Diagnostic performance of MRI radiomics for classification of Alzheimer's disease, mild cognitive impairment, and normal subjects: a systematic review and meta-analysis

Background Alzheimer's disease (AD) is a debilitating neurodegenerative disease. Early diagnosis of AD and its precursor, mild cognitive impairment (MCI), is crucial for timely intervention and management. Radiomics involves extracting quantitative features from medical images and analyzing the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Aging clinical and experimental research Ročník 35; číslo 11; s. 2333 - 2348
Hlavní autoři: Shahidi, Ramin, Baradaran, Mansoureh, Asgarzadeh, Ali, Bagherieh, Sara, Tajabadi, Zohreh, Farhadi, Akram, Korani, Setayesh Sotoudehnia, Khalafi, Mohammad, Shobeiri, Parnian, Sadeghsalehi, Hamidreza, Shafieioun, Arezoo, Yazdanifar, Mohammad Amin, Singhal, Aparna, Sotoudeh, Houman
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.11.2023
Springer Nature B.V
Témata:
ISSN:1720-8319, 1594-0667, 1720-8319
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Alzheimer's disease (AD) is a debilitating neurodegenerative disease. Early diagnosis of AD and its precursor, mild cognitive impairment (MCI), is crucial for timely intervention and management. Radiomics involves extracting quantitative features from medical images and analyzing them using advanced computational algorithms. These characteristics have the potential to serve as biomarkers for disease classification, treatment response prediction, and patient stratification. Of note, Magnetic resonance imaging (MRI) radiomics showed a promising result for diagnosing and classifying AD, and MCI from normal subjects. Thus, we aimed to systematically evaluate the diagnostic performance of the MRI radiomics for this task. Methods and materials A comprehensive search of the current literature was conducted using relevant keywords in PubMed/MEDLINE, Embase, Scopus, and Web of Science databases from inception to August 5, 2023. Original studies discussing the diagnostic performance of MRI radiomics for the classification of AD, MCI, and normal subjects were included. Method quality was evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and the Radiomics Quality Score (RQS) tools. Results We identified 13 studies that met the inclusion criteria, involving a total of 5448 participants. The overall quality of the included studies was moderate to high. The pooled sensitivity and specificity of MRI radiomics for differentiating AD from normal subjects were 0.92 (95% CI [0.85; 0.96]) and 0.91 (95% CI [0.85; 0.95]), respectively. The pooled sensitivity and specificity of MRI radiomics for differentiating MCI from normal subjects were 0.74 (95% CI [0.60; 0.85]) and 0.79 (95% CI [0.70; 0.86]), respectively. Also, the pooled sensitivity and specificity of MRI radiomics for differentiating AD from MCI were 0.73 (95% CI [0.64; 0.80]) and 0.79 (95% CI [0.64; 0.90]), respectively. Conclusion MRI radiomics has promising diagnostic performance in differentiating AD, MCI, and normal subjects. It can potentially serve as a non-invasive and reliable tool for early diagnosis and classification of AD and MCI.
AbstractList BackgroundAlzheimer's disease (AD) is a debilitating neurodegenerative disease. Early diagnosis of AD and its precursor, mild cognitive impairment (MCI), is crucial for timely intervention and management. Radiomics involves extracting quantitative features from medical images and analyzing them using advanced computational algorithms. These characteristics have the potential to serve as biomarkers for disease classification, treatment response prediction, and patient stratification. Of note, Magnetic resonance imaging (MRI) radiomics showed a promising result for diagnosing and classifying AD, and MCI from normal subjects. Thus, we aimed to systematically evaluate the diagnostic performance of the MRI radiomics for this task.Methods and materialsA comprehensive search of the current literature was conducted using relevant keywords in PubMed/MEDLINE, Embase, Scopus, and Web of Science databases from inception to August 5, 2023. Original studies discussing the diagnostic performance of MRI radiomics for the classification of AD, MCI, and normal subjects were included. Method quality was evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and the Radiomics Quality Score (RQS) tools.ResultsWe identified 13 studies that met the inclusion criteria, involving a total of 5448 participants. The overall quality of the included studies was moderate to high. The pooled sensitivity and specificity of MRI radiomics for differentiating AD from normal subjects were 0.92 (95% CI [0.85; 0.96]) and 0.91 (95% CI [0.85; 0.95]), respectively. The pooled sensitivity and specificity of MRI radiomics for differentiating MCI from normal subjects were 0.74 (95% CI [0.60; 0.85]) and 0.79 (95% CI [0.70; 0.86]), respectively. Also, the pooled sensitivity and specificity of MRI radiomics for differentiating AD from MCI were 0.73 (95% CI [0.64; 0.80]) and 0.79 (95% CI [0.64; 0.90]), respectively.ConclusionMRI radiomics has promising diagnostic performance in differentiating AD, MCI, and normal subjects. It can potentially serve as a non-invasive and reliable tool for early diagnosis and classification of AD and MCI.
Background Alzheimer's disease (AD) is a debilitating neurodegenerative disease. Early diagnosis of AD and its precursor, mild cognitive impairment (MCI), is crucial for timely intervention and management. Radiomics involves extracting quantitative features from medical images and analyzing them using advanced computational algorithms. These characteristics have the potential to serve as biomarkers for disease classification, treatment response prediction, and patient stratification. Of note, Magnetic resonance imaging (MRI) radiomics showed a promising result for diagnosing and classifying AD, and MCI from normal subjects. Thus, we aimed to systematically evaluate the diagnostic performance of the MRI radiomics for this task. Methods and materials A comprehensive search of the current literature was conducted using relevant keywords in PubMed/MEDLINE, Embase, Scopus, and Web of Science databases from inception to August 5, 2023. Original studies discussing the diagnostic performance of MRI radiomics for the classification of AD, MCI, and normal subjects were included. Method quality was evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and the Radiomics Quality Score (RQS) tools. Results We identified 13 studies that met the inclusion criteria, involving a total of 5448 participants. The overall quality of the included studies was moderate to high. The pooled sensitivity and specificity of MRI radiomics for differentiating AD from normal subjects were 0.92 (95% CI [0.85; 0.96]) and 0.91 (95% CI [0.85; 0.95]), respectively. The pooled sensitivity and specificity of MRI radiomics for differentiating MCI from normal subjects were 0.74 (95% CI [0.60; 0.85]) and 0.79 (95% CI [0.70; 0.86]), respectively. Also, the pooled sensitivity and specificity of MRI radiomics for differentiating AD from MCI were 0.73 (95% CI [0.64; 0.80]) and 0.79 (95% CI [0.64; 0.90]), respectively. Conclusion MRI radiomics has promising diagnostic performance in differentiating AD, MCI, and normal subjects. It can potentially serve as a non-invasive and reliable tool for early diagnosis and classification of AD and MCI.
