobacco smoking in human cancer
  publication-title: Science
  doi: 10.1126/science.aag0299
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 13
  ident: CR3
  article-title: Evaluating machine learning methodologies for identification of cancer driver genes
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-91656-8
– volume: 149
  start-page: 979
  issue: 5
  year: 2012
  end-page: 993
  ident: CR28
  article-title: Mutational processes molding the genomes of 21 breast cancers
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.024
– volume: 44
  start-page: D975
  issue: D1
  year: 2016
  end-page: D979
  ident: CR21
  article-title: DriverDBv2: a database for human cancer driver gene research
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1314
– volume: 76
  start-page: 3719
  issue: 13
  year: 2016
  end-page: 3731
  ident: CR24
  article-title: Exome-scale discovery of hotspot mutation regions in human cancer using 3D protein structureexome-scale discovery of hotspot mutation regions
  publication-title: Can Res
  doi: 10.1158/0008-5472.CAN-15-3190
– volume: 8
  start-page: 83
  year: 2017
  ident: CR6
  article-title: Computational methods for characterizing cancer mutational heterogeneity
  publication-title: Front Genet
  doi: 10.3389/fgene.2017.00083
– volume: 10
  start-page: 1081
  issue: 11
  year: 2013
  end-page: 1082
  ident: CR26
  article-title: IntOGen-mutations identifies cancer drivers across tumor types
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2642
– volume: 499
  start-page: 214
  issue: 7457
  year: 2013
  end-page: 218
  ident: CR7
  article-title: Mutational heterogeneity in cancer and the search for new cancer-associated genes
  publication-title: Nature
  doi: 10.1038/nature12213
– volume: 9
  start-page: e1364
  issue: 1
  year: 2017
  ident: 554_CR1
  publication-title: Wiley Interdiscip Rev
  doi: 10.1002/wsbm.1364
– volume: 29
  start-page: 2238
  issue: 18
  year: 2013
  ident: 554_CR22
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt395
– volume: 17
  start-page: 1
  issue: 1
  year: 2016
  ident: 554_CR16
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0994-0
– volume: 22
  start-page: 1589
  issue: 8
  year: 2012
  ident: 554_CR14
  publication-title: Genome Res
  doi: 10.1101/gr.134635.111
– volume: 52
  start-page: 208
  issue: 2
  year: 2020
  ident: 554_CR2
  publication-title: Nat Genet
  doi: 10.1038/s41588-019-0572-y
– volume: 354
  start-page: 618
  issue: 6312
  year: 2016
  ident: 554_CR27
  publication-title: Science
  doi: 10.1126/science.aag0299
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 554_CR3
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-91656-8
– volume: 15
  start-page: 1
  issue: 1
  year: 2014
  ident: 554_CR9
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-15-271
– volume: 14
  start-page: 703
  issue: 10
  year: 2013
  ident: 554_CR20
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3539
– volume: 34
  start-page: i972
  issue: 17
  year: 2018
  ident: 554_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty613
– volume: 42
  start-page: D1048
  issue: D1
  year: 2014
  ident: 554_CR12
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1025
– volume: 8
  start-page: 83
  year: 2017
  ident: 554_CR6
  publication-title: Front Genet
  doi: 10.3389/fgene.2017.00083
– volume: 500
  start-page: 415
  issue: 7463
  year: 2013
  ident: 554_CR25
  publication-title: Nature
  doi: 10.1038/nature12477
– volume: 13
  start-page: 1
  issue: 12
  year: 2012
  ident: 554_CR10
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-12-r124
– volume: 534
  start-page: 47
  issue: 7605
  year: 2016
  ident: 554_CR29
  publication-title: Nature
  doi: 10.1038/nature17676
– volume: 16
  start-page: 1
  issue: 1
  year: 2015
  ident: 554_CR5
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0700-7
– volume: 34
  start-page: 1893
  issue: 11
  year: 2018
  ident: 554_CR13
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty006
