Continuous and real-time indoor and outdoor methane sensing with portable optical sensor using rapidly pulsed IR LEDs

We designed a simple, portable, low-cost and low-weight nondispersive infrared (NDIR) spectroscopy-based system for continuous remote sensing of atmospheric methane (CH4) with rapidly pulsed near-infrared light emitting diodes (NIR LED) at 1.65 μm. The use of a microcontroller with a field programma...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Talanta (Oxford) Ročník 218; s. 121144
Hlavní autoři: Mahbub, Parvez, Noori, Ansara, Parry, John S., Davis, John, Lucieer, Arko, Macka, Mirek
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2020
Témata:
ISSN:0039-9140, 1873-3573, 1873-3573
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We designed a simple, portable, low-cost and low-weight nondispersive infrared (NDIR) spectroscopy-based system for continuous remote sensing of atmospheric methane (CH4) with rapidly pulsed near-infrared light emitting diodes (NIR LED) at 1.65 μm. The use of a microcontroller with a field programmable gate array (μC-FPGA) enables on-the-fly and wireless streaming and processing of large data streams (~2 Gbit/s). The investigated NIR LED detection system offers favourable limits of detection (LOD) of 300 ppm (±5%) CH4,. All the generated raw data were processed automatically on-the-fly in the μC-FPGA and transferred wirelessly via a network connection. The sensing device was deployed for the portable sensing of atmospheric CH4 at a local landfill, resulting in quantified concentrations within the sampling area (ca 400 m2) in the range of 0.5%–3.35% CH4. This NIR LED-based sensor system offers a simple low-cost solution for continuous real-time, quantitative, and direct measurement of CH4 concentrations in indoor and outdoor environments, yet with the flexibility provided by the custom programmable software. It possesses future potential for remote monitoring of gases directly from mobile platforms such as smartphones and unmanned aerial vehicles (UAV). [Display omitted] •Portable and low-cost continuous sensing of CH4 proposed for both indoor and outdoor use.•NDIR spectroscopy with rapidly pulsed near-infrared LEDs at 1.65 μm.•User-defined flexible processing of optical output using μC-FPGA.•Limits of detection (LOD) of 0.03% CH4, and precision of ±5%.•CH4 concentration at a landfill found between 0.5 and 3.35%, was cross-validated using GC.
AbstractList We designed a simple, portable, low-cost and low-weight nondispersive infrared (NDIR) spectroscopy-based system for continuous remote sensing of atmospheric methane (CH₄) with rapidly pulsed near-infrared light emitting diodes (NIR LED) at 1.65 μm. The use of a microcontroller with a field programmable gate array (μC-FPGA) enables on-the-fly and wireless streaming and processing of large data streams (~2 Gbit/s). The investigated NIR LED detection system offers favourable limits of detection (LOD) of 300 ppm (±5%) CH₄,. All the generated raw data were processed automatically on-the-fly in the μC-FPGA and transferred wirelessly via a network connection. The sensing device was deployed for the portable sensing of atmospheric CH₄ at a local landfill, resulting in quantified concentrations within the sampling area (ca 400 m²) in the range of 0.5%–3.35% CH₄. This NIR LED-based sensor system offers a simple low-cost solution for continuous real-time, quantitative, and direct measurement of CH₄ concentrations in indoor and outdoor environments, yet with the flexibility provided by the custom programmable software. It possesses future potential for remote monitoring of gases directly from mobile platforms such as smartphones and unmanned aerial vehicles (UAV).
We designed a simple, portable, low-cost and low-weight nondispersive infrared (NDIR) spectroscopy-based system for continuous remote sensing of atmospheric methane (CH4) with rapidly pulsed near-infrared light emitting diodes (NIR LED) at 1.65 μm. The use of a microcontroller with a field programmable gate array (μC-FPGA) enables on-the-fly and wireless streaming and processing of large data streams (~2 Gbit/s). The investigated NIR LED detection system offers favourable limits of detection (LOD) of 300 ppm (±5%) CH4,. All the generated raw data were processed automatically on-the-fly in the μC-FPGA and transferred wirelessly via a network connection. The sensing device was deployed for the portable sensing of atmospheric CH4 at a local landfill, resulting in quantified concentrations within the sampling area (ca 400 m2) in the range of 0.5%-3.35% CH4. This NIR LED-based sensor system offers a simple low-cost solution for continuous real-time, quantitative, and direct measurement of CH4 concentrations in indoor and outdoor environments, yet with the flexibility provided by the custom programmable software. It possesses future potential for remote monitoring of gases directly from mobile platforms such as smartphones and unmanned aerial vehicles (UAV).We designed a simple, portable, low-cost and low-weight nondispersive infrared (NDIR) spectroscopy-based system for continuous remote sensing of atmospheric methane (CH4) with rapidly pulsed near-infrared light emitting diodes (NIR LED) at 1.65 μm. The use of a microcontroller with a field programmable gate array (μC-FPGA) enables on-the-fly and wireless streaming and processing of large data streams (~2 Gbit/s). The investigated NIR LED detection system offers favourable limits of detection (LOD) of 300 ppm (±5%) CH4,. All the generated raw data were processed automatically on-the-fly in the μC-FPGA and transferred wirelessly via a network connection. The sensing device was deployed for the portable sensing of atmospheric CH4 at a local landfill, resulting in quantified concentrations within the sampling area (ca 400 m2) in the range of 0.5%-3.35% CH4. This NIR LED-based sensor system offers a simple low-cost solution for continuous real-time, quantitative, and direct measurement of CH4 concentrations in indoor and outdoor environments, yet with the flexibility provided by the custom programmable software. It possesses future potential for remote monitoring of gases directly from mobile platforms such as smartphones and unmanned aerial vehicles (UAV).
