The Performance Comparison of Gene Co-expression Networks of Breast and Prostate Cancer using Different Selection Criteria

Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The utilization of various biological datasets and gene network inference (GNI) algorithms can reveal meaningful gene–gene interactions of GCNs. This...

Full description

Saved in:
Bibliographic Details
Published in:Interdisciplinary sciences : computational life sciences Vol. 13; no. 3; pp. 500 - 510
Main Authors: Cingiz, Mustafa Özgür, Biricik, Göksel, Diri, Banu
Format: Journal Article
Language:English
Published: Singapore Springer Singapore 01.09.2021
Springer Nature B.V
Subjects:
ISSN:1913-2751, 1867-1462, 1867-1462
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The utilization of various biological datasets and gene network inference (GNI) algorithms can reveal meaningful gene–gene interactions of GCNs. This study applies three GNI algorithms on mRNA gene expression, RNA-Seq, and miRNA–target genes datasets to infer GCNs of breast and prostate cancers. To evaluate the performance of the GCNs, we utilize overlap analysis via literature data, topological assessment, and Gene Ontology-based biological assessment. The results emphasize how the selection of biological datasets and GNI algorithms affect the performance results on different evaluation criteria. GCNs on microarray gene expression data slightly outperform in overlap analysis. Also, GCNs on RNA-Seq and gene expression datasets follow scale-free topology. The biological assessment results are close to each other on all biological datasets. C3NET algorithm-based GCNs did not contain any biological assessment modules; therefore, it is not optimal for biological assessment. GNI algorithms' selection did not change the overlap analysis and topological assessment results. Our primary objective is to compare the performance results of biological datasets and GNI algorithms based on different evaluation criteria. For this purpose, we developed the GNIAP R package that enables users to select different GNI algorithms to infer GCNs. The GNIAP R package also provides literature-based overlap analysis, and topological and biological analyses on GCNs. Users can access the GNIAP R package via https://github.com/ozgurcingiz/GNIAP . Graphic abstract
AbstractList Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The utilization of various biological datasets and gene network inference (GNI) algorithms can reveal meaningful gene–gene interactions of GCNs. This study applies three GNI algorithms on mRNA gene expression, RNA-Seq, and miRNA–target genes datasets to infer GCNs of breast and prostate cancers. To evaluate the performance of the GCNs, we utilize overlap analysis via literature data, topological assessment, and Gene Ontology-based biological assessment. The results emphasize how the selection of biological datasets and GNI algorithms affect the performance results on different evaluation criteria. GCNs on microarray gene expression data slightly outperform in overlap analysis. Also, GCNs on RNA-Seq and gene expression datasets follow scale-free topology. The biological assessment results are close to each other on all biological datasets. C3NET algorithm-based GCNs did not contain any biological assessment modules; therefore, it is not optimal for biological assessment. GNI algorithms' selection did not change the overlap analysis and topological assessment results. Our primary objective is to compare the performance results of biological datasets and GNI algorithms based on different evaluation criteria. For this purpose, we developed the GNIAP R package that enables users to select different GNI algorithms to infer GCNs. The GNIAP R package also provides literature-based overlap analysis, and topological and biological analyses on GCNs. Users can access the GNIAP R package via https://github.com/ozgurcingiz/GNIAP.Graphic abstract
Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The utilization of various biological datasets and gene network inference (GNI) algorithms can reveal meaningful gene-gene interactions of GCNs. This study applies three GNI algorithms on mRNA gene expression, RNA-Seq, and miRNA-target genes datasets to infer GCNs of breast and prostate cancers. To evaluate the performance of the GCNs, we utilize overlap analysis via literature data, topological assessment, and Gene Ontology-based biological assessment. The results emphasize how the selection of biological datasets and GNI algorithms affect the performance results on different evaluation criteria. GCNs on microarray gene expression data slightly outperform in overlap analysis. Also, GCNs on RNA-Seq and gene expression datasets follow scale-free topology. The biological assessment results are close to each other on all biological datasets. C3NET algorithm-based GCNs did not contain any biological assessment modules; therefore, it is not optimal for biological assessment. GNI algorithms' selection did not change the overlap analysis and topological assessment results. Our primary objective is to compare the performance results of biological datasets and GNI algorithms based on different evaluation criteria. For this purpose, we developed the GNIAP R package that enables users to select different GNI algorithms to infer GCNs. The GNIAP R package also provides literature-based overlap analysis, and topological and biological analyses on GCNs. Users can access the GNIAP R package via https://github.com/ozgurcingiz/GNIAP .Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The utilization of various biological datasets and gene network inference (GNI) algorithms can reveal meaningful gene-gene interactions of GCNs. This study applies three GNI algorithms on mRNA gene expression, RNA-Seq, and miRNA-target genes datasets to infer GCNs of breast and prostate cancers. To evaluate the performance of the GCNs, we utilize overlap analysis via literature data, topological assessment, and Gene Ontology-based biological assessment. The results emphasize how the selection of biological datasets and GNI algorithms affect the performance results on different evaluation criteria. GCNs on microarray gene expression data slightly outperform in overlap analysis. Also, GCNs on RNA-Seq and gene expression datasets follow scale-free topology. The biological assessment results are close to each other on all biological datasets. C3NET algorithm-based GCNs did not contain any biological assessment modules; therefore, it is not optimal for biological assessment. GNI algorithms' selection did not change the overlap analysis and topological assessment results. Our primary objective is to compare the performance results of biological datasets and GNI algorithms based on different evaluation criteria. For this purpose, we developed the GNIAP R package that enables users to select different GNI algorithms to infer GCNs. The GNIAP R package also provides literature-based overlap analysis, and topological and biological analyses on GCNs. Users can access the GNIAP R package via https://github.com/ozgurcingiz/GNIAP .
Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The utilization of various biological datasets and gene network inference (GNI) algorithms can reveal meaningful gene-gene interactions of GCNs. This study applies three GNI algorithms on mRNA gene expression, RNA-Seq, and miRNA-target genes datasets to infer GCNs of breast and prostate cancers. To evaluate the performance of the GCNs, we utilize overlap analysis via literature data, topological assessment, and Gene Ontology-based biological assessment. The results emphasize how the selection of biological datasets and GNI algorithms affect the performance results on different evaluation criteria. GCNs on microarray gene expression data slightly outperform in overlap analysis. Also, GCNs on RNA-Seq and gene expression datasets follow scale-free topology. The biological assessment results are close to each other on all biological datasets. C3NET algorithm-based GCNs did not contain any biological assessment modules; therefore, it is not optimal for biological assessment. GNI algorithms' selection did not change the overlap analysis and topological assessment results. Our primary objective is to compare the performance results of biological datasets and GNI algorithms based on different evaluation criteria. For this purpose, we developed the GNIAP R package that enables users to select different GNI algorithms to infer GCNs. The GNIAP R package also provides literature-based overlap analysis, and topological and biological analyses on GCNs. Users can access the GNIAP R package via https://github.com/ozgurcingiz/GNIAP .
Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The utilization of various biological datasets and gene network inference (GNI) algorithms can reveal meaningful gene–gene interactions of GCNs. This study applies three GNI algorithms on mRNA gene expression, RNA-Seq, and miRNA–target genes datasets to infer GCNs of breast and prostate cancers. To evaluate the performance of the GCNs, we utilize overlap analysis via literature data, topological assessment, and Gene Ontology-based biological assessment. The results emphasize how the selection of biological datasets and GNI algorithms affect the performance results on different evaluation criteria. GCNs on microarray gene expression data slightly outperform in overlap analysis. Also, GCNs on RNA-Seq and gene expression datasets follow scale-free topology. The biological assessment results are close to each other on all biological datasets. C3NET algorithm-based GCNs did not contain any biological assessment modules; therefore, it is not optimal for biological assessment. GNI algorithms' selection did not change the overlap analysis and topological assessment results. Our primary objective is to compare the performance results of biological datasets and GNI algorithms based on different evaluation criteria. For this purpose, we developed the GNIAP R package that enables users to select different GNI algorithms to infer GCNs. The GNIAP R package also provides literature-based overlap analysis, and topological and biological analyses on GCNs. Users can access the GNIAP R package via https://github.com/ozgurcingiz/GNIAP . Graphic abstract
Author Biricik, Göksel
Diri, Banu
Cingiz, Mustafa Özgür
Author_xml – sequence: 1
  givenname: Mustafa Özgür
  orcidid: 0000-0003-4469-1440
  surname: Cingiz
  fullname: Cingiz, Mustafa Özgür
  email: mustafa.cingiz@btu.edu.tr
  organization: Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University
– sequence: 2
  givenname: Göksel
  surname: Biricik
  fullname: Biricik, Göksel
  organization: Computer Engineering Department, Yildiz Technical University
– sequence: 3
  givenname: Banu
  surname: Diri
  fullname: Diri, Banu
  organization: Computer Engineering Department, Yildiz Technical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34003445$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS1URB_wB1igSGzYGPy-9hIu0CJVUImyjhxnXFwS-2I74vHr63ALSF10ZWv8nZnxOcfoIKYICD2l5CUlZPOqUCa5wYRRTIgQBJsH6IhqtcFUKHbQ7oZyzDaSHqLjUq4JUUJz8ggdckEIF0Ieod-XX6G7gOxTnm100G3TvLM5lBS75LtTiGsJw89dhlJCq36E-iPlb2V9fpPBltrZOHYXOZVqa6PXNrlbSohX3dvgPWSItfsME7i6NtjmUCEH-xg99HYq8OT2PEFf3r-73J7h80-nH7avz7HjG1mxGRwDRzxjoLXxlls5UiPpAG4kArwaRtY-PzqQZtSD18OgvTAK1CDHgQh-gl7s--5y-r5Aqf0cioNpshHSUnommdaMU7Oiz--g12nJsW3XKEWJYcqoRj27pZZhhrHf5TDb_Kv_62oD2B5wzZSSwf9DKOnX6Pp9dH2Lrv8TXW-aSN8RudAMbY7VbMN0v5TvpaXNiVeQ_699j-oGAhauSg
CitedBy_id crossref_primary_10_7717_peerj_17975
crossref_primary_10_1016_j_ejbt_2023_05_002
crossref_primary_10_26599_TST_2022_9010035
Cites_doi 10.1186/s12918-015-0165-z
10.1093/bioinformatics/btt053
10.1186/1756-0500-6-229
10.1101/pdb.top093104
10.1093/nar/gkn714
10.1371/journal.pcbi.1005024
10.1007/s41109-020-00291-1
10.1038/s41586-020-1969-6
10.1093/bioinformatics/bts245
10.1186/1471-2105-9-559
10.1073/pnas.1817621116
10.1093/bioinformatics/btp616
10.1093/bioinformatics/btv118
10.3390/cancers12010037
10.1186/1471-2105-4-2
10.1038/nrg2934
10.3389/fgene.2018.00636
10.1186/1471-2105-7-S1-S7
10.1093/nar/gkw377
10.1093/bioinformatics/btg405
10.3389/fpls.2016.00444
10.14715/cmb/2017.63.3.4
10.1007/s10549-008-9982-8
10.1186/1471-2105-9-461
10.1109/TCBB.2015.2450740
10.1186/1471-2164-12-S5-S13
10.3906/biy-1210-8
10.1038/nprot.2012.016
10.1101/gr.130435.111
10.1101/cshperspect.a012336
10.1007/PL00012580
10.1093/nar/gkq1107
10.5713/ajas.2012.12375
10.1016/j.ygeno.2020.01.001
10.1186/1471-2105-14-S9-S1
10.1371/journal.pcbi.1005457
10.1093/nar/gkr378
10.1158/0008-5472.CAN-07-2608
10.1186/s13059-016-0881-8
10.1186/s13040-018-0166-8
10.1186/1752-0509-4-132
10.1093/nar/gki033
10.1016/j.imu.2020.100509
10.1016/j.ccell.2015.09.018
ContentType Journal Article
Copyright International Association of Scientists in the Interdisciplinary Areas 2021
International Association of Scientists in the Interdisciplinary Areas 2021.