– volume: 486
  start-page: 400
  issue: 7403
  year: 2012
  ident: 554_CR4
  publication-title: Nature
  doi: 10.1038/nature11017
– volume: 30
  start-page: 3109
  issue: 21
  year: 2014
  ident: 554_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu499
– volume: 499
  start-page: 214
  issue: 7457
  year: 2013
  ident: 554_CR7
  publication-title: Nature
  doi: 10.1038/nature12213
– volume: 149
  start-page: 979
  issue: 5
  year: 2012
  ident: 554_CR28
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.024
– volume: 44
  start-page: D975
  issue: D1
  year: 2016
  ident: 554_CR21
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1314
– volume: 40
  start-page: e169
  issue: 21
  year: 2012
  ident: 554_CR15
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks743
– volume: 76
  start-page: 3719
  issue: 13
  year: 2016
  ident: 554_CR24
  publication-title: Can Res
  doi: 10.1158/0008-5472.CAN-15-3190
– volume: 113
  start-page: E5005
  issue: 34
  year: 2016
  ident: 554_CR8
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1607753113
– volume: 47
  start-page: e45
  issue: 8
  year: 2019
  ident: 554_CR17
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz096
– volume: 15
  start-page: 1
  issue: 10
  year: 2014
  ident: 554_CR18
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0489-9
– volume: 10
  start-page: 1081
  issue: 11
  year: 2013
  ident: 554_CR26
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2642
– volume: 13
  start-page: e1005347
  issue: 2
  year: 2017
  ident: 554_CR23
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005347
SSID ssj0064830
Score 2.2707245
Snippet Somatic mutations often occur at high relapse sites in protein sequences, which indicates that the location clustering of somatic missense mutations can be...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 217
SubjectTerms Algorithms
Biomedical and Life Sciences
Cancer
Chemotherapy
Cluster Analysis
Clustering
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Appl. in Life Sciences
Computer Simulation
Datasets
Drug therapy
Gene frequency
Genes
Genomes
Health Sciences
Humans
Knowledge
Life Sciences
Likelihood Functions
Likelihood ratio
Mathematical and Computational Physics
Medicine
Methods
Missense mutation
Monte Carlo simulation
Mutation
Mutation - genetics
Mutation rates
Neoplasms - genetics
Nucleotides
Original Research Article
Proteins
Segments
Statistical analysis
Statistics
Statistics for Life Sciences
Theoretical
Theoretical and Computational Chemistry
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAamXAgVKoCAjcQOLjR-JwwUtCxWHVVWVLeotxI_QVbdJ2Uel_ntm8tgVquiFa16e6BvPy_Y3AG-ttLEuC8PLJDZceWG4LZ3kTuKsTLySZXO-4sc4PTw0p6fZUVdwW3TbKnub2BhqXzuqkX-QlMmg9xTm0-VvTl2jaHW1a6FxF-4RS4Jotu4d9ZY4UabpNYIpieQi1XF3aKY9Oie0zDh6LE40VIqLvx3TjWjzxkpp44AOHv6v6I9gpws92bDVlcdwJ1S78KBtRnm9C9sUd7a0zU_g5_h4wkfjk-8Y7X5kQ4a2kI1mK2JVQOHYcPYLB1ieXbDP6AU9qys2np6H2ZRIktkxoc0mKCBb1qw9Clxesy_zKVUvGDFdL57CycHXyegb75oxIGypXvJi4DSxwfk4BMwxlHNWlmmB4aW2SZK5gQ52kDlprNcDi_8rSlNQz0KB150o5TPYquoqPAcWvBGZVS62TiufokUw-EzwQhcSc-Y0grhHIncdUzk1zJjlG45lQi9H9PIGvVxE8G79zmXL03Hr0_s9Unk3Zxf5BqYI3qxv42yjJZSiCvVqkQvia8KkOpER7LWKsR5OJkZh-K0ieN9ryubj_5blxe2yvIRt0WgpFX72YWs5X4VXcN9doUbMXzf6_gf8agFL
  priority: 102
  providerName: ProQuest
Title LRT-CLUSTER: A New Clustering Algorithm Based on Likelihood Ratio Test to Identify Driving Genes
URI https://link.springer.com/article/10.1007/s12539-023-00554-2
https://www.ncbi.nlm.nih.gov/pubmed/36848004
https://www.proquest.com/docview/3254943928
https://www.proquest.com/docview/2780482563
Volume 15
WOSCitedRecordID wos000941108900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1867-1462
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0064830
  issn: 1913-2751
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1867-1462
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0064830
  issn: 1913-2751
  databaseCode: M0K
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological science database