We designed a simple, portable, low-cost and low-weight nondispersive infrared (NDIR) spectroscopy-based system for continuous remote sensing of atmospheric methane (CH4) with rapidly pulsed near-infrared light emitting diodes (NIR LED) at 1.65 μm. The use of a microcontroller with a field programmable gate array (μC-FPGA) enables on-the-fly and wireless streaming and processing of large data streams (~2 Gbit/s). The investigated NIR LED detection system offers favourable limits of detection (LOD) of 300 ppm (±5%) CH4,. All the generated raw data were processed automatically on-the-fly in the μC-FPGA and transferred wirelessly via a network connection. The sensing device was deployed for the portable sensing of atmospheric CH4 at a local landfill, resulting in quantified concentrations within the sampling area (ca 400 m2) in the range of 0.5%–3.35% CH4. This NIR LED-based sensor system offers a simple low-cost solution for continuous real-time, quantitative, and direct measurement of CH4 concentrations in indoor and outdoor environments, yet with the flexibility provided by the custom programmable software. It possesses future potential for remote monitoring of gases directly from mobile platforms such as smartphones and unmanned aerial vehicles (UAV). [Display omitted] •Portable and low-cost continuous sensing of CH4 proposed for both indoor and outdoor use.•NDIR spectroscopy with rapidly pulsed near-infrared LEDs at 1.65 μm.•User-defined flexible processing of optical output using μC-FPGA.•Limits of detection (LOD) of 0.03% CH4, and precision of ±5%.•CH4 concentration at a landfill found between 0.5 and 3.35%, was cross-validated using GC.
ArticleNumber 121144
Author Davis, John
Mahbub, Parvez
Parry, John S.
Macka, Mirek
Lucieer, Arko
Noori, Ansara
Author_xml – sequence: 1
  givenname: Parvez
  surname: Mahbub
  fullname: Mahbub, Parvez
  organization: Australian Centre for Research on Separation Science (ACROSS) and School of Physical Sciences University of Tasmania, Private Bag 75, Hobart, 7001, Australia
– sequence: 2
  givenname: Ansara
  surname: Noori
  fullname: Noori, Ansara
  organization: Australian Centre for Research on Separation Science (ACROSS) and School of Physical Sciences University of Tasmania, Private Bag 75, Hobart, 7001, Australia
– sequence: 3
  givenname: John S.
  surname: Parry
  fullname: Parry, John S.
  organization: Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, 7001, Australia
– sequence: 4
  givenname: John
  surname: Davis
  fullname: Davis, John
  organization: Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, 7001, Australia
– sequence: 5
  givenname: Arko
  surname: Lucieer
  fullname: Lucieer, Arko
  organization: School of Land and Food, University of Tasmania, Private Bag 76, Hobart, 7001, Australia
– sequence: 6
  givenname: Mirek
  surname: Macka
  fullname: Macka, Mirek
  email: Mirek.Macka@utas.edu.au
  organization: Australian Centre for Research on Separation Science (ACROSS) and School of Physical Sciences University of Tasmania, Private Bag 75, Hobart, 7001, Australia
BookMark eNqNkU1LXDEUhkNR6Kj9CYUs3dzpycf9oguRqa3CgCC6Dpnk3JrhTnJNclv898YZV250lfDmeQ_kPCfkyAePhHxnsGTAmh_bZdaj9lkvOfCSccak_EIWrGtFJepWHJEFgOirnkn4Sk5S2gIAFyAWZF4Fn52fw5yo9pZG1GOV3Q6p8zaEuA_DnPf3HeZH7ZEm9Mn5v_S_y490CjHrzYg0TNkZPe5fCzzvkagnZ8dnOs1jQktv7uj66lc6I8eDLsG3t_OUPPy-ul9dV-vbPzery3VlRFvnqpdWcsMlBzS2FUIyI2DgvekbHIYNsrrWtrO2EZuma7Q0jcS2hh66Gg32UpyS88PcKYanGVNWO5cMjmVbWH6suJTQgoCm-wQqpGw7IXhB6wNqYkgp4qCm6HY6PisG6tWI2qo3I-rViDoYKb2f73rGZZ1dMRC1Gz9sXxzaWBb2z2FUyTj0Bq2LaLKywX0w4QUY563D
CitedBy_id crossref_primary_10_1088_1742_6596_2221_1_012034
crossref_primary_10_1002_adfm_202208891
crossref_primary_10_1038_s41598_024_83051_w
crossref_primary_10_1002_adfm_202420021
crossref_primary_10_3788_COL202422_062501
crossref_primary_10_1016_j_yofte_2022_102987
crossref_primary_10_3390_atmos13111789
crossref_primary_10_1002_marc_202300150
crossref_primary_10_1007_s10812_022_01421_6
crossref_primary_10_1088_1361_6501_ac527e
crossref_primary_10_1016_j_measurement_2024_115958
crossref_primary_10_1109_JSEN_2021_3130034
crossref_primary_10_3390_s21227456
crossref_primary_10_1016_j_vibspec_2025_103815
crossref_primary_10_3390_atmos12020221
crossref_primary_10_1016_j_snb_2023_134869
crossref_primary_10_1016_j_apenergy_2024_124447
crossref_primary_10_3390_s20195461
crossref_primary_10_3390_environments10070128
crossref_primary_10_1016_j_snb_2021_130111
crossref_primary_10_1016_j_heliyon_2024_e32795
crossref_primary_10_1016_j_coesh_2023_100506
Cites_doi 10.1088/0957-0233/3/2/008
10.1016/j.rser.2016.11.011
10.1016/j.measurement.2019.05.034
10.1039/c0em00312c
10.1088/1752-7155/1/1/014001
10.1016/j.jngse.2016.06.030
10.1021/acs.analchem.8b01295
10.1016/j.jqsrt.2017.06.038
10.1016/j.atmosenv.2016.06.036
10.1080/05704928.2012.757232
10.1088/0957-0233/24/1/012004
10.1016/j.rser.2010.07.042
10.3390/s19092076
10.1088/0034-4885/64/11/204
10.1109/36.934073
10.1002/2014EF000265
10.1073/pnas.1605617113
10.4046/trd.2013.74.3.120
10.1002/prs.10411
10.1021/ac0221536
10.1109/TIM.2003.822190
10.1007/s00340-002-0935-3
10.1039/C6AN01027J
10.1021/ac402391m
10.1016/j.snb.2012.06.018
10.1016/S0925-4005(98)00200-7
10.1016/j.snb.2005.03.105
10.1088/0022-3727/33/2/301
10.1016/j.snb.2013.06.006
10.1134/1.1261898
10.1088/0957-0233/21/10/105103
10.1300/J096v12n02_02
10.1093/occmed/kqj023
10.1351/pac199466010137
10.1021/acssensors.6b00238
10.1016/j.rse.2009.10.015
10.1016/j.envres.2015.05.017
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.talanta.2020.121144
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3573
ExternalDocumentID 10_1016_j_talanta_2020_121144
S0039914020304355
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
TN5
TWZ
WH7
XPP
YK3
YNT
ZMT
~02
~G-
29Q
3O-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SEW
WUQ
XOL
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c375t-94d42c2420ecd73341c30f29c96effbe155ad8dd63b686a4c64e7509085ece943
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564487100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0039-9140
1873-3573
IngestDate Sat Sep 27 21:46:57 EDT 2025
Sun Sep 28 01:19:58 EDT 2025
Tue Nov 18 22:38:50 EST 2025
Sat Nov 29 07:30:02 EST 2025
Fri Feb 23 02:47:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Near infrared light emitting diodes (NIR LED)
On-the-fly automated data processing
Remote continuous sensing of methane gas
Non-dispersive infrared (NDIR) spectroscopy
Wireless data transfer
Real-time facile monitoring of gas
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c375t-94d42c2420ecd73341c30f29c96effbe155ad8dd63b686a4c64e7509085ece943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2434478332
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2440703068
proquest_miscellaneous_2434478332
crossref_primary_10_1016_j_talanta_2020_121144
crossref_citationtrail_10_1016_j_talanta_2020_121144
elsevier_sciencedirect_doi_10_1016_j_talanta_2020_121144
PublicationCentury 2000
PublicationDate 2020-10-01
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Talanta (Oxford)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Harris (bib13) 2002; 74
S. Roy, R. Desikan, S. P. Duttagupta, A novel, compact optical device for estimating the methane emissions in geological environment. arXiv preprint arXiv:1611.08797 2016.