2021. International Association of Scientists in the Interdisciplinary Areas.
Copyright_xml – notice: International Association of Scientists in the Interdisciplinary Areas 2021
– notice: International Association of Scientists in the Interdisciplinary Areas 2021.
– notice: 2021. International Association of Scientists in the Interdisciplinary Areas.
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
7X8
DOI 10.1007/s12539-021-00440-9
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1867-1462
EndPage 510
ExternalDocumentID 34003445
10_1007_s12539_021_00440_9
Genre Journal Article
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
1N0
29~
2KG
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
67N
6NX
7X2
7X7
7XC
88E
8CJ
8FE
8FG
8FH
8FI
8FJ
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEUYN
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
APEBS
ARAPS
ASPBG
ATCPS
AUKKA
AVWKF
AXYYD
AZFZN
BA0
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BVXVI
CAG
CCPQU
COF
D1J
D1K
DDRTE
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IZIGR
I~X
J-C
JBSCW
JCJTX
JZLTJ
K6-
KOV
LK5
LK8
LLZTM
M0K
M1P
M4Y
M7P
M7R
NPVJJ
NQJWS
NU0
O9-
O9J
P62
PATMY
PCBAR
PQQKQ
PROAC
PSQYO
PT4
PYCSY
Q2X
QOR
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SCL
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
T13
TSG
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
AFDZB
AFFHD
AFOHR
AHPBZ
ATHPR
AYFIA
CITATION
K7-
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c375t-9bc2ec0f22e889fa3a5d1951becd04ef6bd2440dce59d8bf8bb8f496e6b5db043
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000651664300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1913-2751
1867-1462
IngestDate Fri Sep 05 12:58:44 EDT 2025
Sat Nov 29 14:59:20 EST 2025
Thu Apr 03 07:00:54 EDT 2025
Sat Nov 29 03:36:28 EST 2025
Tue Nov 18 21:24:05 EST 2025
Fri Feb 21 02:47:53 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Biological assessment of GCNs
Topological analysis of GCNs
Gene co-expression networks
Gene co-expression network inference algorithms
Literature data-based overlap analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-9bc2ec0f22e889fa3a5d1951becd04ef6bd2440dce59d8bf8bb8f496e6b5db043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4469-1440
PMID 34003445
PQID 2561092696
PQPubID 326319
PageCount 11
ParticipantIDs proquest_miscellaneous_2528823194
proquest_journals_2561092696
pubmed_primary_34003445
crossref_primary_10_1007_s12539_021_00440_9
crossref_citationtrail_10_1007_s12539_021_00440_9
springer_journals_10_1007_s12539_021_00440_9
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Bromont
PublicationTitle Interdisciplinary sciences : computational life sciences
PublicationTitleAbbrev Interdiscip Sci Comput Life Sci
PublicationTitleAlternate Interdiscip Sci
PublicationYear 2021
Publisher Springer Singapore
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
References Meyer, Lafitte, Bontempi (CR31) 2008; 9
Wang, Wang, Pu, Li, Feng, Zheng, Li, Sun, Yao, Jin (CR33) 2020; 112
Reimand, Arak, Vilo (CR45) 2011; 39
Serin, Nijveen, Hilhorst, Ligterink (CR39) 2016; 7
Best, Sol, Kooi, Tannous, Westerman, Rustenburg, Schellen, Verschueren, Post, Koster, Ylstra, Ameziane, Dorsman, Smit, Verheul, Noske, Reijneveld, Nilsson, Tannous, Wesseling, Wurdinger (CR22) 2015; 28
Jiang, Wang, Hao, Juan, Teng, Zhang, Li, Wang, Liu (CR25) 2008; 37
Dorantes-Gilardi, García-Cortés, Hernández-Lemus, Espinal-Enríquez (CR34) 2020; 5
Chang, Lin, Liu, Yu, Chen, Wartini, Kao, Wu, Lin, Lu, Tu, Wu, Shiu, Ku, Li (CR17) 2019; 116
Ruggero (CR1) 2013; 5
Ozsolak, Milos (CR10) 2011; 12
Altay, Emmert-Streib (CR29) 2010; 4
Langfelder, Horvath (CR30) 2008; 9
Chung, Lu (CR37) 2002; 6
Cingiz, Biricik, Diri (CR19) 2017; 63
Gautier, Cope, Bolstad, Irizarry (CR26) 2004; 20
Altay, Altay, Neal (CR36) 2013; 37
Xu, Zhang, Williams, Antoniou, McCombie, Wu, Zhu, Davidson, Denoya, Li (CR3) 2013; 14
Mathur, Rotroff, Ma, Shojaie, Motsinger-Reif (CR6) 2018; 11
de Matos, Dalleau, Williamson, Emmert-Streib (CR14) 2015; 9
Niemira, Collin, Szalkowska, Bielska, Chwialkowska, Reszec, Niklinski, Kwasniewski, Kretowski (CR32) 2019; 12
Casey, Bond, Tighe, Hunter, Lintault, Patel, Eneman, Crocker, White, Tessitore, Stanley, Harlow, Weaver, Muss, Plaut (CR20) 2009; 114
Lowe, Shirley, Bleackley, Dolan, Shafee (CR12) 2017; 13
Hamosh, Scott, Amberger, Bocchini, McKusick (CR43) 2005; 33
Kuleshov, Jones, Rouillard, Fernandez, Duan, Wang, Koplev, Jenkins, Jagodnik, Lachmann, McDermott, Monteiro, Gundersen, Ma'ayan (CR44) 2016; 44
Lim, Lee, Kim, Cho, Chai, Seong, Kim (CR40) 2013; 26
Robinson, McCarthy, Smyth (CR27) 2010; 26
Gennarino, D'Angelo, Dharmalingam, Fernandez, Russolillo, Sanges, Mutarelli, Belcastro, Ballabio, Verde, Sardiello, Banfi (CR18) 2012; 22
Iancu, Kawane, Bottomly, Searles, Hitzemann, McWeeney (CR15) 2012; 28
Conesa, Madrigal, Tarazona, Gomez-Cabrero, Cervera, McPherson, Szcześniak, Gaffney, Elo, Zhang, Mortazavi (CR5) 2016; 17
Liu, Zhang, Guo, Wei, Chen (CR8) 2016; 12
Bader, Hogue (CR41) 2003; 4
Wallace, Prueitt, Yi, Howe, Gillespie, Yfantis, Stephens, Caporaso, Loffredo, Ambs (CR21) 2008; 68
Hung, Weng (CR4) 2017
Singh, Vidyasagar (CR9) 2015; 13
Giorgi, Del Fabbro, Licausi (CR16) 2013; 29
Hsu, Lin, Wu, Liang, Huang, Chan, Tsai, Chen, Lee, Chiu, Chien, Wu, Huang, Tsou, Huang (CR24) 2011; 39
Margolin, Nemenman, Basso, Wiggins, Stolovitzky, Dalla Favera, Califano (CR28) 2006; 7
Li, Wang, Gong, Perkins, Zhang (CR7) 2011; 12
Nazanin, Allahverdi, Abdolmeki (CR35) 2020; 22
Szczepińska, Pawłowski (CR38) 2013; 6
CR42
Trapnell, Roberts, Goff, Pertea, Kim, Kelley, Pimentel, Salzberg, Rinn, Pachter (CR11) 2012; 7
(CR23) 2020; 578
Rao, Van Vleet, Ciurlionis, Buck, Mittelstadt, Blomme, Liguori (CR2) 2019; 9
Ballouz, Verleyen, Gillis (CR13) 2015; 31
F Liu (440_CR8) 2016; 12
D Lim (440_CR40) 2013; 26
H Li (440_CR7) 2011; 12
T Szczepińska (440_CR38) 2013; 6
D Ruggero (440_CR1) 2013; 5
AA Margolin (440_CR28) 2006; 7
TA Wallace (440_CR21) 2008; 68
C Trapnell (440_CR11) 2012; 7
MD Robinson (440_CR27) 2010; 26
M Wang (440_CR33) 2020; 112
R Dorantes-Gilardi (440_CR34) 2020; 5
MÖ Cingiz (440_CR19) 2017; 63
EA Serin (440_CR39) 2016; 7
FM Giorgi (440_CR16) 2013; 29
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium (440_CR23) 2020; 578
H Nazanin (440_CR35) 2020; 22
P Langfelder (440_CR30) 2008; 9
F Ozsolak (440_CR10) 2011; 12
R Mathur (440_CR6) 2018; 11
440_CR42
SD Hsu (440_CR24) 2011; 39
X Xu (440_CR3) 2013; 14
PE Meyer (440_CR31) 2008; 9
R Lowe (440_CR12) 2017; 13
YM Chang (440_CR17) 2019; 116
MV Kuleshov (440_CR44) 2016; 44
Q Jiang (440_CR25) 2008; 37
F Chung (440_CR37) 2002; 6
A Hamosh (440_CR43) 2005; 33
S Ballouz (440_CR13) 2015; 31
A Conesa (440_CR5) 2016; 17
SR de Matos (440_CR14) 2015; 9
N Singh (440_CR9) 2015; 13
T Casey (440_CR20) 2009; 114
J Reimand (440_CR45) 2011; 39
G Altay (440_CR29) 2010; 4
M Niemira (440_CR32) 2019; 12
L Gautier (440_CR26) 2004; 20
MS Rao (440_CR2) 2019; 9
VA Gennarino (440_CR18) 2012; 22
GD Bader (440_CR41) 2003; 4
JH Hung (440_CR4) 2017
OD Iancu (440_CR15) 2012; 28
G Altay (440_CR36) 2013; 37
MG Best (440_CR22) 2015; 28
References_xml – volume: 9
  start-page: 21
  year: 2015
  ident: CR14
  article-title: Urothelial cancer gene regulatory networks inferred from large-scale RNAseq, Bead and Oligo gene expression data
  publication-title: BMC Syst Biol
  doi: 10.1186/s12918-015-0165-z
– volume: 29
  start-page: 717
  issue: 6
  year: 2013
  end-page: 724
  ident: CR16
  article-title: Comparative study of RNA-seq- and microarray-derived co-expression networks in
  publication-title: Bioinform
  doi: 10.1093/bioinformatics/btt053
– volume: 6
  start-page: 229
  year: 2013
  ident: CR38
  article-title: Genomic positions of co-expressed genes: echoes of chromosome organisation in gene expression data
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-6-229
– year: 2017
  ident: CR4
  article-title: Analysis of microarray and RNA-seq expression profiling data
  publication-title: Cold Spring Harb Protoc
  doi: 10.1101/pdb.top093104
– volume: 37
  start-page: D98
  issue: Database issue
  year: 2008
  end-page: D104
  ident: CR25
  article-title: miR2Disease: a manually curated database for microRNA deregulation in human disease
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn714
– volume: 12
  start-page: e1005024
  issue: 8
  year: 2016
  ident: CR8
  article-title: Inference of gene regulatory network based on local Bayesian networks
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005024
– volume: 5
  start-page: 47
  year: 2020
  ident: CR34
  article-title: Multilayer approach reveals organizational principles disrupted in breast cancer co-expression networks
  publication-title: Appl Netw Sci
  doi: 10.1007/s41109-020-00291-1
– volume: 578
  start-page: 82
  issue: 7793
  year: 2020
  end-page: 93
  ident: CR23
  article-title: Pan-cancer analysis of whole genomes
