The Performance Comparison of Gene Co-expression Networks of Breast and Prostate Cancer using Different Selection Criteria
Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The utilization of various biological datasets and gene network inference (GNI) algorithms can reveal meaningful gene–gene interactions of GCNs. This...
Saved in:
| Published in: | Interdisciplinary sciences : computational life sciences Vol. 13; no. 3; pp. 500 - 510 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Singapore
Springer Singapore
01.09.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1913-2751, 1867-1462, 1867-1462 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The utilization of various biological datasets and gene network inference (GNI) algorithms can reveal meaningful gene–gene interactions of GCNs. This study applies three GNI algorithms on mRNA gene expression, RNA-Seq, and miRNA–target genes datasets to infer GCNs of breast and prostate cancers. To evaluate the performance of the GCNs, we utilize overlap analysis via literature data, topological assessment, and Gene Ontology-based biological assessment. The results emphasize how the selection of biological datasets and GNI algorithms affect the performance results on different evaluation criteria. GCNs on microarray gene expression data slightly outperform in overlap analysis. Also, GCNs on RNA-Seq and gene expression datasets follow scale-free topology. The biological assessment results are close to each other on all biological datasets. C3NET algorithm-based GCNs did not contain any biological assessment modules; therefore, it is not optimal for biological assessment. GNI algorithms' selection did not change the overlap analysis and topological assessment results. Our primary objective is to compare the performance results of biological datasets and GNI algorithms based on different evaluation criteria. For this purpose, we developed the GNIAP R package that enables users to select different GNI algorithms to infer GCNs. The GNIAP R package also provides literature-based overlap analysis, and topological and biological analyses on GCNs. Users can access the GNIAP R package via
https://github.com/ozgurcingiz/GNIAP
.
Graphic abstract |
|---|---|
| AbstractList | Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The utilization of various biological datasets and gene network inference (GNI) algorithms can reveal meaningful gene–gene interactions of GCNs. This study applies three GNI algorithms on mRNA gene expression, RNA-Seq, and miRNA–target genes datasets to infer GCNs of breast and prostate cancers. To evaluate the performance of the GCNs, we utilize overlap analysis via literature data, topological assessment, and Gene Ontology-based biological assessment. The results emphasize how the selection of biological datasets and GNI algorithms affect the performance results on different evaluation criteria. GCNs on microarray gene expression data slightly outperform in overlap analysis. Also, GCNs on RNA-Seq and gene expression datasets follow scale-free topology. The biological assessment results are close to each other on all biological datasets. C3NET algorithm-based GCNs did not contain any biological assessment modules; therefore, it is not optimal for biological assessment. GNI algorithms' selection did not change the overlap analysis and topological assessment results. Our primary objective is to compare the performance results of biological datasets and GNI algorithms based on different evaluation criteria. For this purpose, we developed the GNIAP R package that enables users to select different GNI algorithms to infer GCNs. The GNIAP R package also provides literature-based overlap analysis, and topological and biological analyses on GCNs. Users can access the GNIAP R package via https://github.com/ozgurcingiz/GNIAP.Graphic abstract Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The utilization of various biological datasets and gene network inference (GNI) algorithms can reveal meaningful gene-gene interactions of GCNs. This study applies three GNI algorithms on mRNA gene expression, RNA-Seq, and miRNA-target genes datasets to infer GCNs of breast and prostate cancers. To evaluate the performance of the GCNs, we utilize overlap analysis via literature data, topological assessment, and Gene Ontology-based biological assessment. The results emphasize how the selection of biological datasets and GNI algorithms affect the performance results on different evaluation criteria. GCNs on microarray gene expression data slightly outperform in overlap analysis. Also, GCNs on RNA-Seq and gene expression datasets follow scale-free topology. The biological assessment results are close to each other on all biological datasets. C3NET algorithm-based GCNs did not contain any biological assessment modules; therefore, it is not optimal for biological assessment. GNI algorithms' selection did not change the overlap analysis and topological assessment results. Our primary objective is to compare the performance results of biological datasets and GNI algorithms based on different evaluation criteria. For this purpose, we developed the GNIAP R package that enables users to select different GNI algorithms to infer GCNs. The GNIAP R package also provides literature-based overlap analysis, and topological and biological analyses on GCNs. Users can access the GNIAP R package via https://github.com/ozgurcingiz/GNIAP .Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The utilization of various biological datasets and gene network inference (GNI) algorithms can reveal meaningful gene-gene interactions of GCNs. This study applies three GNI algorithms on mRNA gene expression, RNA-Seq, and miRNA-target genes datasets to infer GCNs of breast and prostate cancers. To evaluate the performance of the GCNs, we utilize overlap analysis via literature data, topological assessment, and Gene Ontology-based biological assessment. The results emphasize how the selection of biological datasets and GNI algorithms affect the performance results on different evaluation criteria. GCNs on microarray gene expression data slightly outperform in overlap analysis. Also, GCNs on RNA-Seq and gene expression datasets follow scale-free topology. The biological assessment results are close to each other on all biological datasets. C3NET algorithm-based GCNs did not contain any biological assessment modules; therefore, it is not optimal for biological assessment. GNI algorithms' selection did not change the overlap analysis and topological assessment results. Our primary objective is to compare the performance results of biological datasets and GNI algorithms based on different evaluation criteria. For this purpose, we developed the GNIAP R package that enables users to select different GNI algorithms to infer GCNs. The GNIAP R package also provides literature-based overlap analysis, and topological and biological analyses on GCNs. Users can access the GNIAP R package via https://github.com/ozgurcingiz/GNIAP . Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The utilization of various biological datasets and gene network inference (GNI) algorithms can reveal meaningful gene-gene interactions of GCNs. This study applies three GNI algorithms on mRNA gene expression, RNA-Seq, and miRNA-target genes datasets to infer GCNs of breast and prostate cancers. To evaluate the performance of the GCNs, we utilize overlap analysis via literature data, topological assessment, and Gene Ontology-based biological assessment. The results emphasize how the selection of biological datasets and GNI algorithms affect the performance results on different evaluation criteria. GCNs on microarray gene expression data slightly outperform in overlap analysis. Also, GCNs on RNA-Seq and gene expression datasets follow scale-free topology. The biological assessment results are close to each other on all biological datasets. C3NET algorithm-based GCNs did not contain any biological assessment modules; therefore, it is not optimal for biological assessment. GNI algorithms' selection did not change the overlap analysis and topological assessment results. Our primary objective is to compare the performance results of biological datasets and GNI algorithms based on different evaluation criteria. For this purpose, we developed the GNIAP R package that enables users to select different GNI algorithms to infer GCNs. The GNIAP R package also provides literature-based overlap analysis, and topological and biological analyses on GCNs. Users can access the GNIAP R package via https://github.com/ozgurcingiz/GNIAP . Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The utilization of various biological datasets and gene network inference (GNI) algorithms can reveal meaningful gene–gene interactions of GCNs. This study applies three GNI algorithms on mRNA gene expression, RNA-Seq, and miRNA–target genes datasets to infer GCNs of breast and prostate cancers. To evaluate the performance of the GCNs, we utilize overlap analysis via literature data, topological assessment, and Gene Ontology-based biological assessment. The results emphasize how the selection of biological datasets and GNI algorithms affect the performance results on different evaluation criteria. GCNs on microarray gene expression data slightly outperform in overlap analysis. Also, GCNs on RNA-Seq and gene expression datasets follow scale-free topology. The biological assessment results are close to each other on all biological datasets. C3NET algorithm-based GCNs did not contain any biological assessment modules; therefore, it is not optimal for biological assessment. GNI algorithms' selection did not change the overlap analysis and topological assessment results. Our primary objective is to compare the performance results of biological datasets and GNI algorithms based on different evaluation criteria. For this purpose, we developed the GNIAP R package that enables users to select different GNI algorithms to infer GCNs. The GNIAP R package also provides literature-based overlap analysis, and topological and biological analyses on GCNs. Users can access the GNIAP R package via https://github.com/ozgurcingiz/GNIAP . Graphic abstract |