Investigation of the composition and emissions of trace components in landfill gas. R&D Technical Report P1-438/TR, pp vi. ISBN: 1 84432 018 9.
Popa, Udrea (bib31) 2019; 19
McCurdy, Bakhirkin, Wysocki, Lewicki, Tittel (bib57) 2007; 1
Jo, Kwon, Lee, Park, Rho, Choi (bib8) 2013; 74
Noori, Mahbub, Parry, Davis, Lucieer, Macka (bib32) 2019; 146
Slanina, Warneck, Bazhin, Akimoto, Kieskamp, Khalil, Calvert, Matthews, Barrie, Wahlen (bib47) 1994; 66
Gmachl, Capasso, Sivco, Cho (bib52) 2001; 64
(bib9) 2009
Tütüncü, Nägele, Fuchs, Fischer, Mizaikoff (bib41) 2016; 1
Lower and upper explosive limits for flammable gases and vapors (LEL/UEL)
(bib38) 2020
Alexandrov, Gavrilov, Kapralov, Karandashev, Matveev, Sotnikova, Stus (bib23) 2002
Flammable Gas Sensor Manual 2014, Version 1.3, Zhengzhou Winsen Electronics Technology Co. Ltd.
Li, Park, Zhu (bib44) 2011; 15
Gordon, Rothman, Hill (bib36) 2017; 203
Roberts, Bradley, Cheung, Leifer, Dennison, Margolis (bib48) 2010; 114
.
Hodgkinson, Pride (bib26) 2010; 21
Hodgkinson, Smith, Ho, Saffell, Tatam (bib39) 2013; 186
Werle, Hering, Lay (bib15) 2004
Okajima, Kakuma, Uchida, Wakimoto, Noda (bib29) 2006
Yeh, Yeh, Lee, Ding (bib18) 2017; 75
Wu, Lin, Shu (bib7) 2010; 29
Frankenberg, Thorpe, Thompson (bib49) 2016; 113
Yang, Li, Xu, Qu, Liu (bib6) 2016
Ribessi, Neves, Rohwedder, Pasquini, Raimundo, Wilk, Kokoric, Mizaikoff (bib42) 2016; 141
Faramawy, Zaki, Sakr (bib4) 2016; 34
(bib30) 2002
Wilk, Carter, Chrisp, Manuel, Mirkarimi, Alameda, Mizaikoff (bib40) 2013; 85
Frish, Wainner, Laderer, Allen, Rutherford, Wehnert, Dey, Gilchrist, Corbi, Picciaia (bib55) 2013
Matveev, Aidaraliev, Gavrilov, Zotova, Karandashov, Sotnikova, Stus, Talalakin, Il’inskaya, Aleksandrov (bib21) 1998; 51
Murata, Yoshinaga, Mori, Tsuji, Hashimoto, Iguchi (bib51) 2016; 41
Schneising, Burrows, Dickerson, Buchwitz, Reuter, Bovensmann (bib54) 2014; 2
A. Gałuszka, Z. M. Migaszewski, J. Namieśnik, Moving your laboratories to the field–Advantages and limitations of the use of field portable instruments in environmental s ample analysis. J. Environmental Research 140 (2015) 593-603.
Popov, Stepanov, Sherstnev, Yakovlev (bib20) 1997; 23
Kucuker (bib2) 2006; 56
Epa (bib45) 2006
Mahbub, Leis, Macka (bib37) 2018; 90
Robinson, Gardiner, Innocenti, Woods, Coleman, iHEART (bib46) 2011; 13
Beaver, Field (bib1) 2007; 12
Clark, Curchin, Hoefen, Swayze (bib25) 2009; 114
Funk, Theiler, Roberts, Borel (bib50) 2001; 39
Butler, Montzka (bib43) 2014; vol. 325
Richard, Kelly, Winkler, Wilson, Thompson, McLaughlin, Schmeltekopf, Tuck (bib59) 2002; 75
Shemshad, Aminossadati, Kizil (bib14) 2012; 171
Pfeiffer, Meyrueis, Patillon, Bounaix (bib34) 2004; 53
Massie, Stewart, McGregor, Gilchrist (bib27) 2006; 113
Fanchenko, Baranov, Savkin, Somov, Calliari (bib24) 2016
De Biasio, Leitner, Krall, Krivec, Wilk, Mizaikoff, Waldner, Starmans, Maier (bib33) 2016
accessed date: 10 November, 2018.
Bianchi, Barmet, Stirnweis, El Haddad, Platt, Saurer, Lotscher (bib3) 2016; 141
Krier, Sherstnev (bib22) 2000; 33
Picciaia, Zazzeri, Gimberini, Andreussi (bib53) 2011
Dakin, Chambers (bib17) 2006
Hodgkinson, Tatam (bib16) 2013; 24
Johnston (bib19) 1992; 3
The PID Handbook 2013, Theory and applications of direct-reading photoionization detectors (PIDs), third ed.