Alzheimer's disease (AD) is a debilitating neurodegenerative disease. Early diagnosis of AD and its precursor, mild cognitive impairment (MCI), is crucial for timely intervention and management. Radiomics involves extracting quantitative features from medical images and analyzing them using advanced computational algorithms. These characteristics have the potential to serve as biomarkers for disease classification, treatment response prediction, and patient stratification. Of note, Magnetic resonance imaging (MRI) radiomics showed a promising result for diagnosing and classifying AD, and MCI from normal subjects. Thus, we aimed to systematically evaluate the diagnostic performance of the MRI radiomics for this task. A comprehensive search of the current literature was conducted using relevant keywords in PubMed/MEDLINE, Embase, Scopus, and Web of Science databases from inception to August 5, 2023. Original studies discussing the diagnostic performance of MRI radiomics for the classification of AD, MCI, and normal subjects were included. Method quality was evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and the Radiomics Quality Score (RQS) tools. We identified 13 studies that met the inclusion criteria, involving a total of 5448 participants. The overall quality of the included studies was moderate to high. The pooled sensitivity and specificity of MRI radiomics for differentiating AD from normal subjects were 0.92 (95% CI [0.85; 0.96]) and 0.91 (95% CI [0.85; 0.95]), respectively. The pooled sensitivity and specificity of MRI radiomics for differentiating MCI from normal subjects were 0.74 (95% CI [0.60; 0.85]) and 0.79 (95% CI [0.70; 0.86]), respectively. Also, the pooled sensitivity and specificity of MRI radiomics for differentiating AD from MCI were 0.73 (95% CI [0.64; 0.80]) and 0.79 (95% CI [0.64; 0.90]), respectively. MRI radiomics has promising diagnostic performance in differentiating AD, MCI, and normal subjects. It can potentially serve as a non-invasive and reliable tool for early diagnosis and classification of AD and MCI.
Alzheimer's disease (AD) is a debilitating neurodegenerative disease. Early diagnosis of AD and its precursor, mild cognitive impairment (MCI), is crucial for timely intervention and management. Radiomics involves extracting quantitative features from medical images and analyzing them using advanced computational algorithms. These characteristics have the potential to serve as biomarkers for disease classification, treatment response prediction, and patient stratification. Of note, Magnetic resonance imaging (MRI) radiomics showed a promising result for diagnosing and classifying AD, and MCI from normal subjects. Thus, we aimed to systematically evaluate the diagnostic performance of the MRI radiomics for this task.BACKGROUNDAlzheimer's disease (AD) is a debilitating neurodegenerative disease. Early diagnosis of AD and its precursor, mild cognitive impairment (MCI), is crucial for timely intervention and management. Radiomics involves extracting quantitative features from medical images and analyzing them using advanced computational algorithms. These characteristics have the potential to serve as biomarkers for disease classification, treatment response prediction, and patient stratification. Of note, Magnetic resonance imaging (MRI) radiomics showed a promising result for diagnosing and classifying AD, and MCI from normal subjects. Thus, we aimed to systematically evaluate the diagnostic performance of the MRI radiomics for this task.A comprehensive search of the current literature was conducted using relevant keywords in PubMed/MEDLINE, Embase, Scopus, and Web of Science databases from inception to August 5, 2023. Original studies discussing the diagnostic performance of MRI radiomics for the classification of AD, MCI, and normal subjects were included. Method quality was evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and the Radiomics Quality Score (RQS) tools.METHODS AND MATERIALSA comprehensive search of the current literature was conducted using relevant keywords in PubMed/MEDLINE, Embase, Scopus, and Web of Science databases from inception to August 5, 2023. Original studies discussing the diagnostic performance of MRI radiomics for the classification of AD, MCI, and normal subjects were included. Method quality was evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and the Radiomics Quality Score (RQS) tools.We identified 13 studies that met the inclusion criteria, involving a total of 5448 participants. The overall quality of the included studies was moderate to high. The pooled sensitivity and specificity of MRI radiomics for differentiating AD from normal subjects were 0.92 (95% CI [0.85; 0.96]) and 0.91 (95% CI [0.85; 0.95]), respectively. The pooled sensitivity and specificity of MRI radiomics for differentiating MCI from normal subjects were 0.74 (95% CI [0.60; 0.85]) and 0.79 (95% CI [0.70; 0.86]), respectively. Also, the pooled sensitivity and specificity of MRI radiomics for differentiating AD from MCI were 0.73 (95% CI [0.64; 0.80]) and 0.79 (95% CI [0.64; 0.90]), respectively.RESULTSWe identified 13 studies that met the inclusion criteria, involving a total of 5448 participants. The overall quality of the included studies was moderate to high. The pooled sensitivity and specificity of MRI radiomics for differentiating AD from normal subjects were 0.92 (95% CI [0.85; 0.96]) and 0.91 (95% CI [0.85; 0.95]), respectively. The pooled sensitivity and specificity of MRI radiomics for differentiating MCI from normal subjects were 0.74 (95% CI [0.60; 0.85]) and 0.79 (95% CI [0.70; 0.86]), respectively. Also, the pooled sensitivity and specificity of MRI radiomics for differentiating AD from MCI were 0.73 (95% CI [0.64; 0.80]) and 0.79 (95% CI [0.64; 0.90]), respectively.MRI radiomics has promising diagnostic performance in differentiating AD, MCI, and normal subjects. It can potentially serve as a non-invasive and reliable tool for early diagnosis and classification of AD and MCI.CONCLUSIONMRI radiomics has promising diagnostic performance in differentiating AD, MCI, and normal subjects. It can potentially serve as a non-invasive and reliable tool for early diagnosis and classification of AD and MCI.