| Author | Biricik, Göksel Diri, Banu Cingiz, Mustafa Özgür |
| Author_xml | – sequence: 1 givenname: Mustafa Özgür orcidid: 0000-0003-4469-1440 surname: Cingiz fullname: Cingiz, Mustafa Özgür email: mustafa.cingiz@btu.edu.tr organization: Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University – sequence: 2 givenname: Göksel surname: Biricik fullname: Biricik, Göksel organization: Computer Engineering Department, Yildiz Technical University – sequence: 3 givenname: Banu surname: Diri fullname: Diri, Banu organization: Computer Engineering Department, Yildiz Technical University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34003445$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtv1TAQhS1URB_wB1igSGzYGPy-9hIu0CJVUImyjhxnXFwS-2I74vHr63ALSF10ZWv8nZnxOcfoIKYICD2l5CUlZPOqUCa5wYRRTIgQBJsH6IhqtcFUKHbQ7oZyzDaSHqLjUq4JUUJz8ggdckEIF0Ieod-XX6G7gOxTnm100G3TvLM5lBS75LtTiGsJw89dhlJCq36E-iPlb2V9fpPBltrZOHYXOZVqa6PXNrlbSohX3dvgPWSItfsME7i6NtjmUCEH-xg99HYq8OT2PEFf3r-73J7h80-nH7avz7HjG1mxGRwDRzxjoLXxlls5UiPpAG4kArwaRtY-PzqQZtSD18OgvTAK1CDHgQh-gl7s--5y-r5Aqf0cioNpshHSUnommdaMU7Oiz--g12nJsW3XKEWJYcqoRj27pZZhhrHf5TDb_Kv_62oD2B5wzZSSwf9DKOnX6Pp9dH2Lrv8TXW-aSN8RudAMbY7VbMN0v5TvpaXNiVeQ_699j-oGAhauSg |
| CitedBy_id | crossref_primary_10_7717_peerj_17975 crossref_primary_10_1016_j_ejbt_2023_05_002 crossref_primary_10_26599_TST_2022_9010035 |
| Cites_doi | 10.1186/s12918-015-0165-z 10.1093/bioinformatics/btt053 10.1186/1756-0500-6-229 10.1101/pdb.top093104 10.1093/nar/gkn714 10.1371/journal.pcbi.1005024 10.1007/s41109-020-00291-1 10.1038/s41586-020-1969-6 10.1093/bioinformatics/bts245 10.1186/1471-2105-9-559 10.1073/pnas.1817621116 10.1093/bioinformatics/btp616 10.1093/bioinformatics/btv118 10.3390/cancers12010037 10.1186/1471-2105-4-2 10.1038/nrg2934 10.3389/fgene.2018.00636 10.1186/1471-2105-7-S1-S7 10.1093/nar/gkw377 10.1093/bioinformatics/btg405 10.3389/fpls.2016.00444 10.14715/cmb/2017.63.3.4 10.1007/s10549-008-9982-8 10.1186/1471-2105-9-461 10.1109/TCBB.2015.2450740 10.1186/1471-2164-12-S5-S13 10.3906/biy-1210-8 10.1038/nprot.2012.016 10.1101/gr.130435.111 10.1101/cshperspect.a012336 10.1007/PL00012580 10.1093/nar/gkq1107 10.5713/ajas.2012.12375 10.1016/j.ygeno.2020.01.001 10.1186/1471-2105-14-S9-S1 10.1371/journal.pcbi.1005457 10.1093/nar/gkr378 10.1158/0008-5472.CAN-07-2608 10.1186/s13059-016-0881-8 10.1186/s13040-018-0166-8 10.1186/1752-0509-4-132 10.1093/nar/gki033 10.1016/j.imu.2020.100509 10.1016/j.ccell.2015.09.018 |
| ContentType | Journal Article |
| Copyright | International Association of Scientists in the Interdisciplinary Areas 2021 International Association of Scientists in the Interdisciplinary Areas 2021. 2021. International Association of Scientists in the Interdisciplinary Areas. |
| Copyright_xml | – notice: International Association of Scientists in the Interdisciplinary Areas 2021 – notice: International Association of Scientists in the Interdisciplinary Areas 2021. – notice: 2021. International Association of Scientists in the Interdisciplinary Areas. |
| DBID | AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 7X8 |
| DOI | 10.1007/s12539-021-00440-9 |
| DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Biotechnology Research Abstracts MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1867-1462 |
| EndPage | 510 |
| ExternalDocumentID | 34003445 10_1007_s12539_021_00440_9 |
| Genre | Journal Article |
| GroupedDBID | --- -56 -5G -BR -EM -~C 06C 06D 0R~ 0VY 1N0 29~ 2KG 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 67N 6NX 7X2 7X7 7XC 88E 8CJ 8FE 8FG 8FH 8FI 8FJ 96X AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AEUYN AEVLU AEXYK AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG APEBS ARAPS ASPBG ATCPS AUKKA AVWKF AXYYD AZFZN BA0 BBNVY BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BVXVI CAG CCPQU COF D1J D1K DDRTE DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI FYUFA G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HLICF HMCUK HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IZIGR I~X J-C JBSCW JCJTX JZLTJ K6- KOV LK5 LK8 LLZTM M0K M1P M4Y M7P M7R NPVJJ NQJWS NU0 O9- O9J P62 PATMY PCBAR PQQKQ PROAC PSQYO PT4 PYCSY Q2X QOR QOS R89 RLLFE ROL RSV S1Z S27 S3A S3B SBL SCL SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 T13 TSG U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABRTQ AFDZB AFFHD AFOHR AHPBZ ATHPR AYFIA CITATION K7- PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c375t-9bc2ec0f22e889fa3a5d1951becd04ef6bd2440dce59d8bf8bb8f496e6b5db043 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000651664300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1913-2751 1867-1462 |