  publication-title: Nature
  doi: 10.1038/s41586-020-1969-6
– volume: 28
  start-page: 1592
  issue: 12
  year: 2012
  end-page: 1597
  ident: CR15
  article-title: Utilizing RNA-Seq data for de novo co-expression network inference
  publication-title: Bioinform
  doi: 10.1093/bioinformatics/bts245
– volume: 9
  start-page: 559
  year: 2008
  ident: CR30
  article-title: WGCNA: an R package for weighted correlation network analysis
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-9-559
– volume: 116
  start-page: 3091
  issue: 8
  year: 2019
  end-page: 3099
  ident: CR17
  article-title: Comparative transcriptomics method to infer gene co-expression networks and its applications to maize and rice leaf transcriptomes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1817621116
– volume: 26
  start-page: 139
  issue: 1
  year: 2010
  end-page: 140
  ident: CR27
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinform
  doi: 10.1093/bioinformatics/btp616
– ident: CR42
– volume: 31
  start-page: 2123
  issue: 13
  year: 2015
  end-page: 2130
  ident: CR13
  article-title: Guidance for RNA-seq co-expression network construction and analysis: safety in numbers
  publication-title: Bioinform
  doi: 10.1093/bioinformatics/btv118
– volume: 12
  start-page: 37
  issue: 1
  year: 2019
  ident: CR32
  article-title: Molecular signature of subtypes of non-small-cell lung cancer by large-scale transcriptional profiling: identification of key modules and genes by weighted gene co-expression network analysis (WGCNA)
  publication-title: Cancers
  doi: 10.3390/cancers12010037
– volume: 4
  start-page: 2
  year: 2003
  ident: CR41
  article-title: An automated method for finding molecular complexes in large protein interaction networks
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-4-2
– volume: 12
  start-page: 87
  issue: 2
  year: 2011
  end-page: 98
  ident: CR10
  article-title: RNA sequencing: advances, challenges and opportunities
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2934
– volume: 9
  start-page: 636
  year: 2019
  ident: CR2
  article-title: Comparison of RNA-Seq And microarray gene expression platforms for the toxicogenomic evaluation of liver from short-term rat toxicity studies
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00636
– volume: 7
  start-page: S7
  issue: Suppl 1
  year: 2006
  ident: CR28
  article-title: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-7-S1-S7
– volume: 44
  start-page: W90
  issue: W1
  year: 2016
  end-page: W97
  ident: CR44
  article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw377
– volume: 20
  start-page: 307
  issue: 3
  year: 2004
  end-page: 315
  ident: CR26
  article-title: affy–analysis of Affymetrix GeneChip data at the probe level
  publication-title: Bioinform
  doi: 10.1093/bioinformatics/btg405
– volume: 7
  start-page: 444
  year: 2016
  ident: CR39
  article-title: Learning from co-expression networks: possibilities and challenges
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.00444
– volume: 63
  start-page: 18
  issue: 3
  year: 2017
  end-page: 25
  ident: CR19
  article-title: ARNetMiT R Package: association rules based gene co-expression networks of miRNA targets
  publication-title: Cell Mol Biol (Noisy-le-grand)
  doi: 10.14715/cmb/2017.63.3.4
– volume: 114
  start-page: 47
  issue: 1
  year: 2009
  end-page: 62
  ident: CR20
  article-title: Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-008-9982-8
– volume: 9
  start-page: 461
  year: 2008
  ident: CR31
  article-title: minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-9-461
– volume: 13
  start-page: 301
  issue: 2
  year: 2015
  end-page: 314
  ident: CR9
  article-title: bLARS: an algorithm to infer gene regulatory networks
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2015.2450740
– volume: 12
  start-page: S13
  issue: Suppl 5
  year: 2011
  ident: CR7
  article-title: Learning the structure of gene regulatory networks from time series gene expression data
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-S5-S13
– volume: 37
  start-page: 547
  year: 2013
  end-page: 555
  ident: CR36
  article-title: Global assessment of network inference algorithms based on available literature of gene/protein interactions
  publication-title: Turk J Biol
  doi: 10.3906/biy-1210-8
– volume: 7
  start-page: 562
  issue: 3
  year: 2012
  end-page: 578
  ident: CR11
  article-title: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2012.016
– volume: 22
  start-page: 1163
  issue: 6
  year: 2012
  end-page: 1172
  ident: CR18
  article-title: Identification of microRNA-regulated gene networks by expression analysis of target genes
  publication-title: Genome Res
  doi: 10.1101/gr.130435.111
– volume: 5
  start-page: a012336
  issue: 2
  year: 2013
  ident: CR1
  article-title: Translational control in cancer etiology
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a012336
– volume: 6
  start-page: 125
  year: 2002
  end-page: 145
  ident: CR37
  article-title: Connected components in random graphs with given expected degree sequences
  publication-title: Ann Comb
  doi: 10.1007/PL00012580
– volume: 39
  start-page: D163
  issue: Database issue
  year: 2011
  end-page: D169
  ident: CR24
  article-title: miRTarBase: a database curates experimentally validated microRNA-target interactions
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq1107
– volume: 26
  start-page: 19
  issue: 1
  year: 2013
  end-page: 29
  ident: CR40
  article-title: Gene co-expression analysis to characterize genes related to marbling trait in Hanwoo (Korean) Cattle
  publication-title: Asian-Australas J Anim Sci
  doi: 10.5713/ajas.2012.12375
– volume: 112
  start-page: 2302
  issue: 3
  year: 2020
  end-page: 2308
  ident: CR33
  article-title: LncRNAs related key pathways and genes in ischemic stroke by weighted gene co-expression network analysis (WGCNA)
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.01.001
– volume: 14
  start-page: S1
  issue: Suppl 9
  year: 2013
  ident: CR3
  article-title: Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-14-S9-S1
– volume: 13
  start-page: e1005457
  issue: 5
  year: 2017
  ident: CR12
  article-title: Transcriptomics technologies
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005457
– volume: 39
  start-page: W307
  issue: Web Server issue
  year: 2011
  end-page: W315
  ident: CR45
  article-title: g:Profiler–a web server for functional interpretation of gene lists (2011 update)
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr378
– volume: 68
  start-page: 927
  issue: 3
  year: 2008
  end-page: 936
  ident: CR21
  article-title: Tumor immunobiological differences in prostate cancer between African-American and European-American men
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-2608
– volume: 17
  start-page: 13
  year: 2016
  ident: CR5
  article-title: A survey of best practices for RNA-seq data analysis
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0881-8
– volume: 11
  start-page: 8
  year: 2018
  ident: CR6
  article-title: Gene set analysis methods: a systematic comparison
  publication-title: BioData Min
  doi: 10.1186/s13040-018-0166-8
– volume: 4
  start-page: 132
  year: 2010
  ident: CR29
  article-title: Inferring the conservative causal core of gene regulatory networks
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-132
– volume: 33
  start-page: D514
  issue: Database issue
  year: 2005
  end-page: D517
  ident: CR43
  article-title: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki033
– volume: 22
  start-page: 100509
  year: 2020
  ident: CR35
  article-title: The novel potential multidrug-resistance biomarkers for Pseudomonas aeruginosa lung infections using transcriptomics data analysis
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2020.100509
– volume: 28
  start-page: 666
  issue: 5
  year: 2015
  end-page: 676
  ident: CR22
  article-title: RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.09.018
– volume: 6
  start-page: 229
  year: 2013
  ident: 440_CR38
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-6-229
– volume: 9
  start-page: 559
  year: 2008
  ident: 440_CR30
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-9-559
– volume: 5
  start-page: 47
  year: 2020
  ident: 440_CR34
  publication-title: Appl Netw Sci
  doi: 10.1007/s41109-020-00291-1
– volume: 26
  start-page: 19
  issue: 1
  year: 2013
  ident: 440_CR40
  publication-title: Asian-Australas J Anim Sci
  doi: 10.5713/ajas.2012.12375
– volume: 39
  start-page: W307
  issue: Web Server issu
  year: 2011
  ident: 440_CR45
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr378
– volume: 22
  start-page: 100509
  year: 2020
  ident: 440_CR35
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2020.100509
– volume: 33
  start-page: D514
  issue: Database issue
  year: 2005
  ident: 440_CR43
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki033
– volume: 26
  start-page: 139
  issue: 1
  year: 2010
  ident: 440_CR27
  publication-title: Bioinform
  doi: 10.1093/bioinformatics/btp616
– volume: 29
  start-page: 717
  issue: 6
  year: 2013
  ident: 440_CR16
  publication-title: Bioinform
  doi: 10.1093/bioinformatics/btt053
– volume: 12
  start-page: 87
  issue: 2
  year: 2011
  ident: 440_CR10
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2934
– volume: 7
  start-page: 444
  year: 2016
  ident: 440_CR39
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.00444
– volume: 44
  start-page: W90
  issue: W1
  year: 2016
  ident: 440_CR44
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw377
– volume: 37
  start-page: 547
  year: 2013
  ident: 440_CR36
  publication-title: Turk J Biol
  doi: 10.3906/biy-1210-8
– volume: 4
  start-page: 132
  year: 2010
  ident: 440_CR29
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-132
– volume: 12
  start-page: e1005024
  issue: 8
  year: 2016
  ident: 440_CR8
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005024
– volume: 7
  start-page: S7
  issue: Suppl 1
  year: 2006
  ident: 440_CR28
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-7-S1-S7
– volume: 9
  start-page: 461
  year: 2008
  ident: 440_CR31
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-9-461
– year: 2017
  ident: 440_CR4
  publication-title: Cold Spring Harb Protoc
  doi: 10.1101/pdb.top093104
– volume: 31
  start-page: 2123
  issue: 13
  year: 2015
  ident: 440_CR13
  publication-title: Bioinform
  doi: 10.1093/bioinformatics/btv118
– volume: 9
  start-page: 21
  year: 2015
  ident: 440_CR14
  publication-title: BMC Syst Biol
  doi: 10.1186/s12918-015-0165-z
– volume: 116
  start-page: 3091
  issue: 8
  year: 2019
  ident: 440_CR17
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1817621116
– ident: 440_CR42
– volume: 5
  start-page: a012336
  issue: 2
  year: 2013
  ident: 440_CR1
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a012336
– volume: 17
  start-page: 13
  year: 2016
  ident: 440_CR5
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0881-8
– volume: 63
  start-page: 18
  issue: 3
  year: 2017
  ident: 440_CR19
  publication-title: Cell Mol Biol (Noisy-le-grand)
  doi: 10.14715/cmb/2017.63.3.4
– volume: 114
  start-page: 47
  issue: 1
  year: 2009
  ident: 440_CR20
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-008-9982-8
– volume: 4
  start-page: 2
  year: 2003
  ident: 440_CR41
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-4-2
– volume: 112
  start-page: 2302
  issue: 3
  year: 2020
  ident: 440_CR33
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.01.001
– volume: 14
  start-page: S1
  issue: Suppl 9
  year: 2013
  ident: 440_CR3
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-14-S9-S1
– volume: 6
  start-page: 125
  year: 2002
  ident: 440_CR37
  publication-title: Ann Comb
  doi: 10.1007/PL00012580
– volume: 20
  start-page: 307
  issue: 3
  year: 2004
  ident: 440_CR26
  publication-title: Bioinform
  doi: 10.1093/bioinformatics/btg405
– volume: 11
  start-page: 8
  year: 2018
  ident: 440_CR6
  publication-title: BioData Min
  doi: 10.1186/s13040-018-0166-8
– volume: 13
  start-page: 301
  issue: 2
  year: 2015
  ident: 440_CR9
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2015.2450740
– volume: 28
  start-page: 666
  issue: 5
  year: 2015
  ident: 440_CR22
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.09.018
– volume: 13
  start-page: e1005457
  issue: 5
  year: 2017
  ident: 440_CR12
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005457
– volume: 12
  start-page: S13
  issue: Suppl 5
  year: 2011
  ident: 440_CR7
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-S5-S13
– volume: 22
  start-page: 1163
  issue: 6
  year: 2012
  ident: 440_CR18
  publication-title: Genome Res
  doi: 10.1101/gr.130435.111
– volume: 7
  start-page: 562
  issue: 3
  year: 2012
  ident: 440_CR11
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2012.016
– volume: 28
  start-page: 1592
  issue: 12
  year: 2012
  ident: 440_CR15
  publication-title: Bioinform
  doi: 10.1093/bioinformatics/bts245
– volume: 578
  start-page: 82
  issue: 7793
  year: 2020
  ident: 440_CR23
  publication-title: Nature
  doi: 10.1038/s41586-020-1969-6
– volume: 68
  start-page: 927
  issue: 3
  year: 2008
  ident: 440_CR21
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-2608
– volume: 12
  start-page: 37
  issue: 1
  year: 2019
  ident: 440_CR32
  publication-title: Cancers
  doi: 10.3390/cancers12010037
– volume: 39
  start-page: D163
  issue: Database issue
  year: 2011
  ident: 440_CR24
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq1107
– volume: 37
  start-page: D98
  issue: Database issue
  year: 2008
  ident: 440_CR25
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn714
– volume: 9
  start-page: 636
  year: 2019
  ident: 440_CR2
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00636
SSID ssj0064830
Score 2.2205834
Snippet Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 500
SubjectTerms Algorithms
Biological analysis
Biological effects
Biomedical and Life Sciences
Breast cancer
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Appl. in Life Sciences
Criteria
Datasets
DNA microarrays
Gene expression
Genes
Health Sciences
Life Sciences
Mathematical and Computational Physics
Medicine
miRNA
Molecular structure
Original Research Article
Performance evaluation
Prostate
Prostate cancer
Ribonucleic acid
RNA
Statistics for Life Sciences
Theoretical
Theoretical and Computational Chemistry
Topology
Title The Performance Comparison of Gene Co-expression Networks of Breast and Prostate Cancer using Different Selection Criteria
URI https://link.springer.com/article/10.1007/s12539-021-00440-9
https://www.ncbi.nlm.nih.gov/pubmed/34003445
https://www.proquest.com/docview/2561092696
https://www.proquest.com/docview/2528823194
Volume 13
WOSCitedRecordID wos000651664300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1867-1462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064830
  issn: 1913-2751
  databaseCode: RSV
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH_ia2gXGGywQld50m6bpcZOHPu4FRAXqgrY1FsUxzaaNKVTGxDsr5-f47RCbJPGNbZfLPv37Ge9jx_AB-24sDw3NE00puRofw56XFDhvHWvS-ZEVgayiXw8ltOpmsSksEUX7d65JMNJvUp2YxlXFEMKAk8yVeuw6a87iep4efWtO39FKgPDiH-IcMryLImpMn-W8fg6emJjPvGPhmvnbPd5E34FO9HMJJ9bXOzBmq334UVLPPmwD9sX0aX-Gn55oJDJKn2AjJbMhGTmCJal9p-ovY8RszUZt5HjC2z-gjHtDSlrQyaYP-ItVzJCMXOCEfU35CQSsDTkKjDuoACkV0Dgv4GvZ6fXo3MaCRloxfOsoUpXzFZDx5iVUrmSl5lJvInmcWCGqXVCG28tDA2mdhmpndRaulQJK3Rm9DDlB7BRz2r7FogsHVbaSypu_BNPMO0SZV1muTXoaxU9SLp9KapYrRxJM34UqzrLuLyFX94iLG-hevBxOeZnW6vjn7373XYXUW8XBUNzUjGh_ATeL5u9xqEbpazt7Bb7MInOU5X24LCFyfJ3PA01FLMefOowsRL-97kc_V_3Y3jJAqww1K0PG8381r6Drequ-b6YD2A9n8pB0Inf0eQDjw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0VytelfLbdloIr9VYsbezEax_bbREVsFoVirhFcWwjpCpb7QYE_fV4HGdXFRQJrrEzsexne6J5Mw_gk3ZcWN4zNE00puRofw56XFDhvHevC-ZEVgSxid5gIM_P1TAmhU1atnsbkgwn9SzZjWVcUaQUBJ1kqubgZepvLCTy_Tw5a89fkcqgMOJ_RDhlvSyJqTIP2_j3OrrnY96Lj4ZrZ3_1eQNeg1fRzSRfGlyswwtbbcBiIzx5uwFLxzGkvgl_PVDIcJY-QPpTZUIycgTLUvtH1N5ExmxFBg1zfILNX5HTXpOiMmSI-SPecyV9NDMmyKi_IN-iAEtNToLiDhpAeQUE_hb82v9-2j-gUZCBlryX1VTpktmy6xizUipX8CIziXfRPA5MN7VOaOO9ha7B1C4jtZNaS5cqYYXOjO6m_DXMV6PKvgUiC4eV9pKSG_-LJ5h2ibIus9wajLWKDiTtuuRlrFaOohm_81mdZZze3E9vHqY3Vx34PH3nT1Or49He2-1y53HfTnKG7qRiQvkBfJw2-x2HYZSisqMr7MMkBk9V2oE3DUymn-NpqKGYdWCvxcTM-P_H8u5p3Xdh-eD0-Cg_-jE4fA8rLEAMaW_bMF-Pr-wHWCiv68vJeCfsjDvmJgWL
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xwSpeBtvYVtjASHsbVhs7ce3H0VGBgKrSfqhvURzbaNKUVm02AX89Pidph8qQpr3G9sWy7-yz7r77AI6048LynqFxpBGSo_056PWCCue9e50xJ5IskE30hkM5HqvRHRR_yHZvQpIVpgGrNBVlZ2pcZwl8YwlXFNMLAmcyVWvwNEbSIHyvn102Z7GIZWAb8Y8STlkviWrYzL9l_H01rfibK7HScAUNXjx-8i9hs3Y_yUmlL1vwxBbbsFERUv7ahtb3OtS-A7-9ApHRElZA-gvGQjJxBMtV-0_U_qwzaQsyrDLK59j8EXPdS5IVhowQV-I9WtJHMTOCmfY_yGlNzFKSs8DEgwKQdgEN4hVcDD6d9z_TmqiB5ryXlFTpnNm86xizUiqX8SwxkXfdvH6Ybmyd0MZ7EV2DkC8jtZNaSxcrYYVOjO7GfBfWi0lh94HIzGEFvijnxj_9BNMuUtYllluDMVjRhqjZozSvq5gjmcZ1uqy_jMub-uVNw_Kmqg3HizHTqobHf3sfNFuf1vY8Txm6mYoJ5SfwftHsLRHDK1lhJzfYh0kMqqq4DXuVyix-x-NQWzFpw4dGP5bC75_L64d1fwet0ekg_fZl-PUNPGdBwzAb7gDWy9mNPYRn-W15NZ-9DUbyB0SUDm8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Performance+Comparison+of+Gene+Co-expression+Networks+of+Breast+and+Prostate+Cancer+using+Different+Selection+Criteria&rft.jtitle=Interdisciplinary+sciences+%3A+computational+life+sciences&rft.au=Cingiz+Mustafa+%C3%96zg%C3%BCr&rft.au=G%C3%B6ksel%2C+Biricik&rft.au=Diri+Banu&rft.date=2021-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1913-2751&rft.eissn=1867-1462&rft.volume=13&rft.issue=3&rft.spage=500&rft.epage=510&rft_id=info:doi/10.1007%2Fs12539-021-00440-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1913-2751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1913-2751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1913-2751&client=summon