Author Yazdanifar, Mohammad Amin
Farhadi, Akram
Shafieioun, Arezoo
Bagherieh, Sara
Korani, Setayesh Sotoudehnia
Singhal, Aparna
Shahidi, Ramin
Asgarzadeh, Ali
Shobeiri, Parnian
Baradaran, Mansoureh
Tajabadi, Zohreh
Khalafi, Mohammad
Sotoudeh, Houman
Sadeghsalehi, Hamidreza
Author_xml – sequence: 1
  givenname: Ramin
  surname: Shahidi
  fullname: Shahidi, Ramin
  organization: School of Medicine, Bushehr University of Medical Sciences
– sequence: 2
  givenname: Mansoureh
  surname: Baradaran
  fullname: Baradaran, Mansoureh
  organization: Department of Radiology, Imam Ali Hospital, North Khorasan University of Medical Science
– sequence: 3
  givenname: Ali
  surname: Asgarzadeh
  fullname: Asgarzadeh, Ali
  organization: Students Research Committee, School of Medicine, Ardabil University of Medical Sciences
– sequence: 4
  givenname: Sara
  surname: Bagherieh
  fullname: Bagherieh, Sara
  organization: Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences
– sequence: 5
  givenname: Zohreh
  surname: Tajabadi
  fullname: Tajabadi, Zohreh
  organization: Digestive Disease Research Institute, Tehran University of Medical Sciences
– sequence: 6
  givenname: Akram
  surname: Farhadi
  fullname: Farhadi, Akram
  organization: Faculty of Health, Bushehr University of Medical Sciences
– sequence: 7
  givenname: Setayesh Sotoudehnia
  surname: Korani
  fullname: Korani, Setayesh Sotoudehnia
  organization: Department of Radiology, Mayo Clinic
– sequence: 8
  givenname: Mohammad
  surname: Khalafi
  fullname: Khalafi, Mohammad
  organization: Department of Radiology, Tabriz University of Medical Sciences
– sequence: 9
  givenname: Parnian
  surname: Shobeiri
  fullname: Shobeiri, Parnian
  organization: School of Medicine, Tehran University of Medical Science
– sequence: 10
  givenname: Hamidreza
  surname: Sadeghsalehi
  fullname: Sadeghsalehi, Hamidreza
  organization: Department of Artificial Intelligence in Medical Sciences, Faculty of Advanced Technologies in Medicine, Iran University Of Medical Sciences
– sequence: 11
  givenname: Arezoo
  surname: Shafieioun
  fullname: Shafieioun, Arezoo
  organization: Department of Radiology, School of Medicine, Isfahan University of Medical Sciences
– sequence: 12
  givenname: Mohammad Amin
  surname: Yazdanifar
  fullname: Yazdanifar, Mohammad Amin
  organization: School of Medicine, Qom University of Medical Sciences
– sequence: 13
  givenname: Aparna
  surname: Singhal
  fullname: Singhal, Aparna
  organization: Neuroradiology Section, Department of Radiology, The University of Alabama at Birmingham
– sequence: 14
  givenname: Houman
  surname: Sotoudeh
  fullname: Sotoudeh, Houman
  email: hsotoudeh@uabmc.edu
  organization: Neuroradiology Section, Department of Radiology, The University of Alabama at Birmingham, O’Neal Comprehensive Cancer Center, UAB, The University of Alabama at Birmingham
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37801265$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhi1URC_wAiyQJRawaMC52E66q8qtUhESgrVlOyeDR7E9-DilwxPxmCQzrUBddGHZx_7-41_nPyYHIQYg5HnJ3pSMybfYMF6xglX1vLjgxc0jclTK-aqty-7gv_MhOUZcM9aUc_GEHNayZWUl-BH5887pVYiYnaUbSENMXgcLNA7089dLmnTvoncW6fxC7agR3eCszi6GhTkff_8A5yG9Qto7BI1wSr0be2rjKrjsroE6v9EueQj5lOrQ07D8MVKczBpsxjOqKW4xg9eLiQTXDn7tQA9ZFzrocYsOn5LHgx4Rnt3uJ-T7h_ffLj4VV18-Xl6cXxW2ljwXnRSm7qqq5IMBYQ30veVD32hhZDuUnWai6SuuRddKw4wR3NSi4wZkucyE1yfk9b7vJsWfE2BW3qGFcdQB4oSqamVTiapuFvTlPXQdpzT7XahWNEJIyWbqxS01GQ-92iTnddqquwxmoN0DNkXEBIOyLu8mnJN2oyqZWuJW-7jVHLfaxa1uZml1T3rX_UFRvRfhDIcVpH-2H1D9Bci0v8g
CitedBy_id crossref_primary_10_1016_j_ajp_2025_104532
crossref_primary_10_1186_s13098_025_01747_z
crossref_primary_10_3389_fnagi_2024_1366780
crossref_primary_10_1038_s44303_025_00104_z
crossref_primary_10_1186_s12880_025_01748_4
crossref_primary_10_1055_s_0044_1787191
crossref_primary_10_1016_j_neuroimage_2025_121040
crossref_primary_10_1186_s12880_024_01431_0
crossref_primary_10_1007_s10143_024_02391_3
crossref_primary_10_3389_fimmu_2025_1516975
crossref_primary_10_1093_ageing_afae140
crossref_primary_10_1186_s13244_025_02026_1
crossref_primary_10_1016_j_acra_2024_06_012
crossref_primary_10_1016_j_crad_2025_106921
crossref_primary_10_1007_s10143_025_03820_7
crossref_primary_10_1016_j_clinimag_2025_110456
crossref_primary_10_1016_j_wneu_2023_11_061
Cites_doi 10.1007/s00330-023-09708-8
10.1093/brain/awv007
10.1186/s40478-018-0515-3
10.3389/fneur.2018.00618
10.1016/j.dadm.2014.11.013
10.3389/fnagi.2013.00055
10.3389/fnagi.2018.00135
10.2174/1567205013666151116141705
10.1016/S1474-4422(12)70291-0
10.1016/j.nicl.2016.11.025
10.1002/hbm.23091
10.7326/0003-4819-156-4-201202210-00018
10.3389/fnagi.2019.00323
10.3389/fnagi.2023.1149871
10.1016/j.ijsu.2021.105906
10.1016/j.nicl.2013.11.010
10.1016/j.jalz.2018.02.018
10.1016/S1474-4422(18)30403-4
10.1007/s00330-022-09081-y
10.1016/S0140-6736(06)68542-5
10.3390/life12040514
10.1016/j.ejmp.2017.05.071
10.3389/fnagi.2018.00290
10.1016/j.ejmech.2021.113320
10.1016/j.jalz.2015.11.002
10.1148/radiol.2017170226
10.1016/j.mri.2012.06.010
10.1001/jama.2014.13806
10.3389/fnagi.2022.937486
10.1038/srep45639
10.1016/j.jalz.2011.05.2410
10.1017/S1041610217000473
10.1016/S2468-2667(21)00249-8
10.3389/fnagi.2018.00393
10.3389/fnagi.2022.872530
10.1007/s11682-011-9142-3
10.1007/s00330-020-07221-w
10.1002/hbm.22999
10.1148/radiol.2015151169
10.1088/0031-9155/61/13/R150
10.3174/ajnr.A2232
10.1016/j.scib.2020.04.003
10.1118/1.4958959
10.1016/S1474-4422(17)30343-5
10.1016/j.jalz.2011.03.003
10.2174/1567205017666200303105016
10.1176/appi.neuropsych.17120366
10.1111/ene.13439
10.1038/nrclinonc.2017.141
10.1016/j.neubiorev.2013.07.001
10.3389/fnagi.2022.1073909
10.1016/j.dadm.2018.09.002
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
DOI 10.1007/s40520-023-02565-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central - New (Subscription)
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest One Health & Nursing
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest One Academic
ProQuest Central (New)
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList ProQuest One Academic Middle East (New)

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1720-8319
EndPage 2348
ExternalDocumentID 37801265
10_1007_s40520_023_02565_x
Genre Meta-Analysis
Systematic Review
Journal Article
GroupedDBID -EM
06D
0R~
203
23M
29~
2JY
30V
4.4
406
53G
5GY
7X7
8FI
8FJ
8UJ
96X
AAAVM
AAEWM
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANXM
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABEEZ
ABFTV
ABHLI
ABIPD
ABJNI
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABTEG
ABTKH
ABTMW
ABUWG
ABXPI
ACACY
ACCUX
ACGFO
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACREN
ACUDM
ACULB
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEXYK
AFBBN
AFGXO
AFKRA
AFLOW
AFQWF
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
AKMHD
ALFXC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AXYYD
AZFZN
BENPR
BGNMA
BPHCQ
BVXVI
C24
C6C
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
FYUFA
GGCAI
GGRSB
GJIRD
GQ7
GRRUI
HG6
HMCUK
HZ~
I0C
IKXTQ
IMOTQ
ITM
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NQJWS
NU0
O9-
O93
O9G
O9J
P2P
PQQKQ
RLLFE
ROL
RSV
SCLPG
SDE
SISQX
SJN
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZ9
TSG
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z7U
Z82
Z87
ZMTXR
ZOVNA
AAYXX
ABDBE
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
ID FETCH-LOGICAL-c375t-976b392215fbe6cbeddc5fd4a6b78f19a064d25a6987b0bb65b3695be71780153
IEDL.DBID 7X7
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001188151900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1720-8319
1594-0667
IngestDate Wed Oct 01 13:59:44 EDT 2025
Tue Oct 07 07:36:37 EDT 2025
Sat Jun 28 01:33:18 EDT 2025
Sat Nov 29 03:48:01 EST 2025
Tue Nov 18 22:37:34 EST 2025
Fri Feb 21 02:43:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Alzheimer’s disease
Magnetic resonance imaging
Mild cognitive impairment
Classification
Radiomics
Language English
License 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-976b392215fbe6cbeddc5fd4a6b78f19a064d25a6987b0bb65b3695be71780153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
ObjectType-Review-4
content type line 23
ObjectType-Undefined-3
PMID 37801265
PQID 2886466770
PQPubID 4402923
PageCount 16
ParticipantIDs proquest_miscellaneous_2874262345
proquest_journals_2886466770
pubmed_primary_37801265
crossref_citationtrail_10_1007_s40520_023_02565_x
crossref_primary_10_1007_s40520_023_02565_x
springer_journals_10_1007_s40520_023_02565_x
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationTitle Aging clinical and experimental research
PublicationTitleAbbrev Aging Clin Exp Res
PublicationTitleAlternate Aging Clin Exp Res
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Du, Zhang, Fang, Qiu, Zhao, Wei (CR45) 2022; 13
Zhong, Hu, Si, Jia, Xing, Zhang (CR25) 2021; 31
Sørensen, Igel, Liv Hansen, Osler, Lauritzen, Rostrup (CR46) 2016; 37
Chaddad, Desrosiers, Toews (CR36) 2017; 7
Sperling, Aisen, Beckett, Bennett, Craft, Fagan (CR14) 2011; 7
Ranjbar, Velgos, Dueck, Geda, Mitchell (CR48) 2019; 31
Nichols, Szoeke, Vollset, Abbasi, Abd-Allah, Abdela (CR32) 2019; 18
Zhang, Yu, Jiang, Liu, Tong (CR42) 2012; 6
Schueler, Schuetz, Dewey (CR24) 2012; 156
Li, Feng, Sun, Hou, Han, Liu (CR3) 2022; 14
Jack, Knopman, Jagust, Petersen, Weiner, Aisen (CR7) 2013; 12
Vega, Newhouse (CR8) 2014; 16
Salvatore, Battista, Castiglioni (CR15) 2016; 13
Salvatore, Cerasa, Castiglioni (CR12) 2018; 10
Sørensen, Igel, Pai, Balas, Anker, Lillholm (CR43) 2017; 13
Gauthier, Reisberg, Zaudig, Petersen, Ritchie, Broich (CR9) 2006; 367
Sun, Chen, Huang, Lui, Huang, Shi (CR35) 2018; 287
Hondius, van Nierop, Li, Hoozemans, van der Schors, van Haastert (CR40) 2016; 12
De Oliveira, Balthazar, D'abreu, Yasuda, Damasceno, Cendes (CR51) 2011; 32
Dickerson, Wolk (CR11) 2013; 5
Nichols, Steinmetz, Vollset, Fukutaki, Chalek, Abd-Allah (CR4) 2022; 7
Srivastava, Ahmad, Khare (CR5) 2021; 216
Langa, Levine (CR6) 2014; 312
Catani, Dell’Acqua, De Schotten, Reviews (CR39) 2013; 37
Geuze, Vermetten, Bremner (CR13) 2005; 10
Jack, Bennett, Blennow, Carrillo, Dunn, Haeberlein (CR22) 2018; 14
Zhao, Ding, Han, Fan, Alexander-Bloch, Han (CR31) 2020; 65
Lambin, Leijenaar, Deist, Peerlings, De Jong, Van Timmeren (CR17) 2017; 14
Yip, Aerts (CR16) 2016; 61
Luk, Ishaque, Khan, Ta, Chenji, Yang (CR47) 2018; 10
Zhou, Piao, Liu, Luo, Chen, Xiang (CR27) 2023; 14
Leandrou, Lamnisos, Bougias, Stogiannos, Georgiadou, Achilleos (CR29) 2023; 15
Lane, Hardy, Schott (CR1) 2018; 25
Huijbers, Mormino, Schultz, Wigman, Ward, Larvie (CR41) 2015; 138
Da, Toledo, Zee, Wolk, Xie, Ou (CR10) 2014; 4
Lyketsos, Carrillo, Ryan, Khachaturian, Trzepacz, Amatniek (CR2) 2011; 7
Feng, Ding (CR19) 2020; 17
Kumar, Gu, Basu, Berglund, Eschrich, Schabath (CR34) 2012; 30
Page, McKenzie, Bossuyt, Boutron, Hoffmann, Mulrow (CR23) 2021; 88
Feng, Song, Wang, Pang, Liao, Jiang (CR53) 2019; 11
Feng, Chen, Liao, Jiang, Mao, Wang (CR30) 2018; 9
Christensen, Alpert, Rogalski, Cobia, Rao, Beg (CR44) 2015; 1
Gillies, Kinahan, Hricak (CR18) 2016; 278
Liu, Jie, Zheng, Cui, Wang (CR54) 2022; 14
Feng, Wang, Zhao, Zhou, Yao, Meng (CR52) 2018; 10
Avanzo, Stancanello, El Naqa (CR37) 2017; 38
Shao, Chen, Ming, Ye, Shu, Gong (CR21) 2018; 10
Hwang, Kim, Kim, Rhee, Ryu, Liu (CR50) 2016; 43
Manning, Macdonald, Leung, Young, Pepple, Lehmann (CR49) 2015; 36
Park, Shim, Suh, Heo, Oh, Kim (CR55) 2023
Zheng, Zhang, Li, Tong, Ouyang (CR28) 2022; 32
Cheung, Chau, Tang (CR26) 2022; 12
Halliday (CR38) 2017; 16
Nasrabady, Rizvi, Goldman, Brickman (CR20) 2018; 6
Hu, Yu, Sun, Zhang, Wang, Qin (CR33) 2017; 29
CA Lane (2565_CR1) 2018; 25
Q Feng (2565_CR30) 2018; 9
X Li (2565_CR3) 2022; 14
X Da (2565_CR10) 2014; 4
CC Luk (2565_CR47) 2018; 10
L Sørensen (2565_CR43) 2017; 13
A Christensen (2565_CR44) 2015; 1
HY Park (2565_CR55) 2023
Q Feng (2565_CR19) 2020; 17
F Feng (2565_CR52) 2018; 10
Q Feng (2565_CR53) 2019; 11
Y Shao (2565_CR21) 2018; 10
S Schueler (2565_CR24) 2012; 156
H Sun (2565_CR35) 2018; 287
MJ Page (2565_CR23) 2021; 88
C Salvatore (2565_CR12) 2018; 10
Y Du (2565_CR45) 2022; 13
J Zhong (2565_CR25) 2021; 31
EY Cheung (2565_CR26) 2022; 12
BC Dickerson (2565_CR11) 2013; 5
C Hu (2565_CR33) 2017; 29
S Srivastava (2565_CR5) 2021; 216
S Leandrou (2565_CR29) 2023; 15
CR Jack (2565_CR7) 2013; 12
EJ Hwang (2565_CR50) 2016; 43
E Geuze (2565_CR13) 2005; 10
W Huijbers (2565_CR41) 2015; 138
J Zhang (2565_CR42) 2012; 6
JN Vega (2565_CR8) 2014; 16
KM Langa (2565_CR6) 2014; 312
E Nichols (2565_CR4) 2022; 7
SS Yip (2565_CR16) 2016; 61
V Kumar (2565_CR34) 2012; 30
G Halliday (2565_CR38) 2017; 16
SE Nasrabady (2565_CR20) 2018; 6
M Catani (2565_CR39) 2013; 37
M De Oliveira (2565_CR51) 2011; 32
DC Hondius (2565_CR40) 2016; 12
CR Jack Jr (2565_CR22) 2018; 14
A Chaddad (2565_CR36) 2017; 7
E Nichols (2565_CR32) 2019; 18
EN Manning (2565_CR49) 2015; 36
P Lambin (2565_CR17) 2017; 14
Q Zheng (2565_CR28) 2022; 32
CG Lyketsos (2565_CR2) 2011; 7
RJ Gillies (2565_CR18) 2016; 278
C Salvatore (2565_CR15) 2016; 13
RA Sperling (2565_CR14) 2011; 7
S Ranjbar (2565_CR48) 2019; 31
L Sørensen (2565_CR46) 2016; 37
S Liu (2565_CR54) 2022; 14
S Gauthier (2565_CR9) 2006; 367
K Zhou (2565_CR27) 2023; 14
K Zhao (2565_CR31) 2020; 65
M Avanzo (2565_CR37) 2017; 38
References_xml – volume: 14
  start-page: 872530
  year: 2022
  ident: CR54
  article-title: Investigation of underlying association between whole brain regions and alzheimer’s disease: a research based on an artificial intelligence model
  publication-title: Front Aging Neurosci
– volume: 38
  start-page: 122
  year: 2017
  end-page: 139
  ident: CR37
  article-title: Beyond imaging: the promise of radiomics
  publication-title: Physica Med
– volume: 138
  start-page: 1023
  year: 2015
  end-page: 1035
  ident: CR41
  article-title: Amyloid-β deposition in mild cognitive impairment is associated with increased hippocampal activity, atrophy and clinical progression
  publication-title: Brain
– volume: 25
  start-page: 59
  year: 2018
  end-page: 70
  ident: CR1
  article-title: Alzheimer's disease
  publication-title: Eur J Neurol
– volume: 32
  start-page: 6965
  year: 2022
  end-page: 6976
  ident: CR28
  article-title: How segmentation methods affect hippocampal radiomic feature accuracy in Alzheimer's disease analysis?
  publication-title: Eur Radiol
– volume: 11
  start-page: 323
  year: 2019
  ident: CR53
  article-title: Hippocampus radiomic biomarkers for the diagnosis of amnestic mild cognitive impairment: a machine learning method
  publication-title: Front Aging Neurosci
– year: 2023
  ident: CR55
  article-title: Development and validation of an automatic classification algorithm for the diagnosis of Alzheimer’s disease using a high-performance interpretable deep learning network
  publication-title: Eur Radiol
  doi: 10.1007/s00330-023-09708-8
– volume: 37
  start-page: 1724
  year: 2013
  end-page: 1737
  ident: CR39
  article-title: A revised limbic system model for memory, emotion and behaviour
  publication-title: Neurosci Biobehav Rev
– volume: 32
  start-page: 60
  year: 2011
  end-page: 66
  ident: CR51
  article-title: MR imaging texture analysis of the corpus callosum and thalamus in amnestic mild cognitive impairment and mild Alzheimer disease
  publication-title: Am J Neuroradiol
– volume: 1
  start-page: 14
  year: 2015
  end-page: 23
  ident: CR44
  article-title: Hippocampal subfield surface deformity in nonsemantic primary progressive aphasia
  publication-title: Alzheimer's Dementia
– volume: 10
  start-page: 755
  year: 2018
  end-page: 763
  ident: CR47
  article-title: Alzheimer's disease: 3-Dimensional MRI texture for prediction of conversion from mild cognitive impairment
  publication-title: Alzheimer's Dementia
– volume: 12
  start-page: 654
  year: 2016
  end-page: 668
  ident: CR40
  article-title: Profiling the human hippocampal proteome at all pathologic stages of Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 10
  start-page: 160
  year: 2005
  end-page: 184
  ident: CR13
  article-title: MR-based in vivo hippocampal volumetrics: 2
  publication-title: Find Neuropsychiatr Disord Mol Psychiatry
– volume: 31
  start-page: 1526
  year: 2021
  end-page: 1535
  ident: CR25
  article-title: A systematic review of radiomics in osteosarcoma: utilizing radiomics quality score as a tool promoting clinical translation
  publication-title: Eur Radiol
– volume: 15
  start-page: 1149871
  year: 2023
  ident: CR29
  article-title: A cross-sectional study of explainable machine learning in Alzheimer’s disease: diagnostic classification using MR radiomic features
  publication-title: Front Aging Neurosci
– volume: 18
  start-page: 88
  year: 2019
  end-page: 106
  ident: CR32
  article-title: Global, regional, and national burden of Alzheimer's disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
  publication-title: Lancet Neurol
– volume: 13
  start-page: 509
  year: 2016
  end-page: 533
  ident: CR15
  article-title: Frontiers for the early diagnosis of AD by means of MRI brain imaging and support vector machines
  publication-title: Curr Alzheimer Res
– volume: 16
  start-page: 1
  year: 2014
  end-page: 11
  ident: CR8
  article-title: Mild cognitive impairment: diagnosis, longitudinal course, and emerging treatments
  publication-title: Curr Psychiatry Rep
– volume: 30
  start-page: 1234
  year: 2012
  end-page: 1248
  ident: CR34
  article-title: Radiomics: the process and the challenges
  publication-title: Magn Reson Imaging
– volume: 14
  start-page: 535
  year: 2018
  end-page: 562
  ident: CR22
  article-title: NIA-AA research framework: toward a biological definition of Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 37
  start-page: 1148
  year: 2016
  end-page: 1161
  ident: CR46
  article-title: Early detection of Alzheimer's disease using M RI hippocampal texture
  publication-title: Hum Brain Mapp
– volume: 156
  start-page: 323
  year: 2012
  ident: CR24
  article-title: The revised QUADAS-2 tool
  publication-title: Ann Intern Med
– volume: 7
  start-page: e105
  year: 2022
  end-page: e125
  ident: CR4
  article-title: Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019
  publication-title: Lancet Public Health
– volume: 287
  start-page: 620
  year: 2018
  end-page: 630
  ident: CR35
  article-title: Psychoradiologic utility of MR imaging for diagnosis of attention deficit hyperactivity disorder: a radiomics analysis
  publication-title: Radiology
– volume: 43
  start-page: 4718
  year: 2016
  end-page: 4728
  ident: CR50
  article-title: Texture analyses of quantitative susceptibility maps to differentiate Alzheimer's disease from cognitive normal and mild cognitive impairment
  publication-title: Med Phys
– volume: 13
  start-page: 470
  year: 2017
  end-page: 482
  ident: CR43
  article-title: Differential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry
  publication-title: NeuroImage Clin
– volume: 4
  start-page: 164
  year: 2014
  end-page: 173
  ident: CR10
  article-title: Integration and relative value of biomarkers for prediction of MCI to AD progression: spatial patterns of brain atrophy, cognitive scores, APOE genotype and CSF biomarkers
  publication-title: NeuroImage Clin
– volume: 7
  start-page: 532
  year: 2011
  end-page: 539