| IngestDate | Fri Sep 05 12:58:44 EDT 2025 Sat Nov 29 14:59:20 EST 2025 Thu Apr 03 07:00:54 EDT 2025 Sat Nov 29 03:36:28 EST 2025 Tue Nov 18 21:24:05 EST 2025 Fri Feb 21 02:47:53 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Biological assessment of GCNs Topological analysis of GCNs Gene co-expression networks Gene co-expression network inference algorithms Literature data-based overlap analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-9bc2ec0f22e889fa3a5d1951becd04ef6bd2440dce59d8bf8bb8f496e6b5db043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4469-1440 |
| PMID | 34003445 |
| PQID | 2561092696 |
| PQPubID | 326319 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2528823194 proquest_journals_2561092696 pubmed_primary_34003445 crossref_primary_10_1007_s12539_021_00440_9 crossref_citationtrail_10_1007_s12539_021_00440_9 springer_journals_10_1007_s12539_021_00440_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Germany – name: Bromont |
| PublicationTitle | Interdisciplinary sciences : computational life sciences |
| PublicationTitleAbbrev | Interdiscip Sci Comput Life Sci |
| PublicationTitleAlternate | Interdiscip Sci |
| PublicationYear | 2021 |
| Publisher | Springer Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V |
| References | Meyer, Lafitte, Bontempi (CR31) 2008; 9 Wang, Wang, Pu, Li, Feng, Zheng, Li, Sun, Yao, Jin (CR33) 2020; 112 Reimand, Arak, Vilo (CR45) 2011; 39 Serin, Nijveen, Hilhorst, Ligterink (CR39) 2016; 7 Best, Sol, Kooi, Tannous, Westerman, Rustenburg, Schellen, Verschueren, Post, Koster, Ylstra, Ameziane, Dorsman, Smit, Verheul, Noske, Reijneveld, Nilsson, Tannous, Wesseling, Wurdinger (CR22) 2015; 28 Jiang, Wang, Hao, Juan, Teng, Zhang, Li, Wang, Liu (CR25) 2008; 37 Dorantes-Gilardi, García-Cortés, Hernández-Lemus, Espinal-Enríquez (CR34) 2020; 5 Chang, Lin, Liu, Yu, Chen, Wartini, Kao, Wu, Lin, Lu, Tu, Wu, Shiu, Ku, Li (CR17) 2019; 116 Ruggero (CR1) 2013; 5 Ozsolak, Milos (CR10) 2011; 12 Altay, Emmert-Streib (CR29) 2010; 4 Langfelder, Horvath (CR30) 2008; 9 Chung, Lu (CR37) 2002; 6 Cingiz, Biricik, Diri (CR19) 2017; 63 Gautier, Cope, Bolstad, Irizarry (CR26) 2004; 20 Altay, Altay, Neal (CR36) 2013; 37 Xu, Zhang, Williams, Antoniou, McCombie, Wu, Zhu, Davidson, Denoya, Li (CR3) 2013; 14 Mathur, Rotroff, Ma, Shojaie, Motsinger-Reif (CR6) 2018; 11 de Matos, Dalleau, Williamson, Emmert-Streib (CR14) 2015; 9 Niemira, Collin, Szalkowska, Bielska, Chwialkowska, Reszec, Niklinski, Kwasniewski, Kretowski (CR32) 2019; 12 Casey, Bond, Tighe, Hunter, Lintault, Patel, Eneman, Crocker, White, Tessitore, Stanley, Harlow, Weaver, Muss, Plaut (CR20) 2009; 114 Lowe, Shirley, Bleackley, Dolan, Shafee (CR12) 2017; 13 Hamosh, Scott, Amberger, Bocchini, McKusick (CR43) 2005; 33 Kuleshov, Jones, Rouillard, Fernandez, Duan, Wang, Koplev, Jenkins, Jagodnik, Lachmann, McDermott, Monteiro, Gundersen, Ma'ayan (CR44) 2016; 44 Lim, Lee, Kim, Cho, Chai, Seong, Kim (CR40) 2013; 26 Robinson, McCarthy, Smyth (CR27) 2010; 26 Gennarino, D'Angelo, Dharmalingam, Fernandez, Russolillo, Sanges, Mutarelli, Belcastro, Ballabio, Verde, Sardiello, Banfi (CR18) 2012; 22 Iancu, Kawane, Bottomly, Searles, Hitzemann, McWeeney (CR15) 2012; 28 Conesa, Madrigal, Tarazona, Gomez-Cabrero, Cervera, McPherson, Szcześniak, Gaffney, Elo, Zhang, Mortazavi (CR5) 2016; 17 Liu, Zhang, Guo, Wei, Chen (CR8) 2016; 12 Bader, Hogue (CR41) 2003; 4 Wallace, Prueitt, Yi, Howe, Gillespie, Yfantis, Stephens, Caporaso, Loffredo, Ambs (CR21) 2008; 68 Hung, Weng (CR4) 2017 Singh, Vidyasagar (CR9) 2015; 13 Giorgi, Del Fabbro, Licausi (CR16) 2013; 29 Hsu, Lin, Wu, Liang, Huang, Chan, Tsai, Chen, Lee, Chiu, Chien, Wu, Huang, Tsou, Huang (CR24) 2011; 39 Margolin, Nemenman, Basso, Wiggins, Stolovitzky, Dalla Favera, Califano (CR28) 2006; 7 Li, Wang, Gong, Perkins, Zhang (CR7) 2011; 12 Nazanin, Allahverdi, Abdolmeki (CR35) 2020; 22 Szczepińska, Pawłowski (CR38) 2013; 6 CR42 Trapnell, Roberts, Goff, Pertea, Kim, Kelley, Pimentel, Salzberg, Rinn, Pachter (CR11) 2012; 7 (CR23) 2020; 578 Rao, Van Vleet, Ciurlionis, Buck, Mittelstadt, Blomme, Liguori (CR2) 2019; 9 Ballouz, Verleyen, Gillis (CR13) 2015; 31 F Liu (440_CR8) 2016; 12 D Lim (440_CR40) 2013; 26 H Li (440_CR7) 2011; 12 T Szczepińska (440_CR38) 2013; 6 D Ruggero (440_CR1) 2013; 5 AA Margolin (440_CR28) 2006; 7 TA Wallace (440_CR21) 2008; 68 C Trapnell (440_CR11) 2012; 7 MD Robinson (440_CR27) 2010; 26 M Wang (440_CR33) 2020; 112 R Dorantes-Gilardi (440_CR34) 2020; 5 MÖ Cingiz (440_CR19) 2017; 63 EA Serin (440_CR39) 2016; 7 FM Giorgi (440_CR16) 2013; 29 ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium (440_CR23) 2020; 578 H Nazanin (440_CR35) 2020; 22 P Langfelder (440_CR30) 2008; 9 F Ozsolak (440_CR10) 2011; 12 R Mathur (440_CR6) 2018; 11 440_CR42 SD Hsu (440_CR24) 2011; 39 X Xu (440_CR3) 2013; 14 PE Meyer (440_CR31) 2008; 9 R Lowe (440_CR12) 2017; 13 YM Chang (440_CR17) 2019; 116 MV Kuleshov (440_CR44) 2016; 44 Q Jiang (440_CR25) 2008; 37 F Chung (440_CR37) 2002; 6 A Hamosh (440_CR43) 2005; 33 S Ballouz (440_CR13) 2015; 31 A Conesa (440_CR5) 2016; 17 SR de Matos (440_CR14) 2015; 9 N Singh (440_CR9) 2015; 13 T Casey (440_CR20) 2009; 114 J Reimand (440_CR45) 2011; 39 G Altay (440_CR29) 2010; 4 M Niemira (440_CR32) 2019; 12 L Gautier (440_CR26) 2004; 20 MS Rao (440_CR2) 2019; 9 VA Gennarino (440_CR18) 2012; 22 GD Bader (440_CR41) 2003; 4 JH Hung (440_CR4) 2017 OD Iancu (440_CR15) 2012; 28 G Altay (440_CR36) 2013; 37 MG Best (440_CR22) 2015; 28 |