Li, Chen, Fischer (bib56) 2013; 48
Li, Wen, Dai, Wang, Li (bib58) 2014; 25
Frish (10.1016/j.talanta.2020.121144_bib55) 2013
Epa (10.1016/j.talanta.2020.121144_bib45) 2006
Okajima (10.1016/j.talanta.2020.121144_bib29) 2006
Kucuker (10.1016/j.talanta.2020.121144_bib2) 2006; 56
Faramawy (10.1016/j.talanta.2020.121144_bib4) 2016; 34
10.1016/j.talanta.2020.121144_bib28
Frankenberg (10.1016/j.talanta.2020.121144_bib49) 2016; 113
10.1016/j.talanta.2020.121144_bib35
Gmachl (10.1016/j.talanta.2020.121144_bib52) 2001; 64
Yang (10.1016/j.talanta.2020.121144_bib6) 2016
Bianchi (10.1016/j.talanta.2020.121144_bib3) 2016; 141
Mahbub (10.1016/j.talanta.2020.121144_bib37) 2018; 90
Fanchenko (10.1016/j.talanta.2020.121144_bib24) 2016
Jo (10.1016/j.talanta.2020.121144_bib8) 2013; 74
Beaver (10.1016/j.talanta.2020.121144_bib1) 2007; 12
Tütüncü (10.1016/j.talanta.2020.121144_bib41) 2016; 1
Shemshad (10.1016/j.talanta.2020.121144_bib14) 2012; 171
Werle (10.1016/j.talanta.2020.121144_bib15) 2004
Li (10.1016/j.talanta.2020.121144_bib44) 2011; 15
Pfeiffer (10.1016/j.talanta.2020.121144_bib34) 2004; 53
(10.1016/j.talanta.2020.121144_bib38) 2020
Ribessi (10.1016/j.talanta.2020.121144_bib42) 2016; 141
Li (10.1016/j.talanta.2020.121144_bib58) 2014; 25
Popa (10.1016/j.talanta.2020.121144_bib31) 2019; 19
Johnston (10.1016/j.talanta.2020.121144_bib19) 1992; 3
Murata (10.1016/j.talanta.2020.121144_bib51) 2016; 41
(10.1016/j.talanta.2020.121144_bib9) 2009
Dakin (10.1016/j.talanta.2020.121144_bib17) 2006
Wu (10.1016/j.talanta.2020.121144_bib7) 2010; 29
Clark (10.1016/j.talanta.2020.121144_bib25) 2009; 114
Harris (10.1016/j.talanta.2020.121144_bib13) 2002; 74
Li (10.1016/j.talanta.2020.121144_bib56) 2013; 48
Matveev (10.1016/j.talanta.2020.121144_bib21) 1998; 51
Krier (10.1016/j.talanta.2020.121144_bib22) 2000; 33
Butler (10.1016/j.talanta.2020.121144_bib43) 2014; vol. 325
Robinson (10.1016/j.talanta.2020.121144_bib46) 2011; 13
Massie (10.1016/j.talanta.2020.121144_bib27) 2006; 113
Schneising (10.1016/j.talanta.2020.121144_bib54) 2014; 2
10.1016/j.talanta.2020.121144_bib10
10.1016/j.talanta.2020.121144_bib11
10.1016/j.talanta.2020.121144_bib12
Yeh (10.1016/j.talanta.2020.121144_bib18) 2017; 75
Roberts (10.1016/j.talanta.2020.121144_bib48) 2010; 114
De Biasio (10.1016/j.talanta.2020.121144_bib33) 2016
Alexandrov (10.1016/j.talanta.2020.121144_bib23) 2002
Picciaia (10.1016/j.talanta.2020.121144_bib53) 2011
Slanina (10.1016/j.talanta.2020.121144_bib47) 1994; 66
Hodgkinson (10.1016/j.talanta.2020.121144_bib26) 2010; 21
McCurdy (10.1016/j.talanta.2020.121144_bib57) 2007; 1
Popov (10.1016/j.talanta.2020.121144_bib20) 1997; 23
Funk (10.1016/j.talanta.2020.121144_bib50) 2001; 39
Gordon (10.1016/j.talanta.2020.121144_bib36) 2017; 203
Hodgkinson (10.1016/j.talanta.2020.121144_bib16) 2013; 24
Hodgkinson (10.1016/j.talanta.2020.121144_bib39) 2013; 186
Richard (10.1016/j.talanta.2020.121144_bib59) 2002; 75
Wilk (10.1016/j.talanta.2020.121144_bib40) 2013; 85
10.1016/j.talanta.2020.121144_bib5
Noori (10.1016/j.talanta.2020.121144_bib32) 2019; 146
References_xml – start-page: 616
  year: 2016
  end-page: 621
  ident: bib6
  article-title: Effect of hydrogen on explosion of methane-air mixture
  publication-title: 3rd International Symposium on Mine Safety Science and Engineering
– start-page: 457
  year: 2006
  end-page: 477
  ident: bib17
  article-title: Review of methods of optical gas detection by direct optical spectroscopy, with emphasis on correlation spectroscopy
  publication-title: Optical Chemical Sensors
– volume: 24
  year: 2013
  ident: bib16
  article-title: Optical gas sensing: a review
  publication-title: Meas. Sci. Technol.
– year: 2020
  ident: bib38
  article-title: Landfill Gas Primer - an Overview for Environmental Health Professionals: Chapter 2: Landfill Gas Basics
– year: 2006
  ident: bib45
  article-title: Optical Remote Sensing for Emission Characterization from Non-point Source FINAL ORS Protocol
– volume: 90
  start-page: 5973
  year: 2018
  end-page: 5976
  ident: bib37
  article-title: Chemometric approach to the calibration of light emitting diode based optical gas sensors using High-Resolution Transmission Molecular Absorption data
  publication-title: Anal. Chem.
– volume: 13
  start-page: 2213
  year: 2011
  end-page: 2220
  ident: bib46
  article-title: A miniaturized near-infrared in-line gas sensor using heart-shaped substrate-integrated hollow waveguides
  publication-title: J. Environ. Monit.