  ident: CR2
  article-title: Neuropsychiatric symptoms in Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 216
  start-page: 113320
  year: 2021
  ident: CR5
  article-title: Alzheimer’s disease and its treatment by different approaches: a review
  publication-title: Eur J Med Chem
– volume: 7
  start-page: 280
  year: 2011
  end-page: 292
  ident: CR14
  article-title: Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 36
  start-page: 5123
  year: 2015
  end-page: 5136
  ident: CR49
  article-title: Differential hippocampal shapes in posterior cortical atrophy patients: a comparison with control and typical AD subjects
  publication-title: Hum Brain Mapp
– volume: 88
  start-page: 105906
  year: 2021
  ident: CR23
  article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
  publication-title: Int J Surg
– volume: 29
  start-page: 1595
  year: 2017
  end-page: 1608
  ident: CR33
  article-title: The prevalence and progression of mild cognitive impairment among clinic and community populations: a systematic review and meta-analysis
  publication-title: Int Psychogeriatr
– volume: 312
  start-page: 2551
  year: 2014
  end-page: 2561
  ident: CR6
  article-title: The diagnosis and management of mild cognitive impairment: a clinical review
  publication-title: JAMA
– volume: 7
  start-page: 45639
  year: 2017
  ident: CR36
  article-title: Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age
  publication-title: Sci Rep
– volume: 5
  start-page: 55
  year: 2013
  ident: CR11
  article-title: Biomarker-based prediction of progression in MCI: comparison of AD signature and hippocampal volume with spinal fluid amyloid-β and tau
  publication-title: Front Aging Neurosci
– volume: 12
  start-page: 207
  year: 2013
  end-page: 216
  ident: CR7
  article-title: Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers
  publication-title: Lancet Neurol
– volume: 10
  start-page: 393
  year: 2018
  ident: CR21
  article-title: Predicting the development of normal-appearing white matter with radiomics in the aging brain: a longitudinal clinical study
  publication-title: Front Aging Neurosci
– volume: 16
  start-page: 862
  year: 2017
  end-page: 864
  ident: CR38
  article-title: Pathology and hippocampal atrophy in Alzheimer's disease
  publication-title: Lancet Neurol
– volume: 13
  start-page: 1014
  year: 2022
  ident: CR45
  article-title: Radiomic features of the hippocampus for diagnosing early-onset and late-onset Alzheimer’s disease
  publication-title: Front Aging Neurosci
– volume: 14
  start-page: 937486
  year: 2022
  ident: CR3
  article-title: Global, regional, and national burden of Alzheimer's disease and other dementias, 1990–2019
  publication-title: Front Aging Neurosci
– volume: 14
  start-page: 1073909
  year: 2023
  ident: CR27
  article-title: A novel cascade machine learning pipeline for Alzheimer’s disease identification and prediction
  publication-title: Front Aging Neurosci
– volume: 6
  start-page: 1
  year: 2018
  end-page: 10
  ident: CR20
  article-title: White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes
  publication-title: Acta Neuropathol Commun
– volume: 9
  start-page: 618
  year: 2018
  ident: CR30
  article-title: Corpus callosum radiomics-based classification model in Alzheimer's disease: a case-control study
  publication-title: Front Neurol
– volume: 367
  start-page: 1262
  year: 2006
  end-page: 1270
  ident: CR9
  article-title: Mild cognitive impairment
  publication-title: The lancet
– volume: 61
  start-page: R150
  year: 2016
  ident: CR16
  article-title: Applications and limitations of radiomics
  publication-title: Phys Med Biol
– volume: 6
  start-page: 61
  year: 2012
  end-page: 69
  ident: CR42
  article-title: 3D texture analysis on MRI images of Alzheimer’s disease
  publication-title: Brain Imaging Behav
– volume: 17
  start-page: 297
  year: 2020
  end-page: 309
  ident: CR19
  article-title: MRI radiomics classification and prediction in Alzheimer’s disease and mild cognitive impairment: a review
  publication-title: Curr Alzheimer Res
– volume: 65
  start-page: 1103
  year: 2020
  end-page: 1113
  ident: CR31
  article-title: Independent and reproducible hippocampal radiomic biomarkers for multisite Alzheimer's disease: diagnosis, longitudinal progress and biological basis
  publication-title: Sci Bull (Beijing)
– volume: 10
  start-page: 290
  year: 2018
  ident: CR52
  article-title: Radiomic features of hippocampal subregions in Alzheimer’s disease and amnestic mild cognitive impairment
  publication-title: Front Aging Neurosci
– volume: 278
  start-page: 563
  year: 2016
  end-page: 577
  ident: CR18
  article-title: Radiomics: images are more than pictures, they are data
  publication-title: Radiology
– volume: 10
  start-page: 135
  year: 2018
  ident: CR12
  article-title: MRI characterizes the progressive course of AD and predicts conversion to Alzheimer’s dementia 24 months before probable diagnosis
  publication-title: Front Aging Neurosci
– volume: 12
  start-page: 514
  year: 2022
  ident: CR26
  article-title: Radiomics-based artificial intelligence differentiation of neurodegenerative diseases with reference to the volumetry
  publication-title: Life
– volume: 31
  start-page: 210
  year: 2019
  end-page: 219
  ident: CR48
  article-title: Brain MR radiomics to differentiate cognitive disorders
  publication-title: J Neuropsychiatry Clin Neurosci
– volume: 14
  start-page: 749
  year: 2017
  end-page: 762
  ident: CR17
  article-title: Radiomics: the bridge between medical imaging and personalized medicine
  publication-title: Nat Rev Clin Oncol
– volume: 138
  start-page: 1023
  year: 2015
  ident: 2565_CR41
  publication-title: Brain
  doi: 10.1093/brain/awv007
– volume: 6
  start-page: 1
  year: 2018
  ident: 2565_CR20
  publication-title: Acta Neuropathol Commun
  doi: 10.1186/s40478-018-0515-3
– volume: 9
  start-page: 618
  year: 2018
  ident: 2565_CR30
  publication-title: Front Neurol
  doi: 10.3389/fneur.2018.00618
– volume: 1
  start-page: 14
  year: 2015
  ident: 2565_CR44
  publication-title: Alzheimer's Dementia
  doi: 10.1016/j.dadm.2014.11.013
– volume: 5
  start-page: 55
  year: 2013
  ident: 2565_CR11
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2013.00055
– volume: 10
  start-page: 135
  year: 2018
  ident: 2565_CR12
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2018.00135
– volume: 13
  start-page: 509