| References_xml | – volume: 9 start-page: 21 year: 2015 ident: CR14 article-title: Urothelial cancer gene regulatory networks inferred from large-scale RNAseq, Bead and Oligo gene expression data publication-title: BMC Syst Biol doi: 10.1186/s12918-015-0165-z – volume: 29 start-page: 717 issue: 6 year: 2013 end-page: 724 ident: CR16 article-title: Comparative study of RNA-seq- and microarray-derived co-expression networks in publication-title: Bioinform doi: 10.1093/bioinformatics/btt053 – volume: 6 start-page: 229 year: 2013 ident: CR38 article-title: Genomic positions of co-expressed genes: echoes of chromosome organisation in gene expression data publication-title: BMC Res Notes doi: 10.1186/1756-0500-6-229 – year: 2017 ident: CR4 article-title: Analysis of microarray and RNA-seq expression profiling data publication-title: Cold Spring Harb Protoc doi: 10.1101/pdb.top093104 – volume: 37 start-page: D98 issue: Database issue year: 2008 end-page: D104 ident: CR25 article-title: miR2Disease: a manually curated database for microRNA deregulation in human disease publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn714 – volume: 12 start-page: e1005024 issue: 8 year: 2016 ident: CR8 article-title: Inference of gene regulatory network based on local Bayesian networks publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005024 – volume: 5 start-page: 47 year: 2020 ident: CR34 article-title: Multilayer approach reveals organizational principles disrupted in breast cancer co-expression networks publication-title: Appl Netw Sci doi: 10.1007/s41109-020-00291-1 – volume: 578 start-page: 82 issue: 7793 year: 2020 end-page: 93 ident: CR23 article-title: Pan-cancer analysis of whole genomes publication-title: Nature doi: 10.1038/s41586-020-1969-6 – volume: 28 start-page: 1592 issue: 12 year: 2012 end-page: 1597 ident: CR15 article-title: Utilizing RNA-Seq data for de novo co-expression network inference publication-title: Bioinform doi: 10.1093/bioinformatics/bts245 – volume: 9 start-page: 559 year: 2008 ident: CR30 article-title: WGCNA: an R package for weighted correlation network analysis publication-title: BMC Bioinform doi: 10.1186/1471-2105-9-559 – volume: 116 start-page: 3091 issue: 8 year: 2019 end-page: 3099 ident: CR17 article-title: Comparative transcriptomics method to infer gene co-expression networks and its applications to maize and rice leaf transcriptomes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1817621116 – volume: 26 start-page: 139 issue: 1 year: 2010 end-page: 140 ident: CR27 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinform doi: 10.1093/bioinformatics/btp616 – ident: CR42 – volume: 31 start-page: 2123 issue: 13 year: 2015 end-page: 2130 ident: CR13 article-title: Guidance for RNA-seq co-expression network construction and analysis: safety in numbers publication-title: Bioinform doi: 10.1093/bioinformatics/btv118 – volume: 12 start-page: 37 issue: 1 year: 2019 ident: CR32 article-title: Molecular signature of subtypes of non-small-cell lung cancer by large-scale transcriptional profiling: identification of key modules and genes by weighted gene co-expression network analysis (WGCNA) publication-title: Cancers doi: 10.3390/cancers12010037 – volume: 4 start-page: 2 year: 2003 ident: CR41 article-title: An automated method for finding molecular complexes in large protein interaction networks publication-title: BMC Bioinform doi: 10.1186/1471-2105-4-2 – volume: 12 start-page: 87 issue: 2 year: 2011 end-page: 98 ident: CR10 article-title: RNA sequencing: advances, challenges and opportunities publication-title: Nat Rev Genet doi: 10.1038/nrg2934 – volume: 9 start-page: 636 year: 2019 ident: CR2 article-title: Comparison of RNA-Seq And microarray gene expression platforms for the toxicogenomic evaluation of liver from short-term rat toxicity studies publication-title: Front Genet doi: 10.3389/fgene.2018.00636 – volume: 7 start-page: S7 issue: Suppl 1 year: 2006 ident: CR28 article-title: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context publication-title: BMC Bioinform doi: 10.1186/1471-2105-7-S1-S7 – volume: 44 start-page: W90 issue: W1 year: 2016 end-page: W97 ident: CR44 article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw377 – volume: 20 start-page: 307 issue: 3 year: 2004 end-page: 315 ident: CR26 article-title: affy–analysis of Affymetrix