– volume: 2
  start-page: 548
  year: 2014
  end-page: 558
  ident: bib54
  article-title: Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations
  publication-title: Earth's Future
– year: 2016
  ident: bib24
  article-title: In IEEE 2nd International Smart Cities Conference: Improving the Citizens Quality of Life, ISC2 2016 - Proceedings
– year: 2011
  ident: bib53
  article-title: A new remote sensing method for landfill emissions quantification
  publication-title: Proceedings Sardinia
– start-page: 87260C
  year: 2013
  ident: bib55
  article-title: Low-cost Lightweight Airborne Laser-Based Sensors for Pipeline Leak Detection and Reporting in SPIE Defense, Security, and Sensing
– volume: 23
  start-page: 828
  year: 1997
  end-page: 830
  ident: bib20
  article-title: 3.3-μm LEDs for measuring methane
  publication-title: Tech. Phys. Lett.
– volume: 25
  start-page: 920
  year: 2014
  end-page: 924
  ident: bib58
  article-title: Mesurement of atmospheric trace-gas concentration based on QE65000 spectrometer and DOAS
  publication-title: Guangdianzi Jiguang/Journal of Optoelectronics Laser
– volume: 141
  start-page: 5298
  year: 2016
  end-page: 5303
  ident: bib42
  article-title: iHEART: a miniaturized near-infrared in-line gas sensor using heart-shaped substrate-integrated hollow waveguides
  publication-title: Analyst
– reference: Investigation of the composition and emissions of trace components in landfill gas. R&D Technical Report P1-438/TR, pp vi. ISBN: 1 84432 018 9.
– volume: 34
  start-page: 34
  year: 2016
  end-page: 54
  ident: bib4
  article-title: Natural gas origin, composition, and processing: a review
  publication-title: J. Nat. Gas Sci. Eng.
– reference: S. Roy, R. Desikan, S. P. Duttagupta, A novel, compact optical device for estimating the methane emissions in geological environment. arXiv preprint arXiv:1611.08797 2016.
– reference: Lower and upper explosive limits for flammable gases and vapors (LEL/UEL),
– reference: A. Gałuszka, Z. M. Migaszewski, J. Namieśnik, Moving your laboratories to the field–Advantages and limitations of the use of field portable instruments in environmental s ample analysis. J. Environmental Research 140 (2015) 593-603.
– volume: 171
  start-page: 77
  year: 2012
  end-page: 92
  ident: bib14
  article-title: A review of developments in near infrared methane detection based on tunable diode laser
  publication-title: Sensor. Actuator. B Chem.
– volume: 66
  start-page: 137
  year: 1994
  end-page: 200
  ident: bib47
  article-title: Assessment of uncertainties in the projected concentrations of methane in the atmosphere (Technical Report)
  publication-title: Pure Appl. Chem.
– volume: 1
  year: 2007
  ident: bib57
  article-title: Recent advances of laser-spectroscopy-based techniques for applications in breath analysis
  publication-title: J. Breath Res.
– volume: 113
  start-page: 830
  year: 2006
  end-page: 836
  ident: bib27
  article-title: Design of a portable optical sensor for methane gas detection
  publication-title: Sensor. Actuator. B Chem.
– volume: 48
  start-page: 523
  year: 2013
  end-page: 559
  ident: bib56
  article-title: Quantum cascade laser spectrometry techniques: a new trend in atmospheric chemistry
  publication-title: Appl. Spectrosc. Rev.
– volume: 33
  start-page: 101
  year: 2000
  ident: bib22
  article-title: Powerful interface light emitting diodes for methane gas detection
  publication-title: J. Phys. D Appl. Phys.
– volume: 114
  year: 2009
  ident: bib25
  article-title: Reflectance spectroscopy of organic compounds: 1. Alkanes
  publication-title: J. Geophys. Res.
– start-page: 188
  year: 2002
  end-page: 194
  ident: bib23
  article-title: Portable optoelectronic gas sensors operating in the mid-IR spectral range (λ= 3.5 μm)
  publication-title: Second International Conference on Lasers for Measurement and Information Transfer
– volume: 146
  start-page: 749
  year: 2019
  end-page: 757
  ident: bib32
  article-title: Portable device for continuous sensing with rapidly pulsed LEDs – part1: rapid on-the-fly processing of large data streams using an open source microcontroller with field programmable gate array
  publication-title: Measurement
– start-page: 223
  year: 2004
  end-page: 243
  ident: bib15
  publication-title: Lasers in Environ-Mental and Life Sciences—Modern Analytical Methods
– year: 2002
  ident: bib30
  article-title: Guidelines for environmental management: a guide to the sampling and analysis of air emissions and air quality
– volume: 113
  start-page: 9734
  year: 2016
  end-page: 9739
  ident: bib49
  article-title: Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 56
  start-page: 144
  year: 2006
  end-page: 146
  ident: bib2
  article-title: Occupational fatalities among coal mine workers in Zonguldak, Turkey, 1994–2003
  publication-title: Occup. Med. (Lond.)
– volume: 53
  start-page: 45
  year: 2004
  end-page: 50
  ident: bib34
  article-title: Limiting sensitivity of a differential absorption spectrometer with direct detection in the 2/spl nu//sub 3/and/spl nu//sub 2/+ 2/spl nu//sub 3/vibration bands [methane detection applications]
  publication-title: IEEE Trans Instrum Meas
– volume: 1
  start-page: 847
  year: 2016
  end-page: 851
  ident: bib41
  article-title: Ihwg-icl: methane sensing with substrate-integrated hollow waveguides directly coupled to interband cascade lasers
  publication-title: ACS Sens.
– volume: 29
  start-page: 349
  year: 2010
  end-page: 352
  ident: bib7
  article-title: Effects of flammability characteristics of methane with three inert gases
  publication-title: Process Saf. Prog.
– volume: 19
  start-page: 2076
  year: 2019
  ident: bib31
  article-title: Towards integrated mid-infrared gas sensors
  publication-title: Sensors
– volume: 41
  start-page: 40
  year: 2016
  end-page: 44
  ident: bib51
  article-title: High sensitive gas sensing with low power consumption quantum cascade lasers
  publication-title: SEI Tech. Rev.
– volume: 51
  start-page: 233
  year: 1998
  end-page: 237
  ident: bib21
  article-title: Room temperature InAs photodiode–InGaAs LED pairs for methane detection in the mid-IR
  publication-title: Sensor. Actuator. B Chem.
– start-page: 1
  year: 2016
  end-page: 3
  ident: bib33
  article-title: Ethylene gas sensing using non-dispersive infrared spectroscopy
  publication-title: Proceedings of the IEEE Sensors
– volume: 186
  start-page: 580
  year: 2013
  end-page: 588
  ident: bib39
  publication-title: Sensor. Actuator. B Chem.