  year: 2016
  ident: 2565_CR15
  publication-title: Curr Alzheimer Res
  doi: 10.2174/1567205013666151116141705
– volume: 12
  start-page: 207
  year: 2013
  ident: 2565_CR7
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(12)70291-0
– volume: 13
  start-page: 470
  year: 2017
  ident: 2565_CR43
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2016.11.025
– volume: 37
  start-page: 1148
  year: 2016
  ident: 2565_CR46
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23091
– volume: 156
  start-page: 323
  year: 2012
  ident: 2565_CR24
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-156-4-201202210-00018
– volume: 11
  start-page: 323
  year: 2019
  ident: 2565_CR53
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2019.00323
– volume: 15
  start-page: 1149871
  year: 2023
  ident: 2565_CR29
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2023.1149871
– volume: 88
  start-page: 105906
  year: 2021
  ident: 2565_CR23
  publication-title: Int J Surg
  doi: 10.1016/j.ijsu.2021.105906
– volume: 4
  start-page: 164
  year: 2014
  ident: 2565_CR10
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2013.11.010
– volume: 14
  start-page: 535
  year: 2018
  ident: 2565_CR22
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2018.02.018
– volume: 18
  start-page: 88
  year: 2019
  ident: 2565_CR32
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(18)30403-4
– volume: 32
  start-page: 6965
  year: 2022
  ident: 2565_CR28
  publication-title: Eur Radiol
  doi: 10.1007/s00330-022-09081-y
– volume: 367
  start-page: 1262
  year: 2006
  ident: 2565_CR9
  publication-title: The lancet
  doi: 10.1016/S0140-6736(06)68542-5
– volume: 12
  start-page: 514
  year: 2022
  ident: 2565_CR26
  publication-title: Life
  doi: 10.3390/life12040514
– volume: 38
  start-page: 122
  year: 2017
  ident: 2565_CR37
  publication-title: Physica Med
  doi: 10.1016/j.ejmp.2017.05.071
– volume: 10
  start-page: 290
  year: 2018
  ident: 2565_CR52
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2018.00290
– volume: 216
  start-page: 113320
  year: 2021
  ident: 2565_CR5
  publication-title: Eur J Med Chem
  doi: 10.1016/j.ejmech.2021.113320
– volume: 12
  start-page: 654
  year: 2016
  ident: 2565_CR40
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2015.11.002
– volume: 287
  start-page: 620
  year: 2018
  ident: 2565_CR35
  publication-title: Radiology
  doi: 10.1148/radiol.2017170226
– volume: 30
  start-page: 1234
  year: 2012
  ident: 2565_CR34
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.06.010
– volume: 13
  start-page: 1014
  year: 2022
  ident: 2565_CR45
  publication-title: Front Aging Neurosci
– volume: 312
  start-page: 2551
  year: 2014
  ident: 2565_CR6
  publication-title: JAMA
  doi: 10.1001/jama.2014.13806
– volume: 10
  start-page: 160
  year: 2005
  ident: 2565_CR13
  publication-title: Find Neuropsychiatr Disord Mol Psychiatry
– volume: 14
  start-page: 937486
  year: 2022
  ident: 2565_CR3
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2022.937486
– volume: 7
  start-page: 45639
  year: 2017
  ident: 2565_CR36
  publication-title: Sci Rep
  doi: 10.1038/srep45639
– volume: 7
  start-page: 532
  year: 2011
  ident: 2565_CR2
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.05.2410
– volume: 29
  start-page: 1595
  year: 2017
  ident: 2565_CR33
  publication-title: Int Psychogeriatr
  doi: 10.1017/S1041610217000473
– volume: 7
  start-page: e105
  year: 2022
  ident: 2565_CR4
  publication-title: Lancet Public Health
  doi: 10.1016/S2468-2667(21)00249-8
– volume: 10
  start-page: 393
  year: 2018
  ident: 2565_CR21
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2018.00393
– volume: 14
  start-page: 872530
  year: 2022
  ident: 2565_CR54
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2022.872530
– volume: 6
  start-page: 61
  year: 2012
  ident: 2565_CR42
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-011-9142-3
– volume: 31
  start-page: 1526
  year: 2021
  ident: 2565_CR25
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-07221-w
– volume: 36
  start-page: 5123
  year: 2015
  ident: 2565_CR49
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22999
– volume: 16
  start-page: 1
  year: 2014
  ident: 2565_CR8
  publication-title: Curr Psychiatry Rep
– volume: 278
  start-page: 563
  year: 2016
  ident: 2565_CR18
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 61
  start-page: R150
  year: 2016
  ident: 2565_CR16
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/61/13/R150
– volume: 32
  start-page: 60
  year: 2011
  ident: 2565_CR51
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A2232
– volume: 65
  start-page: 1103
  year: 2020
  ident: 2565_CR31
  publication-title: Sci Bull (Beijing)
  doi: 10.1016/j.scib.2020.04.003
– volume: 43
  start-page: 4718
  year: 2016
  ident: 2565_CR50
  publication-title: Med Phys
  doi: 10.1118/1.4958959
– volume: 16
  start-page: 862
  year: 2017
  ident: 2565_CR38
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(17)30343-5
– volume: 7
  start-page: 280
  year: 2011
  ident: 2565_CR14
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.003
– volume: 17
  start-page: 297
  year: 2020
  ident: 2565_CR19
  publication-title: Curr Alzheimer Res
  doi: 10.2174/1567205017666200303105016
– volume: 31
  start-page: 210
  year: 2019
  ident: 2565_CR48
  publication-title: J Neuropsychiatry Clin Neurosci
  doi: 10.1176/appi.neuropsych.17120366
– volume: 25
  start-page: 59
  year: 2018
  ident: 2565_CR1
  publication-title: Eur J Neurol
  doi: 10.1111/ene.13439
– volume: 14
  start-page: 749
  year: 2017
  ident: 2565_CR17
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2017.141
– volume: 37
  start-page: 1724
  year: 2013
  ident: 2565_CR39
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2013.07.001
– volume: 14
  start-page: 1073909
  year: 2023
  ident: 2565_CR27
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2022.1073909
– year: 2023
  ident: 2565_CR55
  publication-title: Eur Radiol
  doi: 10.1007/s00330-023-09708-8
– volume: 10
  start-page: 755
  year: 2018
  ident: 2565_CR47
  publication-title: Alzheimer's Dementia
  doi: 10.1016/j.dadm.2018.09.002
SSID ssj0041319
Score 2.4567873
SecondaryResourceType review_article
Snippet Background Alzheimer's disease (AD) is a debilitating neurodegenerative disease. Early diagnosis of AD and its precursor, mild cognitive impairment (MCI), is...