GeneChip data at the probe level publication-title: Bioinform doi: 10.1093/bioinformatics/btg405 – volume: 7 start-page: 444 year: 2016 ident: CR39 article-title: Learning from co-expression networks: possibilities and challenges publication-title: Front Plant Sci doi: 10.3389/fpls.2016.00444 – volume: 63 start-page: 18 issue: 3 year: 2017 end-page: 25 ident: CR19 article-title: ARNetMiT R Package: association rules based gene co-expression networks of miRNA targets publication-title: Cell Mol Biol (Noisy-le-grand) doi: 10.14715/cmb/2017.63.3.4 – volume: 114 start-page: 47 issue: 1 year: 2009 end-page: 62 ident: CR20 article-title: Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-008-9982-8 – volume: 9 start-page: 461 year: 2008 ident: CR31 article-title: minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information publication-title: BMC Bioinform doi: 10.1186/1471-2105-9-461 – volume: 13 start-page: 301 issue: 2 year: 2015 end-page: 314 ident: CR9 article-title: bLARS: an algorithm to infer gene regulatory networks publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2015.2450740 – volume: 12 start-page: S13 issue: Suppl 5 year: 2011 ident: CR7 article-title: Learning the structure of gene regulatory networks from time series gene expression data publication-title: BMC Genomics doi: 10.1186/1471-2164-12-S5-S13 – volume: 37 start-page: 547 year: 2013 end-page: 555 ident: CR36 article-title: Global assessment of network inference algorithms based on available literature of gene/protein interactions publication-title: Turk J Biol doi: 10.3906/biy-1210-8 – volume: 7 start-page: 562 issue: 3 year: 2012 end-page: 578 ident: CR11 article-title: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks publication-title: Nat Protoc doi: 10.1038/nprot.2012.016 – volume: 22 start-page: 1163 issue: 6 year: 2012 end-page: 1172 ident: CR18 article-title: Identification of microRNA-regulated gene networks by expression analysis of target genes publication-title: Genome Res doi: 10.1101/gr.130435.111 – volume: 5 start-page: a012336 issue: 2 year: 2013 ident: CR1 article-title: Translational control in cancer etiology publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a012336 – volume: 6 start-page: 125 year: 2002 end-page: 145 ident: CR37 article-title: Connected components in random graphs with given expected degree sequences publication-title: Ann Comb doi: 10.1007/PL00012580 – volume: 39 start-page: D163 issue: Database issue year: 2011 end-page: D169 ident: CR24 article-title: miRTarBase: a database curates experimentally validated microRNA-target interactions publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq1107 – volume: 26 start-page: 19 issue: 1 year: 2013 end-page: 29 ident: CR40 article-title: Gene co-expression analysis to characterize genes related to marbling trait in Hanwoo (Korean) Cattle publication-title: Asian-Australas J Anim Sci doi: 10.5713/ajas.2012.12375 – volume: 112 start-page: 2302 issue: 3 year: 2020 end-page: 2308 ident: CR33 article-title: LncRNAs related key pathways and genes in ischemic stroke by weighted gene co-expression network analysis (WGCNA) publication-title: Genomics doi: 10.1016/j.ygeno.2020.01.001 – volume: 14 start-page: S1 issue: Suppl 9 year: 2013 ident: CR3 article-title: Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets publication-title: BMC Bioinform doi: 10.1186/1471-2105-14-S9-S1 – volume: 13 start-page: e1005457 issue: 5 year: 2017 ident: CR12 article-title: Transcriptomics technologies publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005457 – volume: 39 start-page: W307 issue: Web Server issue year: 2011 end-page: W315 ident: CR45 article-title: g:Profiler–a web server for functional interpretation of gene lists (2011 update) publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr378 – volume: 68 start-page: 927 issue: 3 year: 2008 end-page: 936 ident: CR21 article-title: Tumor immunobiological differences in prostate cancer between African-American and European-American men publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-2608 – volume: 17 start-page: 13 year: 2016 ident: CR5 article-title: A survey of best practices for RNA-seq data analysis publication-title: Genome Biol doi: 10.1186/s13059-016-0881-8 – volume: 11 start-page: 8 year: 2018 ident: CR6 article-title: Gene set analysis methods: a systematic comparison publication-title: BioData Min doi: 10.1186/s13040-018-0166-8 – volume: 4 start-page: 132 year: 2010 ident: CR29 article-title: Inferring the conservative causal core of gene regulatory networks publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-132 – volume: 33 start-page: D514 issue: Database issue year: 2005 end-page: D517 ident: CR43 article-title: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders publication-title: Nucleic Acids Res doi: 10.1093/nar/gki033 – volume: 22 start-page: 100509 year: 2020 ident: CR35 article-title: The novel potential