– volume: 75
  start-page: 183
  year: 2002
  end-page: 194
  ident: bib59
  article-title: A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH 4 in the upper troposphere and lower stratosphere
  publication-title: Appl Phys B Lasers O
– reference: Flammable Gas Sensor Manual 2014, Version 1.3, Zhengzhou Winsen Electronics Technology Co. Ltd.,
– volume: 15
  start-page: 821
  year: 2011
  end-page: 826
  ident: bib44
  article-title: Solid-state anaerobic digestion for methane production from organic waste
  publication-title: Renew. Sustain. Energy Rev.
– volume: 114
  start-page: 592
  year: 2010
  end-page: 606
  ident: bib48
  article-title: Mapping methane emissions from a marine geological seep source using imaging spectrometry
  publication-title: Remote Sens. Environ.
– start-page: 1652
  year: 2006
  end-page: 1655
  ident: bib29
  article-title: Measurement of methane gas concentration using an infrared LED
  publication-title: SICE-ICASE, 2006. International Joint Conference; IEEE
– volume: 3
  start-page: 191
  year: 1992
  ident: bib19
  article-title: Gas monitors employing infrared LEDs. Measurement Science and Technology
  publication-title: Meas. Sci. Technol.
– volume: 64
  start-page: 1533
  year: 2001
  ident: bib52
  article-title: Recent progress in quantum cascade lasers and applications
  publication-title: Rep. Prog. Phys.
– volume: 39
  start-page: 1410
  year: 2001
  end-page: 1420
  ident: bib50
  article-title: Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– reference: The PID Handbook 2013, Theory and applications of direct-reading photoionization detectors (PIDs), third ed.
– reference: .
– start-page: 14e47
  year: 2009
  ident: bib9
  article-title: Sampling and analysis of gases and vapours [air monitoring methods
  publication-title: MAK-collection Occup. Heal. Saf.
– volume: 85
  start-page: 11205
  year: 2013
  end-page: 11210
  ident: bib40
  article-title: Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing
  publication-title: Anal. Chem.
– volume: 74
  start-page: 120
  year: 2013
  end-page: 123
  ident: bib8
  article-title: Acute respiratory distress due to methane inhalation
  publication-title: Tuberc. Respir. Dis.
– volume: 74
  start-page: 585A
  year: 2002
  end-page: 589A
  ident: bib13
  article-title: GC to Go Increased research and marketability have helped boost enthusiasm for portable GC and GC/MS instruments
  publication-title: Anal. Chem.
– volume: 141
  start-page: 41
  year: 2016
  end-page: 47
  ident: bib3
  article-title: Contribution of methane to aerosol carbon mass
  publication-title: Atmos. Environ.
– volume: 203
  start-page: 3
  year: 2017
  end-page: 69
  ident: bib36
  article-title: The HITRAN2016 molecular spectroscopic database
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– reference: (accessed date: 10 November, 2018.
– volume: 12
  start-page: 3
  year: 2007
  end-page: 23
  ident: bib1
  article-title: Summary of documented fatalities in livestock manure storage and handling facilities-1975-2004
  publication-title: J. Agromed.
– volume: 75
  start-page: 461
  year: 2017
  end-page: 468
  ident: bib18
  article-title: Applications of LEDs in optical sensors and chemical sensing device for detection of biochemicals, heavy metals, and environmental nutrients
  publication-title: Renew. Sustain. Energy Rev.
– volume: 21
  start-page: 105103
  year: 2010
  ident: bib26
  article-title: Methane-specific gas detectors: the effect of natural gas composition
  publication-title: Meas. Sci. Technol.
– volume: vol. 325
  year: 2014
  ident: bib43
  article-title: National oceanic & atmospheric administration
  publication-title: Earth System Research Laboratory: R/GMD
– volume: 3
  start-page: 191
  year: 1992
  ident: 10.1016/j.talanta.2020.121144_bib19
  article-title: Gas monitors employing infrared LEDs. Measurement Science and Technology
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/3/2/008
– start-page: 188
  year: 2002
  ident: 10.1016/j.talanta.2020.121144_bib23
  article-title: Portable optoelectronic gas sensors operating in the mid-IR spectral range (λ= 3.5 μm)
– start-page: 616
  year: 2016
  ident: 10.1016/j.talanta.2020.121144_bib6
  article-title: Effect of hydrogen on explosion of methane-air mixture
– volume: 75
  start-page: 461
  year: 2017
  ident: 10.1016/j.talanta.2020.121144_bib18
  article-title: Applications of LEDs in optical sensors and chemical sensing device for detection of biochemicals, heavy metals, and environmental nutrients
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.11.011
– volume: 146
  start-page: 749
  year: 2019
  ident: 10.1016/j.talanta.2020.121144_bib32
  article-title: Portable device for continuous sensing with rapidly pulsed LEDs – part1: rapid on-the-fly processing of large data streams using an open source microcontroller with field programmable gate array
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.05.034
– volume: 13
  start-page: 2213
  year: 2011
  ident: 10.1016/j.talanta.2020.121144_bib46
  article-title: A miniaturized near-infrared in-line gas sensor using heart-shaped substrate-integrated hollow waveguides
  publication-title: J. Environ. Monit.
  doi: 10.1039/c0em00312c
– volume: 1
  year: 2007
  ident: 10.1016/j.talanta.2020.121144_bib57
  article-title: Recent advances of laser-spectroscopy-based techniques for applications in breath analysis
  publication-title: J. Breath Res.