Alzheimer's disease (AD) is a debilitating neurodegenerative disease. Early diagnosis of AD and its precursor, mild cognitive impairment (MCI), is crucial for...
BackgroundAlzheimer's disease (AD) is a debilitating neurodegenerative disease. Early diagnosis of AD and its precursor, mild cognitive impairment (MCI), is...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2333
SubjectTerms Alzheimer Disease - diagnosis
Alzheimer's disease
Classification
Cognitive ability
Cognitive Dysfunction - diagnosis
Geriatrics/Gerontology
Humans
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medicine
Medicine & Public Health
Meta-analysis
Neurodegenerative Diseases
Radiomics
Review
Sensitivity and Specificity
Title Diagnostic performance of MRI radiomics for classification of Alzheimer's disease, mild cognitive impairment, and normal subjects: a systematic review and meta-analysis
URI https://link.springer.com/article/10.1007/s40520-023-02565-x
https://www.ncbi.nlm.nih.gov/pubmed/37801265
https://www.proquest.com/docview/2886466770
https://www.proquest.com/docview/2874262345
Volume 35
WOSCitedRecordID wos001188151900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1720-8319
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041319
  issn: 1720-8319
  databaseCode: 7X7
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1720-8319
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041319
  issn: 1720-8319
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5By4ELr_JIKdUgITgQCz93bS4oQCs4EFUVSLlZ-7KwlDjBTqrCL-JnsrPeOEIVvXDxZcfrtWZ2Z3ZeH8ALI3VUUVjdKrOcwoxpUAhVBGEslM6jhGkhHNgEn07z2aw48w63zqdVbs9Ed1DrpSIf-Zs4z1nKGOfhu9WPgFCjKLrqITRuwj7BZpOc89lw4bLnswP2sBo7pUp77otmXOlcSgkgdkkUxbRGTXD5t2K6Ym1eiZQ6BXR693-Xfg_ueNMTJ72s3IcbpnkAB5PGXrsXP_ElumRQ52U_gN8f-xQ8S4qrXW0BLiv8cv4ZW6FrKmfu0I6gIgucUo4cl4lmMv_13dQL077q0IeAxrio5xqHdCWk-sy6JefkGEWjsaFvzLHbSHINdW9R4K7NNPYlNo5wYdYiEL6ZykP4dnry9cOnwIM6BCrh2Tqw5o-0Npm1NCppmJJGa5VVOhVM8ryKCmFtJB1nghU5l6GULJMJKzJp7L3TatMseQR7zbIxTwClrkIlLAvTSKax0IWKQplzoThTYaHjEURbjpbKdzwn4I15OfRqdlJQ2ilKJwXl5QheD--s-n4f11IfbTle-r3flTt2j-D5MGx3LYViRGOWG6LhBAWQpNkIHvcCNnwuof-MmR0ZbyVuN_m_13J4_Vqewu2YpN2VUR7B3rrdmGdwS12s6649dvvGPfNj2H9_Mj07_wNDViK_
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB5VBQkubGUJFHhILAdiYTv2jI2EUESpGrWNECpSbu5sViMlThon0PKLOPEbeW-8RKiitx44z_OMPf7mLfM2xl5aZYKc3OoozBJyM0ZeKnXq-aHUJgl63Ejpmk2I4TAZjdIvG-x3kwtDYZUNT3SM2sw03ZG_C5OER5wL4X-cn3rUNYq8q00LjQoW-_b8B5ps5YfBDv7fV2G4-_no055XdxXwdE_ESw_lr0KlAEVdrizXyhqj49xEkiuR5EEqUUibMJYcrXHlK8Vj1eNprCwaPsjOqUsEsvxryMcFGXti1Bp4KA9cIxHUECLK7Bd1ko5L1Yso4AS3gLymqER5Z38Lwgva7QXPrBN4u7f_t626w27VqjX0q7Nwl23Y4h7b6hdyOZuew2twwa7Oi7DFfu1UIYZICvN17gTMcjj8OoCFNGNK1y4BR0CThUEhVQ7FRNOf_Dyx46ldvCmhdnF1YTqeGGjDsYDyT8cLunztgiwMFLTGBMqVoquv8j1IWJfRhiqFyBFO7VJ6si4Wc599u5I9e8A2i1lhHzFQJve1RMhEgYpCaVId-CoRUguu_dSEHRY0CMp0XdGdGotMsrYWtUNdhlNkDnXZWYe9bZ-ZV_VMLqXebhCW1bytzNbw6rAX7TByJXI1ycLOVkQjqNVBL4o77GEF6Ha5Hn1nyHGk2yB8Pfm_3-Xx5e_ynN3YOzo8yA4Gw_0n7GZIJ82ljG6zzeViZZ-y6_r7clwunrkzC-z4qpH_Bxq_fRU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+performance+of+MRI+radiomics+for+classification+of+Alzheimer%27s+disease%2C+mild+cognitive+impairment%2C+and+normal+subjects%3A+a+systematic+review+and+meta-analysis&rft.jtitle=Aging+clinical+and+experimental+research&rft.au=Shahidi%2C+Ramin&rft.au=Baradaran%2C+Mansoureh&rft.au=Asgarzadeh%2C+Ali&rft.au=Bagherieh%2C+Sara&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1594-0667&rft.eissn=1720-8319&rft.volume=35&rft.issue=11&rft.spage=2333&rft.epage=2348&rft_id=info:doi/10.1007%2Fs40520-023-02565-x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1720-8319&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1720-8319&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1720-8319&client=summon