multidrug-resistance biomarkers for Pseudomonas aeruginosa lung infections using transcriptomics data analysis publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2020.100509 – volume: 28 start-page: 666 issue: 5 year: 2015 end-page: 676 ident: CR22 article-title: RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.09.018 – volume: 6 start-page: 229 year: 2013 ident: 440_CR38 publication-title: BMC Res Notes doi: 10.1186/1756-0500-6-229 – volume: 9 start-page: 559 year: 2008 ident: 440_CR30 publication-title: BMC Bioinform doi: 10.1186/1471-2105-9-559 – volume: 5 start-page: 47 year: 2020 ident: 440_CR34 publication-title: Appl Netw Sci doi: 10.1007/s41109-020-00291-1 – volume: 26 start-page: 19 issue: 1 year: 2013 ident: 440_CR40 publication-title: Asian-Australas J Anim Sci doi: 10.5713/ajas.2012.12375 – volume: 39 start-page: W307 issue: Web Server issu year: 2011 ident: 440_CR45 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr378 – volume: 22 start-page: 100509 year: 2020 ident: 440_CR35 publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2020.100509 – volume: 33 start-page: D514 issue: Database issue year: 2005 ident: 440_CR43 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki033 – volume: 26 start-page: 139 issue: 1 year: 2010 ident: 440_CR27 publication-title: Bioinform doi: 10.1093/bioinformatics/btp616 – volume: 29 start-page: 717 issue: 6 year: 2013 ident: 440_CR16 publication-title: Bioinform doi: 10.1093/bioinformatics/btt053 – volume: 12 start-page: 87 issue: 2 year: 2011 ident: 440_CR10 publication-title: Nat Rev Genet doi: 10.1038/nrg2934 – volume: 7 start-page: 444 year: 2016 ident: 440_CR39 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.00444 – volume: 44 start-page: W90 issue: W1 year: 2016 ident: 440_CR44 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw377 – volume: 37 start-page: 547 year: 2013 ident: 440_CR36 publication-title: Turk J Biol doi: 10.3906/biy-1210-8 – volume: 4 start-page: 132 year: 2010 ident: 440_CR29 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-132 – volume: 12 start-page: e1005024 issue: 8 year: 2016 ident: 440_CR8 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005024 – volume: 7 start-page: S7 issue: Suppl 1 year: 2006 ident: 440_CR28 publication-title: BMC Bioinform doi: 10.1186/1471-2105-7-S1-S7 – volume: 9 start-page: 461 year: 2008 ident: 440_CR31 publication-title: BMC Bioinform doi: 10.1186/1471-2105-9-461 – year: 2017 ident: 440_CR4 publication-title: Cold Spring Harb Protoc doi: 10.1101/pdb.top093104 – volume: 31 start-page: 2123 issue: 13 year: 2015 ident: 440_CR13 publication-title: Bioinform doi: 10.1093/bioinformatics/btv118 – volume: 9 start-page: 21 year: 2015 ident: 440_CR14 publication-title: BMC Syst Biol doi: 10.1186/s12918-015-0165-z – volume: 116 start-page: 3091 issue: 8 year: 2019 ident: 440_CR17 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1817621116 – ident: 440_CR42 – volume: 5 start-page: a012336 issue: 2 year: 2013 ident: 440_CR1 publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a012336 – volume: 17 start-page: 13 year: 2016 ident: 440_CR5 publication-title: Genome Biol doi: 10.1186/s13059-016-0881-8 – volume: 63 start-page: 18 issue: 3 year: 2017 ident: 440_CR19 publication-title: Cell Mol Biol (Noisy-le-grand) doi: 10.14715/cmb/2017.63.3.4 – volume: 114 start-page: 47 issue: 1 year: 2009 ident: 440_CR20 publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-008-9982-8 – volume: 4 start-page: 2 year: 2003 ident: 440_CR41 publication-title: BMC Bioinform doi: 10.1186/1471-2105-4-2 – volume: 112 start-page: 2302 issue: 3 year: 2020 ident: 440_CR33 publication-title: Genomics doi: 10.1016/j.ygeno.2020.01.001 – volume: 14 start-page: S1 issue: Suppl 9 year: 2013 ident: 440_CR3 publication-title: BMC Bioinform doi: 10.1186/1471-2105-14-S9-S1 – volume: 6 start-page: 125 year: 2002 ident: 440_CR37 publication-title: Ann Comb doi: 10.1007/PL00012580 – volume: 20 start-page: 307 issue: 3 year: 2004 ident: 440_CR26 publication-title: Bioinform doi: 10.1093/bioinformatics/btg405 – volume: 11 start-page: 8 year: 2018 ident: 440_CR6 publication-title: BioData Min doi: 10.1186/s13040-018-0166-8 – volume: 13 start-page: 301 issue: 2 year: 2015 ident: 440_CR9 publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2015.2450740 – volume: 28 start-page: 666 issue: 5 year: 2015 ident: 440_CR22 publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.09.018 – volume: 13 start-page: e1005457 issue: 5 year: 2017 ident: 440_CR12 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005457 – volume: 12 start-page: S13 issue: Suppl 5 year: 2011 ident: 440_CR7 publication-title: BMC Genomics doi: 10.1186/1471-2164-12-S5-S13 – volume: 22 start-page: 1163 issue: 6 year: 2012 ident: 440_CR18 publication-title: Genome Res doi: 10.1101/gr.130435.111 – volume: 7 start-page: 562 issue: 3 year: 2012 ident: 440_CR11 publication-title: Nat Protoc doi: 10.1038/nprot.2012.016 – volume: 28 start-page: 1592 issue: 12 year: 2012 ident: 440_CR15 publication-title: Bioinform doi: 10.1093/bioinformatics/bts245 – volume: 578 start-page: 82 issue: 7793 year: 2020 ident: 440_CR23 publication-title: Nature doi: 10.1038/s41586-020-1969-6 – volume: 68 start-page: 927 issue: 3 year: 2008 ident: 440_CR21 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-2608 – volume: 12 start-page: 37 issue: 1 year: 2019 ident: 440_CR32 publication-title: Cancers doi: 10.3390/cancers12010037 – volume: 39 start-page: D163 issue: Database issue year: 2011 ident: 440_CR24 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq1107 – volume: 37 start-page: D98 issue: Database issue year: 2008 ident: 440_CR25 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn714 – volume: 9 start-page: 636 year: 2019 ident: 440_CR2 publication-title: Front Genet doi: 10.3389/fgene.2018.00636 |
| SSID | ssj0064830 |
| Score | 2.2205834 |
| Snippet | Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 500 |
| SubjectTerms | Algorithms Biological analysis Biological effects Biomedical and Life Sciences Breast cancer Computational Biology/Bioinformatics Computational Science and Engineering Computer Appl. in Life Sciences Criteria Datasets DNA microarrays Gene expression Genes Health Sciences Life Sciences Mathematical and Computational Physics Medicine miRNA Molecular structure Original Research Article Performance evaluation Prostate Prostate cancer Ribonucleic acid RNA Statistics for Life Sciences Theoretical Theoretical and Computational Chemistry Topology |
| Title | The Performance Comparison of Gene Co-expression Networks of Breast and Prostate Cancer using Different Selection Criteria |
| URI | https://link.springer.com/article/10.1007/s12539-021-00440-9 https://www.ncbi.nlm.nih.gov/pubmed/34003445 https://www.proquest.com/docview/2561092696 https://www.proquest.com/docview/2528823194 |
| Volume | 13 |
| WOSCitedRecordID | wos000651664300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1867-1462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064830 issn: 1913-2751 databaseCode: RSV dateStart: 20090301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH_ia2gXGGywQld50m6bpcZOHPu4FRAXqgrY1FsUxzaaNKVTGxDsr5-f47RCbJPGNbZfLPv37Ge9jx_AB-24sDw3NE00puRofw56XFDhvHWvS-ZEVgayiXw8ltOpmsSksEUX7d65JMNJvUp2YxlXFEMKAk8yVeuw6a87iep4efWtO39FKgPDiH-IcMryLImpMn-W8fg6emJjPvGPhmvnbPd5E34FO9HMJJ9bXOzBmq334UVLPPmwD9sX0aX-Gn55oJDJKn2AjJbMhGTmCJal9p-ovY8RszUZt5HjC2z-gjHtDSlrQyaYP-ItVzJCMXOCEfU35CQSsDTkKjDuoACkV0Dgv4GvZ6fXo3MaCRloxfOsoUpXzFZDx5iVUrmSl5lJvInmcWCGqXVCG28tDA2mdhmpndRaulQJK3Rm9DDlB7BRz2r7FogsHVbaSypu_BNPMO0SZV1muTXoaxU9SLp9KapYrRxJM34UqzrLuLyFX94iLG-hevBxOeZnW6vjn7373XYXUW8XBUNzUjGh_ATeL5u9xqEbpazt7Bb7MInOU5X24LCFyfJ3PA01FLMefOowsRL-97kc_V_3Y3jJAqww1K0PG8381r6Drequ-b6YD2A9n8pB0Inf0eQDjw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0VytelfLbdloIr9VYsbezEax_bbREVsFoVirhFcWwjpCpb7QYE_fV4HGdXFRQJrrEzsexne6J5Mw_gk3ZcWN4zNE00puRofw56XFDhvHevC-ZEVgSxid5gIM_P1TAmhU1atnsbkgwn9SzZjWVcUaQUBJ1kqubgZepvLCTy_Tw5a89fkcqgMOJ_RDhlvSyJqTIP2_j3OrrnY96Lj4ZrZ3_1eQNeg1fRzSRfGlyswwtbbcBiIzx5uwFLxzGkvgl_PVDIcJY-QPpTZUIycgTLUvtH1N5ExmxFBg1zfILNX5HTXpOiMmSI-SPecyV9NDMmyKi_IN-iAEtNToLiDhpAeQUE_hb82v9-2j-gUZCBlryX1VTpktmy6xizUipX8CIziXfRPA5MN7VOaOO9ha7B1C4jtZNaS5cqYYXOjO6m_DXMV6PKvgUiC4eV9pKSG_-LJ5h2ibIus9wajLWKDiTtuuRlrFaOohm_81mdZZze3E9vHqY3Vx34PH3nT1Or49He2-1y53HfTnKG7qRiQvkBfJw2-x2HYZSisqMr7MMkBk9V2oE3DUymn-NpqKGYdWCvxcTM-P_H8u5p3Xdh-eD0-Cg_-jE4fA8rLEAMaW_bMF-Pr-wHWCiv68vJeCfsjDvmJgWL |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xwSpeBtvYVtjASHsbVhs7ce3H0VGBgKrSfqhvURzbaNKUVm02AX89Pidph8qQpr3G9sWy7-yz7r77AI6048LynqFxpBGSo_056PWCCue9e50xJ5IskE30hkM5HqvRHRR_yHZvQpIVpgGrNBVlZ2pcZwl8YwlXFNMLAmcyVWvwNEbSIHyvn102Z7GIZWAb8Y8STlkviWrYzL9l_H01rfibK7HScAUNXjx-8i9hs3Y_yUmlL1vwxBbbsFERUv7ahtb3OtS-A7-9ApHRElZA-gvGQjJxBMtV-0_U_qwzaQsyrDLK59j8EXPdS5IVhowQV-I9WtJHMTOCmfY_yGlNzFKSs8DEgwKQdgEN4hVcDD6d9z_TmqiB5ryXlFTpnNm86xizUiqX8SwxkXfdvH6Ybmyd0MZ7EV2DkC8jtZNaSxcrYYVOjO7GfBfWi0lh94HIzGEFvijnxj_9BNMuUtYllluDMVjRhqjZozSvq5gjmcZ1uqy_jMub-uVNw_Kmqg3HizHTqobHf3sfNFuf1vY8Txm6mYoJ5SfwftHsLRHDK1lhJzfYh0kMqqq4DXuVyix-x-NQWzFpw4dGP5bC75_L64d1fwet0ekg_fZl-PUNPGdBwzAb7gDWy9mNPYRn-W15NZ-9DUbyB0SUDm8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Performance+Comparison+of+Gene+Co-expression+Networks+of+Breast+and+Prostate+Cancer+using+Different+Selection+Criteria&rft.jtitle=Interdisciplinary+sciences+%3A+computational+life+sciences&rft.au=Cingiz+Mustafa+%C3%96zg%C3%BCr&rft.au=G%C3%B6ksel%2C+Biricik&rft.au=Diri+Banu&rft.date=2021-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1913-2751&rft.eissn=1867-1462&rft.volume=13&rft.issue=3&rft.spage=500&rft.epage=510&rft_id=info:doi/10.1007%2Fs12539-021-00440-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1913-2751&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1913-2751&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1913-2751&client=summon |