  doi: 10.1088/1752-7155/1/1/014001
– volume: 34
  start-page: 34
  year: 2016
  ident: 10.1016/j.talanta.2020.121144_bib4
  article-title: Natural gas origin, composition, and processing: a review
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2016.06.030
– volume: 90
  start-page: 5973
  year: 2018
  ident: 10.1016/j.talanta.2020.121144_bib37
  article-title: Chemometric approach to the calibration of light emitting diode based optical gas sensors using High-Resolution Transmission Molecular Absorption data
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b01295
– volume: 203
  start-page: 3
  year: 2017
  ident: 10.1016/j.talanta.2020.121144_bib36
  article-title: The HITRAN2016 molecular spectroscopic database
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2017.06.038
– year: 2006
  ident: 10.1016/j.talanta.2020.121144_bib45
– volume: 141
  start-page: 41
  year: 2016
  ident: 10.1016/j.talanta.2020.121144_bib3
  article-title: Contribution of methane to aerosol carbon mass
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.06.036
– volume: 48
  start-page: 523
  year: 2013
  ident: 10.1016/j.talanta.2020.121144_bib56
  article-title: Quantum cascade laser spectrometry techniques: a new trend in atmospheric chemistry
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2012.757232
– start-page: 1652
  year: 2006
  ident: 10.1016/j.talanta.2020.121144_bib29
  article-title: Measurement of methane gas concentration using an infrared LED
– volume: 24
  year: 2013
  ident: 10.1016/j.talanta.2020.121144_bib16
  article-title: Optical gas sensing: a review
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/24/1/012004
– volume: 15
  start-page: 821
  year: 2011
  ident: 10.1016/j.talanta.2020.121144_bib44
  article-title: Solid-state anaerobic digestion for methane production from organic waste
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.07.042
– volume: 19
  start-page: 2076
  year: 2019
  ident: 10.1016/j.talanta.2020.121144_bib31
  article-title: Towards integrated mid-infrared gas sensors
  publication-title: Sensors
  doi: 10.3390/s19092076
– volume: 64
  start-page: 1533
  year: 2001
  ident: 10.1016/j.talanta.2020.121144_bib52
  article-title: Recent progress in quantum cascade lasers and applications
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/64/11/204
– volume: 39
  start-page: 1410
  year: 2001
  ident: 10.1016/j.talanta.2020.121144_bib50
  article-title: Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/36.934073
– volume: 2
  start-page: 548
  year: 2014
  ident: 10.1016/j.talanta.2020.121144_bib54
  article-title: Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations
  publication-title: Earth's Future
  doi: 10.1002/2014EF000265
– ident: 10.1016/j.talanta.2020.121144_bib10
– volume: 113
  start-page: 9734
  year: 2016
  ident: 10.1016/j.talanta.2020.121144_bib49
  article-title: Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1605617113
– volume: 74
  start-page: 120
  year: 2013
  ident: 10.1016/j.talanta.2020.121144_bib8
  article-title: Acute respiratory distress due to methane inhalation
  publication-title: Tuberc. Respir. Dis.
  doi: 10.4046/trd.2013.74.3.120
– ident: 10.1016/j.talanta.2020.121144_bib35
– volume: 29
  start-page: 349
  year: 2010
  ident: 10.1016/j.talanta.2020.121144_bib7
  article-title: Effects of flammability characteristics of methane with three inert gases
  publication-title: Process Saf. Prog.
  doi: 10.1002/prs.10411
– volume: 74
  start-page: 585A
  year: 2002
  ident: 10.1016/j.talanta.2020.121144_bib13
  article-title: GC to Go Increased research and marketability have helped boost enthusiasm for portable GC and GC/MS instruments
  publication-title: Anal. Chem.
  doi: 10.1021/ac0221536
– start-page: 457
  year: 2006
  ident: 10.1016/j.talanta.2020.121144_bib17
  article-title: Review of methods of optical gas detection by direct optical spectroscopy, with emphasis on correlation spectroscopy
– volume: 53
  start-page: 45
  year: 2004
  ident: 10.1016/j.talanta.2020.121144_bib34
  article-title: Limiting sensitivity of a differential absorption spectrometer with direct detection in the 2/spl nu//sub 3/and/spl nu//sub 2/+ 2/spl nu//sub 3/vibration bands [methane detection applications]
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2003.822190
– volume: 75
  start-page: 183
  year: 2002
  ident: 10.1016/j.talanta.2020.121144_bib59
  article-title: A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH 4 in the upper troposphere and lower stratosphere
  publication-title: Appl Phys B Lasers O
  doi: 10.1007/s00340-002-0935-3
– ident: 10.1016/j.talanta.2020.121144_bib11
– year: 2016
  ident: 10.1016/j.talanta.2020.121144_bib24
– volume: 141
  start-page: 5298
  year: 2016
  ident: 10.1016/j.talanta.2020.121144_bib42
  article-title: iHEART: a miniaturized near-infrared in-line gas sensor using heart-shaped substrate-integrated hollow waveguides
  publication-title: Analyst
  doi: 10.1039/C6AN01027J
– start-page: 14e47
  year: 2009
  ident: 10.1016/j.talanta.2020.121144_bib9
  article-title: Sampling and analysis of gases and vapours [air monitoring methods
– volume: 41
  start-page: 40
  year: 2016
  ident: 10.1016/j.talanta.2020.121144_bib51
  article-title: High sensitive gas sensing with low power consumption quantum cascade lasers
  publication-title: SEI Tech. Rev.
– start-page: 1
  year: 2016
  ident: 10.1016/j.talanta.2020.121144_bib33
  article-title: Ethylene gas sensing using non-dispersive infrared spectroscopy
– volume: 85
  start-page: 11205
  year: 2013
  ident: 10.1016/j.talanta.2020.121144_bib40
  article-title: Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing
  publication-title: Anal. Chem.
  doi: 10.1021/ac402391m
– ident: 10.1016/j.talanta.2020.121144_bib28
– volume: 171
  start-page: 77
  year: 2012
  ident: 10.1016/j.talanta.2020.121144_bib14
  article-title: A review of developments in near infrared methane detection based on tunable diode laser
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2012.06.018
– volume: 51
  start-page: 233
  year: 1998
  ident: 10.1016/j.talanta.2020.121144_bib21
  article-title: Room temperature InAs photodiode–InGaAs LED pairs for methane detection in the mid-IR
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/S0925-4005(98)00200-7
– volume: 113
  start-page: 830
  year: 2006
  ident: 10.1016/j.talanta.2020.121144_bib27
  article-title: Design of a portable optical sensor for methane gas detection
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2005.03.105
– volume: 33
  start-page: 101
  year: 2000
  ident: 10.1016/j.talanta.2020.121144_bib22
  article-title: Powerful interface light emitting diodes for methane gas detection
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/33/2/301
– volume: 186
  start-page: 580
  year: 2013
  ident: 10.1016/j.talanta.2020.121144_bib39
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2013.06.006
– volume: 114
  year: 2009
  ident: 10.1016/j.talanta.2020.121144_bib25
  article-title: Reflectance spectroscopy of organic compounds: 1. Alkanes
  publication-title: J. Geophys. Res.