  customDbUrl:
  eissn: 1867-1462
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0064830
  issn: 1913-2751
  databaseCode: M7P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1867-1462
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0064830
  issn: 1913-2751
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1867-1462
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0064830
  issn: 1913-2751
  databaseCode: PCBAR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1867-1462
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0064830
  issn: 1913-2751
  databaseCode: PATMY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1867-1462
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0064830
  issn: 1913-2751
  databaseCode: 7X7
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1867-1462
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0064830
  issn: 1913-2751
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1867-1462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064830
  issn: 1913-2751
  databaseCode: RSV
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BBogXPsZXYFRG4g0sJf5IHN66sglpXVV13VTxEmLHgYiSoDZF2n_POR-t0AAJXk5K4tiOz-e7s3O_A3ituQ5kniqah4GiImOK6txwajhKZZgJnjfxFZfjaDJRi0U87YLC1v3f7v2RZLNS74LdmOQxRR1DHXCUoLjw7qO6Uy5hw-z8sl9_Q6GaDCPoiHDKIhl0oTK_r-NXdXTNxrx2PtqonZP7_9fhB3CvMzPJsJ0XD-GGLQ_gdpt48uoA7px1R-qP4NN4Nqej8cU52rXvyJDgqkdGy43DT8DGyHD5uVoV9Zdv5Aj1XUaqkoyLr3ZZODhkMnN8JXP8FlJXpA36za_I-1Xh9imIw7ReP4aLk-P56APt0i4ggyJZ09Q30uG-ZYG16E0IYzTPoxQNSanDMDa-tNqPDVc6k74WsWC5Sl12Qob3Dcv5E9grq9I-A2IzxWItTKCNFFmEsq-wjM2YTDl6x5EHQT_6iekwyV1qjGWyQ1N2g5jgICbNICbMgzfbd763iBx_LX3YMzXppHOdcOcVoyXGlAevto9RrtxhSVraarNOmENmQvc55B48bSfDtjkeKoGGtvDgbc_5XeV_7svzfyv-Au6yZvK4LZ9D2KtXG_sSbpkfdbFeDeBmtIgaqgawf3Q8mc7w6jSiSM_8U0ejKdKp_Dho5OMn6gb9IQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aA8ReuIxbYICR4AksGttJHCSESse0qaFCo0N7y2LHgYrSjF5A_VP8Rs7JpRWa2NseeE0cX79zsZ3zHYBnRho_KDLNi9DXXOVCc1NYya1EqQxzJYsqvuJzEg0G-vg4_rgBv9tYGPqtstWJlaLOS0tn5K8k7WTQegr99vQHp6xRdLvaptCoYdF3y1-4ZZu9OdjF9X0uxN77YW-fN1kFsP0omPOsYwOiNct959BZVtYaWUQZ-kmBCcPYdgJnOrGV2uRBx2CbotAZJd8T-NyKQmK9l-CykjoiuepHvNX8odJVbhPcAkkuosBvgnTqUD0RyJijheREe6W4-NsQnvFuz9zMVgZv78b_NlU34XrjWrNuLQu3YMNNtuFqnWxzuQ1b5FfXtNS34SQ5HPJecvQJvfnXrMtQ17PeeEGsETgZrDv-ggOaf_3O3qGVz1k5YcnomxuPiASaHRKa2RAnhM1LVoc6F0u2Ox3R6QwjJu_ZHTi6kLHehc1JOXH3gblci9go6xsbqDxCjaexjMtFkMnIl5EHfrvyqW2Y2CkhyDhdc0gTWlJES1qhJRUevFh9c1rzkJxbeqdFRtropFm6hoUHT1evUZvQFVE2ceVilgrio9LoBksP7tVAXDUnQ61we6E8eNkic135v_vy4Py-PIFr-8MPSZocDPoPYUtUEkKHXDuwOZ8u3CO4Yn8iOqaPK1ljcHLRiP0D5wZdrg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hAdNeBoyvwAAj8QbWGn8kDm-lowIRqmnrpr2F2HFYRJdMbTpp__3O-WhBAyTEa-LYju_Ddz7f7wDeaK59maeK5oGvqMiYojo3nBqOUhlkgudNfsVJHE4m6vQ0Ovgpi7-57d6HJNucBofSVNZ7F1m-t058Y5JHFPcb6kCkBEUlfFu4i_TOXz866XVxIFRTbQSdEk5ZKP0ubeb3ffy6Nd2wN2_ESpstaHzv_yd_H7Y785MMW355ALdsuQN324KUVzuw-bULtT-Eb_HhlI7i4yO0d9-TIUFtSEazpcNVwIHJcPa9mhf12Tn5gPtgRqqSxMUPOyscTDI5dPQmU_wvUlekTQbOr8j-vHDnF8RhXS8ewfH443T0iXblGJBwoaxpOjDS4cFlvrXoZQhjNM_DFA1MqYMgMgNp9SAyXOlMDrSIBMtV6qoWMnxuWM4fw0ZZlfYpEJspFmlhfG2kyELUCQrb2IzJlKPXHHrg95RITIdV7kpmzJI1yrJbxAQXMWkWMWEevF19c9Eidfy19W5P4KST2kXCnbeMFhpTHrxevUZ5c0GUtLTVcpEwh9iEbnXAPXjSMsZqOB4ogQa48OBdzwXrzv88l2f_1vwVbB7sj5P48-TLc9hiDR-5U6Fd2KjnS_sC7pjLuljMXzaicA0YrAHh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LRT-CLUSTER%3A+A+New+Clustering+Algorithm+Based+on+Likelihood+Ratio+Test+to+Identify+Driving+Genes&rft.jtitle=Interdisciplinary+sciences+%3A+computational+life+sciences&rft.au=Quan%2C+Chenxu&rft.au=Liu%2C+Fenghui&rft.au=Qi%2C+Lin&rft.au=Tie%2C+Yun&rft.date=2023-06-01&rft.eissn=1867-1462&rft.volume=15&rft.issue=2&rft.spage=217&rft_id=info:doi/10.1007%2Fs12539-023-00554-2&rft_id=info%3Apmid%2F36848004&rft.externalDocID=36848004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1913-2751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1913-2751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1913-2751&client=summon