– volume: 23
  start-page: 828
  year: 1997
  ident: 10.1016/j.talanta.2020.121144_bib20
  article-title: 3.3-μm LEDs for measuring methane
  publication-title: Tech. Phys. Lett.
  doi: 10.1134/1.1261898
– year: 2011
  ident: 10.1016/j.talanta.2020.121144_bib53
  article-title: A new remote sensing method for landfill emissions quantification
– start-page: 223
  year: 2004
  ident: 10.1016/j.talanta.2020.121144_bib15
– volume: 25
  start-page: 920
  year: 2014
  ident: 10.1016/j.talanta.2020.121144_bib58
  article-title: Mesurement of atmospheric trace-gas concentration based on QE65000 spectrometer and DOAS
  publication-title: Guangdianzi Jiguang/Journal of Optoelectronics Laser
– volume: 21
  start-page: 105103
  year: 2010
  ident: 10.1016/j.talanta.2020.121144_bib26
  article-title: Methane-specific gas detectors: the effect of natural gas composition
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/21/10/105103
– volume: 12
  start-page: 3
  year: 2007
  ident: 10.1016/j.talanta.2020.121144_bib1
  article-title: Summary of documented fatalities in livestock manure storage and handling facilities-1975-2004
  publication-title: J. Agromed.
  doi: 10.1300/J096v12n02_02
– volume: 56
  start-page: 144
  year: 2006
  ident: 10.1016/j.talanta.2020.121144_bib2
  article-title: Occupational fatalities among coal mine workers in Zonguldak, Turkey, 1994–2003
  publication-title: Occup. Med. (Lond.)
  doi: 10.1093/occmed/kqj023
– year: 2020
  ident: 10.1016/j.talanta.2020.121144_bib38
– volume: 66
  start-page: 137
  year: 1994
  ident: 10.1016/j.talanta.2020.121144_bib47
  article-title: Assessment of uncertainties in the projected concentrations of methane in the atmosphere (Technical Report)
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac199466010137
– ident: 10.1016/j.talanta.2020.121144_bib5
– volume: 1
  start-page: 847
  year: 2016
  ident: 10.1016/j.talanta.2020.121144_bib41
  article-title: Ihwg-icl: methane sensing with substrate-integrated hollow waveguides directly coupled to interband cascade lasers
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.6b00238
– volume: vol. 325
  year: 2014
  ident: 10.1016/j.talanta.2020.121144_bib43
  article-title: National oceanic & atmospheric administration
– volume: 114
  start-page: 592
  year: 2010
  ident: 10.1016/j.talanta.2020.121144_bib48
  article-title: Mapping methane emissions from a marine geological seep source using imaging spectrometry
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.10.015
– start-page: 87260C
  year: 2013
  ident: 10.1016/j.talanta.2020.121144_bib55
– ident: 10.1016/j.talanta.2020.121144_bib12
  doi: 10.1016/j.envres.2015.05.017
SSID ssj0002303
Score 2.4605281
Snippet We designed a simple, portable, low-cost and low-weight nondispersive infrared (NDIR) spectroscopy-based system for continuous remote sensing of atmospheric...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121144
SubjectTerms computer software
detection limit
gases
landfills
light emitting diodes
methane
mobile telephones
monitoring
Near infrared light emitting diodes (NIR LED)
near infrared radiation
Non-dispersive infrared (NDIR) spectroscopy
On-the-fly automated data processing
Real-time facile monitoring of gas
Remote continuous sensing of methane gas
remote sensing
unmanned aerial vehicles
Wireless data transfer
Title Continuous and real-time indoor and outdoor methane sensing with portable optical sensor using rapidly pulsed IR LEDs
URI https://dx.doi.org/10.1016/j.talanta.2020.121144
https://www.proquest.com/docview/2434478332
https://www.proquest.com/docview/2440703068
Volume 218
WOSCitedRecordID wos000564487100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3573
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002303
  issn: 0039-9140
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DQleEFcxLpOReKtSqti5-HEaRRTBhEaR-hY5jis6TWmVJlXF3-APc45vgQEbe-AlilzbdXO-Hn8-Of5MyCtYRVQLpkVUyjiJOBCCSHJZRonWCUvUGCXVzGET2elpPp-LT4PBd78XZnuR1XW-24n1fzU1lIGxcevsDcwdOoUCuAejwxXMDtd_MjzqTS3rDlNbTe44MMEIT5Afwup75VImV11r7vH8aAk0c4Np7D4qaxg5bqharW2gGz-Fyp2p0sj1ssKQSAeTajWcng0_TN5sfua4M8yWbKURMt3Z3PkQbfgov5Zdaalrs9XfQiwaRrO0CZYb2YSpAirZ1_wmwefzqI-rO22EkEnsAhewSvUpcMEZMwG-1qo1eWccO29s3Snqz1l5yN88vQ06nKNOJP6mEX7DqK__q7L2pRkv5CH6FLfzwnVTYDeF7WaPHMRZIsBVHhxPJ_P3YYKHVZvTcrbj7zeGvf7jeP5GeS5N_obRzO6Ru24pQo8thO6Tga4fkNsn_gTAh6TroUQBNTRAiVoomUIHJeqgRB2UKEKJeihRByVqoUQNlKiDErVQotMzilB6RL68ncxO3kXumI5IsSxpI8ErHiugemOtqowBLVJsvIiFEqleLEoNjFVWeVWlrEzzVHKVco08Fci-Vlpw9pjs16taPyG0EhqqqwQj8xzYpyzLHDgl9BrjuiE_JNw_yUI5DXs8SuWiuNKSh2QUmq2tiMt1DXJvpsIxUcswC4DfdU1ferMWYC58_QYPHwxVxBzVNXPG4qvqcDMHp_nTm475GbnT_8uek_226fQLcktt2-WmOSJ72Tw_ckj-AZ9GxrQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+and+real-time+indoor+and+outdoor+methane+sensing+with+portable+optical+sensor+using+rapidly+pulsed+IR+LEDs&rft.jtitle=Talanta+%28Oxford%29&rft.au=Mahbub%2C+Parvez&rft.au=Noori%2C+Ansara&rft.au=Parry%2C+John+S.&rft.au=Davis%2C+John&rft.date=2020-10-01&rft.issn=0039-9140&rft.volume=218&rft.spage=121144&rft_id=info:doi/10.1016%2Fj.talanta.2020.121144&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_talanta_2020_121144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon