Continuous and real-time indoor and outdoor methane sensing with portable optical sensor using rapidly pulsed IR LEDs
We designed a simple, portable, low-cost and low-weight nondispersive infrared (NDIR) spectroscopy-based system for continuous remote sensing of atmospheric methane (CH4) with rapidly pulsed near-infrared light emitting diodes (NIR LED) at 1.65 μm. The use of a microcontroller with a field programma...
Uloženo v:
| Vydáno v: | Talanta (Oxford) Ročník 218; s. 121144 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.10.2020
|
| Témata: | |
| ISSN: | 0039-9140, 1873-3573, 1873-3573 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We designed a simple, portable, low-cost and low-weight nondispersive infrared (NDIR) spectroscopy-based system for continuous remote sensing of atmospheric methane (CH4) with rapidly pulsed near-infrared light emitting diodes (NIR LED) at 1.65 μm. The use of a microcontroller with a field programmable gate array (μC-FPGA) enables on-the-fly and wireless streaming and processing of large data streams (~2 Gbit/s). The investigated NIR LED detection system offers favourable limits of detection (LOD) of 300 ppm (±5%) CH4,. All the generated raw data were processed automatically on-the-fly in the μC-FPGA and transferred wirelessly via a network connection. The sensing device was deployed for the portable sensing of atmospheric CH4 at a local landfill, resulting in quantified concentrations within the sampling area (ca 400 m2) in the range of 0.5%–3.35% CH4. This NIR LED-based sensor system offers a simple low-cost solution for continuous real-time, quantitative, and direct measurement of CH4 concentrations in indoor and outdoor environments, yet with the flexibility provided by the custom programmable software. It possesses future potential for remote monitoring of gases directly from mobile platforms such as smartphones and unmanned aerial vehicles (UAV).
[Display omitted]
•Portable and low-cost continuous sensing of CH4 proposed for both indoor and outdoor use.•NDIR spectroscopy with rapidly pulsed near-infrared LEDs at 1.65 μm.•User-defined flexible processing of optical output using μC-FPGA.•Limits of detection (LOD) of 0.03% CH4, and precision of ±5%.•CH4 concentration at a landfill found between 0.5 and 3.35%, was cross-validated using GC. |
|---|---|
| AbstractList | We designed a simple, portable, low-cost and low-weight nondispersive infrared (NDIR) spectroscopy-based system for continuous remote sensing of atmospheric methane (CH₄) with rapidly pulsed near-infrared light emitting diodes (NIR LED) at 1.65 μm. The use of a microcontroller with a field programmable gate array (μC-FPGA) enables on-the-fly and wireless streaming and processing of large data streams (~2 Gbit/s). The investigated NIR LED detection system offers favourable limits of detection (LOD) of 300 ppm (±5%) CH₄,. All the generated raw data were processed automatically on-the-fly in the μC-FPGA and transferred wirelessly via a network connection. The sensing device was deployed for the portable sensing of atmospheric CH₄ at a local landfill, resulting in quantified concentrations within the sampling area (ca 400 m²) in the range of 0.5%–3.35% CH₄. This NIR LED-based sensor system offers a simple low-cost solution for continuous real-time, quantitative, and direct measurement of CH₄ concentrations in indoor and outdoor environments, yet with the flexibility provided by the custom programmable software. It possesses future potential for remote monitoring of gases directly from mobile platforms such as smartphones and unmanned aerial vehicles (UAV). We designed a simple, portable, low-cost and low-weight nondispersive infrared (NDIR) spectroscopy-based system for continuous remote sensing of atmospheric methane (CH4) with rapidly pulsed near-infrared light emitting diodes (NIR LED) at 1.65 μm. The use of a microcontroller with a field programmable gate array (μC-FPGA) enables on-the-fly and wireless streaming and processing of large data streams (~2 Gbit/s). The investigated NIR LED detection system offers favourable limits of detection (LOD) of 300 ppm (±5%) CH4,. All the generated raw data were processed automatically on-the-fly in the μC-FPGA and transferred wirelessly via a network connection. The sensing device was deployed for the portable sensing of atmospheric CH4 at a local landfill, resulting in quantified concentrations within the sampling area (ca 400 m2) in the range of 0.5%-3.35% CH4. This NIR LED-based sensor system offers a simple low-cost solution for continuous real-time, quantitative, and direct measurement of CH4 concentrations in indoor and outdoor environments, yet with the flexibility provided by the custom programmable software. It possesses future potential for remote monitoring of gases directly from mobile platforms such as smartphones and unmanned aerial vehicles (UAV).We designed a simple, portable, low-cost and low-weight nondispersive infrared (NDIR) spectroscopy-based system for continuous remote sensing of atmospheric methane (CH4) with rapidly pulsed near-infrared light emitting diodes (NIR LED) at 1.65 μm. The use of a microcontroller with a field programmable gate array (μC-FPGA) enables on-the-fly and wireless streaming and processing of large data streams (~2 Gbit/s). The investigated NIR LED detection system offers favourable limits of detection (LOD) of 300 ppm (±5%) CH4,. All the generated raw data were processed automatically on-the-fly in the μC-FPGA and transferred wirelessly via a network connection. The sensing device was deployed for the portable sensing of atmospheric CH4 at a local landfill, resulting in quantified concentrations within the sampling area (ca 400 m2) in the range of 0.5%-3.35% CH4. This NIR LED-based sensor system offers a simple low-cost solution for continuous real-time, quantitative, and direct measurement of CH4 concentrations in indoor and outdoor environments, yet with the flexibility provided by the custom programmable software. It possesses future potential for remote monitoring of gases directly from mobile platforms such as smartphones and unmanned aerial vehicles (UAV). We designed a simple, portable, low-cost and low-weight nondispersive infrared (NDIR) spectroscopy-based system for continuous remote sensing of atmospheric methane (CH4) with rapidly pulsed near-infrared light emitting diodes (NIR LED) at 1.65 μm. The use of a microcontroller with a field programmable gate array (μC-FPGA) enables on-the-fly and wireless streaming and processing of large data streams (~2 Gbit/s). The investigated NIR LED detection system offers favourable limits of detection (LOD) of 300 ppm (±5%) CH4,. All the generated raw data were processed automatically on-the-fly in the μC-FPGA and transferred wirelessly via a network connection. The sensing device was deployed for the portable sensing of atmospheric CH4 at a local landfill, resulting in quantified concentrations within the sampling area (ca 400 m2) in the range of 0.5%–3.35% CH4. This NIR LED-based sensor system offers a simple low-cost solution for continuous real-time, quantitative, and direct measurement of CH4 concentrations in indoor and outdoor environments, yet with the flexibility provided by the custom programmable software. It possesses future potential for remote monitoring of gases directly from mobile platforms such as smartphones and unmanned aerial vehicles (UAV). [Display omitted] •Portable and low-cost continuous sensing of CH4 proposed for both indoor and outdoor use.•NDIR spectroscopy with rapidly pulsed near-infrared LEDs at 1.65 μm.•User-defined flexible processing of optical output using μC-FPGA.•Limits of detection (LOD) of 0.03% CH4, and precision of ±5%.•CH4 concentration at a landfill found between 0.5 and 3.35%, was cross-validated using GC. |
| ArticleNumber | 121144 |
| Author | Davis, John Mahbub, Parvez Parry, John S. Macka, Mirek Lucieer, Arko Noori, Ansara |
| Author_xml | – sequence: 1 givenname: Parvez surname: Mahbub fullname: Mahbub, Parvez organization: Australian Centre for Research on Separation Science (ACROSS) and School of Physical Sciences University of Tasmania, Private Bag 75, Hobart, 7001, Australia – sequence: 2 givenname: Ansara surname: Noori fullname: Noori, Ansara organization: Australian Centre for Research on Separation Science (ACROSS) and School of Physical Sciences University of Tasmania, Private Bag 75, Hobart, 7001, Australia – sequence: 3 givenname: John S. surname: Parry fullname: Parry, John S. organization: Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, 7001, Australia – sequence: 4 givenname: John surname: Davis fullname: Davis, John organization: Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, 7001, Australia – sequence: 5 givenname: Arko surname: Lucieer fullname: Lucieer, Arko organization: School of Land and Food, University of Tasmania, Private Bag 76, Hobart, 7001, Australia – sequence: 6 givenname: Mirek surname: Macka fullname: Macka, Mirek email: Mirek.Macka@utas.edu.au organization: Australian Centre for Research on Separation Science (ACROSS) and School of Physical Sciences University of Tasmania, Private Bag 75, Hobart, 7001, Australia |
| BookMark | eNqNkU1LXDEUhkNR6Kj9CYUs3dzpycf9oguRqa3CgCC6Dpnk3JrhTnJNclv898YZV250lfDmeQ_kPCfkyAePhHxnsGTAmh_bZdaj9lkvOfCSccak_EIWrGtFJepWHJEFgOirnkn4Sk5S2gIAFyAWZF4Fn52fw5yo9pZG1GOV3Q6p8zaEuA_DnPf3HeZH7ZEm9Mn5v_S_y490CjHrzYg0TNkZPe5fCzzvkagnZ8dnOs1jQktv7uj66lc6I8eDLsG3t_OUPPy-ul9dV-vbPzery3VlRFvnqpdWcsMlBzS2FUIyI2DgvekbHIYNsrrWtrO2EZuma7Q0jcS2hh66Gg32UpyS88PcKYanGVNWO5cMjmVbWH6suJTQgoCm-wQqpGw7IXhB6wNqYkgp4qCm6HY6PisG6tWI2qo3I-rViDoYKb2f73rGZZ1dMRC1Gz9sXxzaWBb2z2FUyTj0Bq2LaLKywX0w4QUY563D |
| CitedBy_id | crossref_primary_10_1088_1742_6596_2221_1_012034 crossref_primary_10_1002_adfm_202208891 crossref_primary_10_1038_s41598_024_83051_w crossref_primary_10_1002_adfm_202420021 crossref_primary_10_3788_COL202422_062501 crossref_primary_10_1016_j_yofte_2022_102987 crossref_primary_10_3390_atmos13111789 crossref_primary_10_1002_marc_202300150 crossref_primary_10_1007_s10812_022_01421_6 crossref_primary_10_1088_1361_6501_ac527e crossref_primary_10_1016_j_measurement_2024_115958 crossref_primary_10_1109_JSEN_2021_3130034 crossref_primary_10_3390_s21227456 crossref_primary_10_1016_j_vibspec_2025_103815 crossref_primary_10_3390_atmos12020221 crossref_primary_10_1016_j_snb_2023_134869 crossref_primary_10_1016_j_apenergy_2024_124447 crossref_primary_10_3390_s20195461 crossref_primary_10_3390_environments10070128 crossref_primary_10_1016_j_snb_2021_130111 crossref_primary_10_1016_j_heliyon_2024_e32795 crossref_primary_10_1016_j_coesh_2023_100506 |
| Cites_doi | 10.1088/0957-0233/3/2/008 10.1016/j.rser.2016.11.011 10.1016/j.measurement.2019.05.034 10.1039/c0em00312c 10.1088/1752-7155/1/1/014001 10.1016/j.jngse.2016.06.030 10.1021/acs.analchem.8b01295 10.1016/j.jqsrt.2017.06.038 10.1016/j.atmosenv.2016.06.036 10.1080/05704928.2012.757232 10.1088/0957-0233/24/1/012004 10.1016/j.rser.2010.07.042 10.3390/s19092076 10.1088/0034-4885/64/11/204 10.1109/36.934073 10.1002/2014EF000265 10.1073/pnas.1605617113 10.4046/trd.2013.74.3.120 10.1002/prs.10411 10.1021/ac0221536 10.1109/TIM.2003.822190 10.1007/s00340-002-0935-3 10.1039/C6AN01027J 10.1021/ac402391m 10.1016/j.snb.2012.06.018 10.1016/S0925-4005(98)00200-7 10.1016/j.snb.2005.03.105 10.1088/0022-3727/33/2/301 10.1016/j.snb.2013.06.006 10.1134/1.1261898 10.1088/0957-0233/21/10/105103 10.1300/J096v12n02_02 10.1093/occmed/kqj023 10.1351/pac199466010137 10.1021/acssensors.6b00238 10.1016/j.rse.2009.10.015 10.1016/j.envres.2015.05.017 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.talanta.2020.121144 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1873-3573 |
| ExternalDocumentID | 10_1016_j_talanta_2020_121144 S0039914020304355 |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SCH SDF SDG SDP SES SPC SPCBC SSK SSZ T5K TN5 TWZ WH7 XPP YK3 YNT ZMT ~02 ~G- 29Q 3O- 9DU AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HMU HVGLF HZ~ R2- SCB SEW WUQ XOL ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c375t-94d42c2420ecd73341c30f29c96effbe155ad8dd63b686a4c64e7509085ece943 |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564487100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0039-9140 1873-3573 |
| IngestDate | Sat Sep 27 21:46:57 EDT 2025 Sun Sep 28 01:19:58 EDT 2025 Tue Nov 18 22:38:50 EST 2025 Sat Nov 29 07:30:02 EST 2025 Fri Feb 23 02:47:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Near infrared light emitting diodes (NIR LED) On-the-fly automated data processing Remote continuous sensing of methane gas Non-dispersive infrared (NDIR) spectroscopy Wireless data transfer Real-time facile monitoring of gas |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c375t-94d42c2420ecd73341c30f29c96effbe155ad8dd63b686a4c64e7509085ece943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2434478332 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2440703068 proquest_miscellaneous_2434478332 crossref_primary_10_1016_j_talanta_2020_121144 crossref_citationtrail_10_1016_j_talanta_2020_121144 elsevier_sciencedirect_doi_10_1016_j_talanta_2020_121144 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 2020-10-00 20201001 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Talanta (Oxford) |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Harris (bib13) 2002; 74 S. Roy, R. Desikan, S. P. Duttagupta, A novel, compact optical device for estimating the methane emissions in geological environment. arXiv preprint arXiv:1611.08797 2016. Investigation of the composition and emissions of trace components in landfill gas. R&D Technical Report P1-438/TR, pp vi. ISBN: 1 84432 018 9. Popa, Udrea (bib31) 2019; 19 McCurdy, Bakhirkin, Wysocki, Lewicki, Tittel (bib57) 2007; 1 Jo, Kwon, Lee, Park, Rho, Choi (bib8) 2013; 74 Noori, Mahbub, Parry, Davis, Lucieer, Macka (bib32) 2019; 146 Slanina, Warneck, Bazhin, Akimoto, Kieskamp, Khalil, Calvert, Matthews, Barrie, Wahlen (bib47) 1994; 66 Gmachl, Capasso, Sivco, Cho (bib52) 2001; 64 (bib9) 2009 Tütüncü, Nägele, Fuchs, Fischer, Mizaikoff (bib41) 2016; 1 Lower and upper explosive limits for flammable gases and vapors (LEL/UEL) (bib38) 2020 Alexandrov, Gavrilov, Kapralov, Karandashev, Matveev, Sotnikova, Stus (bib23) 2002 Flammable Gas Sensor Manual 2014, Version 1.3, Zhengzhou Winsen Electronics Technology Co. Ltd. Li, Park, Zhu (bib44) 2011; 15 Gordon, Rothman, Hill (bib36) 2017; 203 Roberts, Bradley, Cheung, Leifer, Dennison, Margolis (bib48) 2010; 114 . Hodgkinson, Pride (bib26) 2010; 21 Hodgkinson, Smith, Ho, Saffell, Tatam (bib39) 2013; 186 Werle, Hering, Lay (bib15) 2004 Okajima, Kakuma, Uchida, Wakimoto, Noda (bib29) 2006 Yeh, Yeh, Lee, Ding (bib18) 2017; 75 Wu, Lin, Shu (bib7) 2010; 29 Frankenberg, Thorpe, Thompson (bib49) 2016; 113 Yang, Li, Xu, Qu, Liu (bib6) 2016 Ribessi, Neves, Rohwedder, Pasquini, Raimundo, Wilk, Kokoric, Mizaikoff (bib42) 2016; 141 Faramawy, Zaki, Sakr (bib4) 2016; 34 (bib30) 2002 Wilk, Carter, Chrisp, Manuel, Mirkarimi, Alameda, Mizaikoff (bib40) 2013; 85 Frish, Wainner, Laderer, Allen, Rutherford, Wehnert, Dey, Gilchrist, Corbi, Picciaia (bib55) 2013 Matveev, Aidaraliev, Gavrilov, Zotova, Karandashov, Sotnikova, Stus, Talalakin, Il’inskaya, Aleksandrov (bib21) 1998; 51 Murata, Yoshinaga, Mori, Tsuji, Hashimoto, Iguchi (bib51) 2016; 41 Schneising, Burrows, Dickerson, Buchwitz, Reuter, Bovensmann (bib54) 2014; 2 A. Gałuszka, Z. M. Migaszewski, J. Namieśnik, Moving your laboratories to the field–Advantages and limitations of the use of field portable instruments in environmental s ample analysis. J. Environmental Research 140 (2015) 593-603. Popov, Stepanov, Sherstnev, Yakovlev (bib20) 1997; 23 Kucuker (bib2) 2006; 56 Epa (bib45) 2006 Mahbub, Leis, Macka (bib37) 2018; 90 Robinson, Gardiner, Innocenti, Woods, Coleman, iHEART (bib46) 2011; 13 Beaver, Field (bib1) 2007; 12 Clark, Curchin, Hoefen, Swayze (bib25) 2009; 114 Funk, Theiler, Roberts, Borel (bib50) 2001; 39 Butler, Montzka (bib43) 2014; vol. 325 Richard, Kelly, Winkler, Wilson, Thompson, McLaughlin, Schmeltekopf, Tuck (bib59) 2002; 75 Shemshad, Aminossadati, Kizil (bib14) 2012; 171 Pfeiffer, Meyrueis, Patillon, Bounaix (bib34) 2004; 53 Massie, Stewart, McGregor, Gilchrist (bib27) 2006; 113 Fanchenko, Baranov, Savkin, Somov, Calliari (bib24) 2016 De Biasio, Leitner, Krall, Krivec, Wilk, Mizaikoff, Waldner, Starmans, Maier (bib33) 2016 accessed date: 10 November, 2018. Bianchi, Barmet, Stirnweis, El Haddad, Platt, Saurer, Lotscher (bib3) 2016; 141 Krier, Sherstnev (bib22) 2000; 33 Picciaia, Zazzeri, Gimberini, Andreussi (bib53) 2011 Dakin, Chambers (bib17) 2006 Hodgkinson, Tatam (bib16) 2013; 24 Johnston (bib19) 1992; 3 The PID Handbook 2013, Theory and applications of direct-reading photoionization detectors (PIDs), third ed. Li, Chen, Fischer (bib56) 2013; 48 Li, Wen, Dai, Wang, Li (bib58) 2014; 25 Frish (10.1016/j.talanta.2020.121144_bib55) 2013 Epa (10.1016/j.talanta.2020.121144_bib45) 2006 Okajima (10.1016/j.talanta.2020.121144_bib29) 2006 Kucuker (10.1016/j.talanta.2020.121144_bib2) 2006; 56 Faramawy (10.1016/j.talanta.2020.121144_bib4) 2016; 34 10.1016/j.talanta.2020.121144_bib28 Frankenberg (10.1016/j.talanta.2020.121144_bib49) 2016; 113 10.1016/j.talanta.2020.121144_bib35 Gmachl (10.1016/j.talanta.2020.121144_bib52) 2001; 64 Yang (10.1016/j.talanta.2020.121144_bib6) 2016 Bianchi (10.1016/j.talanta.2020.121144_bib3) 2016; 141 Mahbub (10.1016/j.talanta.2020.121144_bib37) 2018; 90 Fanchenko (10.1016/j.talanta.2020.121144_bib24) 2016 Jo (10.1016/j.talanta.2020.121144_bib8) 2013; 74 Beaver (10.1016/j.talanta.2020.121144_bib1) 2007; 12 Tütüncü (10.1016/j.talanta.2020.121144_bib41) 2016; 1 Shemshad (10.1016/j.talanta.2020.121144_bib14) 2012; 171 Werle (10.1016/j.talanta.2020.121144_bib15) 2004 Li (10.1016/j.talanta.2020.121144_bib44) 2011; 15 Pfeiffer (10.1016/j.talanta.2020.121144_bib34) 2004; 53 (10.1016/j.talanta.2020.121144_bib38) 2020 Ribessi (10.1016/j.talanta.2020.121144_bib42) 2016; 141 Li (10.1016/j.talanta.2020.121144_bib58) 2014; 25 Popa (10.1016/j.talanta.2020.121144_bib31) 2019; 19 Johnston (10.1016/j.talanta.2020.121144_bib19) 1992; 3 Murata (10.1016/j.talanta.2020.121144_bib51) 2016; 41 (10.1016/j.talanta.2020.121144_bib9) 2009 Dakin (10.1016/j.talanta.2020.121144_bib17) 2006 Wu (10.1016/j.talanta.2020.121144_bib7) 2010; 29 Clark (10.1016/j.talanta.2020.121144_bib25) 2009; 114 Harris (10.1016/j.talanta.2020.121144_bib13) 2002; 74 Li (10.1016/j.talanta.2020.121144_bib56) 2013; 48 Matveev (10.1016/j.talanta.2020.121144_bib21) 1998; 51 Krier (10.1016/j.talanta.2020.121144_bib22) 2000; 33 Butler (10.1016/j.talanta.2020.121144_bib43) 2014; vol. 325 Robinson (10.1016/j.talanta.2020.121144_bib46) 2011; 13 Massie (10.1016/j.talanta.2020.121144_bib27) 2006; 113 Schneising (10.1016/j.talanta.2020.121144_bib54) 2014; 2 10.1016/j.talanta.2020.121144_bib10 10.1016/j.talanta.2020.121144_bib11 10.1016/j.talanta.2020.121144_bib12 Yeh (10.1016/j.talanta.2020.121144_bib18) 2017; 75 Roberts (10.1016/j.talanta.2020.121144_bib48) 2010; 114 De Biasio (10.1016/j.talanta.2020.121144_bib33) 2016 Alexandrov (10.1016/j.talanta.2020.121144_bib23) 2002 Picciaia (10.1016/j.talanta.2020.121144_bib53) 2011 Slanina (10.1016/j.talanta.2020.121144_bib47) 1994; 66 Hodgkinson (10.1016/j.talanta.2020.121144_bib26) 2010; 21 McCurdy (10.1016/j.talanta.2020.121144_bib57) 2007; 1 Popov (10.1016/j.talanta.2020.121144_bib20) 1997; 23 Funk (10.1016/j.talanta.2020.121144_bib50) 2001; 39 Gordon (10.1016/j.talanta.2020.121144_bib36) 2017; 203 Hodgkinson (10.1016/j.talanta.2020.121144_bib16) 2013; 24 Hodgkinson (10.1016/j.talanta.2020.121144_bib39) 2013; 186 Richard (10.1016/j.talanta.2020.121144_bib59) 2002; 75 Wilk (10.1016/j.talanta.2020.121144_bib40) 2013; 85 10.1016/j.talanta.2020.121144_bib5 Noori (10.1016/j.talanta.2020.121144_bib32) 2019; 146 |
| References_xml | – start-page: 616 year: 2016 end-page: 621 ident: bib6 article-title: Effect of hydrogen on explosion of methane-air mixture publication-title: 3rd International Symposium on Mine Safety Science and Engineering – start-page: 457 year: 2006 end-page: 477 ident: bib17 article-title: Review of methods of optical gas detection by direct optical spectroscopy, with emphasis on correlation spectroscopy publication-title: Optical Chemical Sensors – volume: 24 year: 2013 ident: bib16 article-title: Optical gas sensing: a review publication-title: Meas. Sci. Technol. – year: 2020 ident: bib38 article-title: Landfill Gas Primer - an Overview for Environmental Health Professionals: Chapter 2: Landfill Gas Basics – year: 2006 ident: bib45 article-title: Optical Remote Sensing for Emission Characterization from Non-point Source FINAL ORS Protocol – volume: 90 start-page: 5973 year: 2018 end-page: 5976 ident: bib37 article-title: Chemometric approach to the calibration of light emitting diode based optical gas sensors using High-Resolution Transmission Molecular Absorption data publication-title: Anal. Chem. – volume: 13 start-page: 2213 year: 2011 end-page: 2220 ident: bib46 article-title: A miniaturized near-infrared in-line gas sensor using heart-shaped substrate-integrated hollow waveguides publication-title: J. Environ. Monit. – volume: 2 start-page: 548 year: 2014 end-page: 558 ident: bib54 article-title: Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations publication-title: Earth's Future – year: 2016 ident: bib24 article-title: In IEEE 2nd International Smart Cities Conference: Improving the Citizens Quality of Life, ISC2 2016 - Proceedings – year: 2011 ident: bib53 article-title: A new remote sensing method for landfill emissions quantification publication-title: Proceedings Sardinia – start-page: 87260C year: 2013 ident: bib55 article-title: Low-cost Lightweight Airborne Laser-Based Sensors for Pipeline Leak Detection and Reporting in SPIE Defense, Security, and Sensing – volume: 23 start-page: 828 year: 1997 end-page: 830 ident: bib20 article-title: 3.3-μm LEDs for measuring methane publication-title: Tech. Phys. Lett. – volume: 25 start-page: 920 year: 2014 end-page: 924 ident: bib58 article-title: Mesurement of atmospheric trace-gas concentration based on QE65000 spectrometer and DOAS publication-title: Guangdianzi Jiguang/Journal of Optoelectronics Laser – volume: 141 start-page: 5298 year: 2016 end-page: 5303 ident: bib42 article-title: iHEART: a miniaturized near-infrared in-line gas sensor using heart-shaped substrate-integrated hollow waveguides publication-title: Analyst – reference: Investigation of the composition and emissions of trace components in landfill gas. R&D Technical Report P1-438/TR, pp vi. ISBN: 1 84432 018 9. – volume: 34 start-page: 34 year: 2016 end-page: 54 ident: bib4 article-title: Natural gas origin, composition, and processing: a review publication-title: J. Nat. Gas Sci. Eng. – reference: S. Roy, R. Desikan, S. P. Duttagupta, A novel, compact optical device for estimating the methane emissions in geological environment. arXiv preprint arXiv:1611.08797 2016. – reference: Lower and upper explosive limits for flammable gases and vapors (LEL/UEL), – reference: A. Gałuszka, Z. M. Migaszewski, J. Namieśnik, Moving your laboratories to the field–Advantages and limitations of the use of field portable instruments in environmental s ample analysis. J. Environmental Research 140 (2015) 593-603. – volume: 171 start-page: 77 year: 2012 end-page: 92 ident: bib14 article-title: A review of developments in near infrared methane detection based on tunable diode laser publication-title: Sensor. Actuator. B Chem. – volume: 66 start-page: 137 year: 1994 end-page: 200 ident: bib47 article-title: Assessment of uncertainties in the projected concentrations of methane in the atmosphere (Technical Report) publication-title: Pure Appl. Chem. – volume: 1 year: 2007 ident: bib57 article-title: Recent advances of laser-spectroscopy-based techniques for applications in breath analysis publication-title: J. Breath Res. – volume: 113 start-page: 830 year: 2006 end-page: 836 ident: bib27 article-title: Design of a portable optical sensor for methane gas detection publication-title: Sensor. Actuator. B Chem. – volume: 48 start-page: 523 year: 2013 end-page: 559 ident: bib56 article-title: Quantum cascade laser spectrometry techniques: a new trend in atmospheric chemistry publication-title: Appl. Spectrosc. Rev. – volume: 33 start-page: 101 year: 2000 ident: bib22 article-title: Powerful interface light emitting diodes for methane gas detection publication-title: J. Phys. D Appl. Phys. – volume: 114 year: 2009 ident: bib25 article-title: Reflectance spectroscopy of organic compounds: 1. Alkanes publication-title: J. Geophys. Res. – start-page: 188 year: 2002 end-page: 194 ident: bib23 article-title: Portable optoelectronic gas sensors operating in the mid-IR spectral range (λ= 3.5 μm) publication-title: Second International Conference on Lasers for Measurement and Information Transfer – volume: 146 start-page: 749 year: 2019 end-page: 757 ident: bib32 article-title: Portable device for continuous sensing with rapidly pulsed LEDs – part1: rapid on-the-fly processing of large data streams using an open source microcontroller with field programmable gate array publication-title: Measurement – start-page: 223 year: 2004 end-page: 243 ident: bib15 publication-title: Lasers in Environ-Mental and Life Sciences—Modern Analytical Methods – year: 2002 ident: bib30 article-title: Guidelines for environmental management: a guide to the sampling and analysis of air emissions and air quality – volume: 113 start-page: 9734 year: 2016 end-page: 9739 ident: bib49 article-title: Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 56 start-page: 144 year: 2006 end-page: 146 ident: bib2 article-title: Occupational fatalities among coal mine workers in Zonguldak, Turkey, 1994–2003 publication-title: Occup. Med. (Lond.) – volume: 53 start-page: 45 year: 2004 end-page: 50 ident: bib34 article-title: Limiting sensitivity of a differential absorption spectrometer with direct detection in the 2/spl nu//sub 3/and/spl nu//sub 2/+ 2/spl nu//sub 3/vibration bands [methane detection applications] publication-title: IEEE Trans Instrum Meas – volume: 1 start-page: 847 year: 2016 end-page: 851 ident: bib41 article-title: Ihwg-icl: methane sensing with substrate-integrated hollow waveguides directly coupled to interband cascade lasers publication-title: ACS Sens. – volume: 29 start-page: 349 year: 2010 end-page: 352 ident: bib7 article-title: Effects of flammability characteristics of methane with three inert gases publication-title: Process Saf. Prog. – volume: 19 start-page: 2076 year: 2019 ident: bib31 article-title: Towards integrated mid-infrared gas sensors publication-title: Sensors – volume: 41 start-page: 40 year: 2016 end-page: 44 ident: bib51 article-title: High sensitive gas sensing with low power consumption quantum cascade lasers publication-title: SEI Tech. Rev. – volume: 51 start-page: 233 year: 1998 end-page: 237 ident: bib21 article-title: Room temperature InAs photodiode–InGaAs LED pairs for methane detection in the mid-IR publication-title: Sensor. Actuator. B Chem. – start-page: 1 year: 2016 end-page: 3 ident: bib33 article-title: Ethylene gas sensing using non-dispersive infrared spectroscopy publication-title: Proceedings of the IEEE Sensors – volume: 186 start-page: 580 year: 2013 end-page: 588 ident: bib39 publication-title: Sensor. Actuator. B Chem. – volume: 75 start-page: 183 year: 2002 end-page: 194 ident: bib59 article-title: A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH 4 in the upper troposphere and lower stratosphere publication-title: Appl Phys B Lasers O – reference: Flammable Gas Sensor Manual 2014, Version 1.3, Zhengzhou Winsen Electronics Technology Co. Ltd., – volume: 15 start-page: 821 year: 2011 end-page: 826 ident: bib44 article-title: Solid-state anaerobic digestion for methane production from organic waste publication-title: Renew. Sustain. Energy Rev. – volume: 114 start-page: 592 year: 2010 end-page: 606 ident: bib48 article-title: Mapping methane emissions from a marine geological seep source using imaging spectrometry publication-title: Remote Sens. Environ. – start-page: 1652 year: 2006 end-page: 1655 ident: bib29 article-title: Measurement of methane gas concentration using an infrared LED publication-title: SICE-ICASE, 2006. International Joint Conference; IEEE – volume: 3 start-page: 191 year: 1992 ident: bib19 article-title: Gas monitors employing infrared LEDs. Measurement Science and Technology publication-title: Meas. Sci. Technol. – volume: 64 start-page: 1533 year: 2001 ident: bib52 article-title: Recent progress in quantum cascade lasers and applications publication-title: Rep. Prog. Phys. – volume: 39 start-page: 1410 year: 2001 end-page: 1420 ident: bib50 article-title: Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery publication-title: IEEE Trans. Geosci. Rem. Sens. – reference: The PID Handbook 2013, Theory and applications of direct-reading photoionization detectors (PIDs), third ed. – reference: . – start-page: 14e47 year: 2009 ident: bib9 article-title: Sampling and analysis of gases and vapours [air monitoring methods publication-title: MAK-collection Occup. Heal. Saf. – volume: 85 start-page: 11205 year: 2013 end-page: 11210 ident: bib40 article-title: Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing publication-title: Anal. Chem. – volume: 74 start-page: 120 year: 2013 end-page: 123 ident: bib8 article-title: Acute respiratory distress due to methane inhalation publication-title: Tuberc. Respir. Dis. – volume: 74 start-page: 585A year: 2002 end-page: 589A ident: bib13 article-title: GC to Go Increased research and marketability have helped boost enthusiasm for portable GC and GC/MS instruments publication-title: Anal. Chem. – volume: 141 start-page: 41 year: 2016 end-page: 47 ident: bib3 article-title: Contribution of methane to aerosol carbon mass publication-title: Atmos. Environ. – volume: 203 start-page: 3 year: 2017 end-page: 69 ident: bib36 article-title: The HITRAN2016 molecular spectroscopic database publication-title: J. Quant. Spectrosc. Radiat. Transfer – reference: (accessed date: 10 November, 2018. – volume: 12 start-page: 3 year: 2007 end-page: 23 ident: bib1 article-title: Summary of documented fatalities in livestock manure storage and handling facilities-1975-2004 publication-title: J. Agromed. – volume: 75 start-page: 461 year: 2017 end-page: 468 ident: bib18 article-title: Applications of LEDs in optical sensors and chemical sensing device for detection of biochemicals, heavy metals, and environmental nutrients publication-title: Renew. Sustain. Energy Rev. – volume: 21 start-page: 105103 year: 2010 ident: bib26 article-title: Methane-specific gas detectors: the effect of natural gas composition publication-title: Meas. Sci. Technol. – volume: vol. 325 year: 2014 ident: bib43 article-title: National oceanic & atmospheric administration publication-title: Earth System Research Laboratory: R/GMD – volume: 3 start-page: 191 year: 1992 ident: 10.1016/j.talanta.2020.121144_bib19 article-title: Gas monitors employing infrared LEDs. Measurement Science and Technology publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/3/2/008 – start-page: 188 year: 2002 ident: 10.1016/j.talanta.2020.121144_bib23 article-title: Portable optoelectronic gas sensors operating in the mid-IR spectral range (λ= 3.5 μm) – start-page: 616 year: 2016 ident: 10.1016/j.talanta.2020.121144_bib6 article-title: Effect of hydrogen on explosion of methane-air mixture – volume: 75 start-page: 461 year: 2017 ident: 10.1016/j.talanta.2020.121144_bib18 article-title: Applications of LEDs in optical sensors and chemical sensing device for detection of biochemicals, heavy metals, and environmental nutrients publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.11.011 – volume: 146 start-page: 749 year: 2019 ident: 10.1016/j.talanta.2020.121144_bib32 article-title: Portable device for continuous sensing with rapidly pulsed LEDs – part1: rapid on-the-fly processing of large data streams using an open source microcontroller with field programmable gate array publication-title: Measurement doi: 10.1016/j.measurement.2019.05.034 – volume: 13 start-page: 2213 year: 2011 ident: 10.1016/j.talanta.2020.121144_bib46 article-title: A miniaturized near-infrared in-line gas sensor using heart-shaped substrate-integrated hollow waveguides publication-title: J. Environ. Monit. doi: 10.1039/c0em00312c – volume: 1 year: 2007 ident: 10.1016/j.talanta.2020.121144_bib57 article-title: Recent advances of laser-spectroscopy-based techniques for applications in breath analysis publication-title: J. Breath Res. doi: 10.1088/1752-7155/1/1/014001 – volume: 34 start-page: 34 year: 2016 ident: 10.1016/j.talanta.2020.121144_bib4 article-title: Natural gas origin, composition, and processing: a review publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.06.030 – volume: 90 start-page: 5973 year: 2018 ident: 10.1016/j.talanta.2020.121144_bib37 article-title: Chemometric approach to the calibration of light emitting diode based optical gas sensors using High-Resolution Transmission Molecular Absorption data publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b01295 – volume: 203 start-page: 3 year: 2017 ident: 10.1016/j.talanta.2020.121144_bib36 article-title: The HITRAN2016 molecular spectroscopic database publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2017.06.038 – year: 2006 ident: 10.1016/j.talanta.2020.121144_bib45 – volume: 141 start-page: 41 year: 2016 ident: 10.1016/j.talanta.2020.121144_bib3 article-title: Contribution of methane to aerosol carbon mass publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.06.036 – volume: 48 start-page: 523 year: 2013 ident: 10.1016/j.talanta.2020.121144_bib56 article-title: Quantum cascade laser spectrometry techniques: a new trend in atmospheric chemistry publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2012.757232 – start-page: 1652 year: 2006 ident: 10.1016/j.talanta.2020.121144_bib29 article-title: Measurement of methane gas concentration using an infrared LED – volume: 24 year: 2013 ident: 10.1016/j.talanta.2020.121144_bib16 article-title: Optical gas sensing: a review publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/24/1/012004 – volume: 15 start-page: 821 year: 2011 ident: 10.1016/j.talanta.2020.121144_bib44 article-title: Solid-state anaerobic digestion for methane production from organic waste publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.07.042 – volume: 19 start-page: 2076 year: 2019 ident: 10.1016/j.talanta.2020.121144_bib31 article-title: Towards integrated mid-infrared gas sensors publication-title: Sensors doi: 10.3390/s19092076 – volume: 64 start-page: 1533 year: 2001 ident: 10.1016/j.talanta.2020.121144_bib52 article-title: Recent progress in quantum cascade lasers and applications publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/64/11/204 – volume: 39 start-page: 1410 year: 2001 ident: 10.1016/j.talanta.2020.121144_bib50 article-title: Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery publication-title: IEEE Trans. Geosci. Rem. Sens. doi: 10.1109/36.934073 – volume: 2 start-page: 548 year: 2014 ident: 10.1016/j.talanta.2020.121144_bib54 article-title: Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations publication-title: Earth's Future doi: 10.1002/2014EF000265 – ident: 10.1016/j.talanta.2020.121144_bib10 – volume: 113 start-page: 9734 year: 2016 ident: 10.1016/j.talanta.2020.121144_bib49 article-title: Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1605617113 – volume: 74 start-page: 120 year: 2013 ident: 10.1016/j.talanta.2020.121144_bib8 article-title: Acute respiratory distress due to methane inhalation publication-title: Tuberc. Respir. Dis. doi: 10.4046/trd.2013.74.3.120 – ident: 10.1016/j.talanta.2020.121144_bib35 – volume: 29 start-page: 349 year: 2010 ident: 10.1016/j.talanta.2020.121144_bib7 article-title: Effects of flammability characteristics of methane with three inert gases publication-title: Process Saf. Prog. doi: 10.1002/prs.10411 – volume: 74 start-page: 585A year: 2002 ident: 10.1016/j.talanta.2020.121144_bib13 article-title: GC to Go Increased research and marketability have helped boost enthusiasm for portable GC and GC/MS instruments publication-title: Anal. Chem. doi: 10.1021/ac0221536 – start-page: 457 year: 2006 ident: 10.1016/j.talanta.2020.121144_bib17 article-title: Review of methods of optical gas detection by direct optical spectroscopy, with emphasis on correlation spectroscopy – volume: 53 start-page: 45 year: 2004 ident: 10.1016/j.talanta.2020.121144_bib34 article-title: Limiting sensitivity of a differential absorption spectrometer with direct detection in the 2/spl nu//sub 3/and/spl nu//sub 2/+ 2/spl nu//sub 3/vibration bands [methane detection applications] publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2003.822190 – volume: 75 start-page: 183 year: 2002 ident: 10.1016/j.talanta.2020.121144_bib59 article-title: A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH 4 in the upper troposphere and lower stratosphere publication-title: Appl Phys B Lasers O doi: 10.1007/s00340-002-0935-3 – ident: 10.1016/j.talanta.2020.121144_bib11 – year: 2016 ident: 10.1016/j.talanta.2020.121144_bib24 – volume: 141 start-page: 5298 year: 2016 ident: 10.1016/j.talanta.2020.121144_bib42 article-title: iHEART: a miniaturized near-infrared in-line gas sensor using heart-shaped substrate-integrated hollow waveguides publication-title: Analyst doi: 10.1039/C6AN01027J – start-page: 14e47 year: 2009 ident: 10.1016/j.talanta.2020.121144_bib9 article-title: Sampling and analysis of gases and vapours [air monitoring methods – volume: 41 start-page: 40 year: 2016 ident: 10.1016/j.talanta.2020.121144_bib51 article-title: High sensitive gas sensing with low power consumption quantum cascade lasers publication-title: SEI Tech. Rev. – start-page: 1 year: 2016 ident: 10.1016/j.talanta.2020.121144_bib33 article-title: Ethylene gas sensing using non-dispersive infrared spectroscopy – volume: 85 start-page: 11205 year: 2013 ident: 10.1016/j.talanta.2020.121144_bib40 article-title: Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing publication-title: Anal. Chem. doi: 10.1021/ac402391m – ident: 10.1016/j.talanta.2020.121144_bib28 – volume: 171 start-page: 77 year: 2012 ident: 10.1016/j.talanta.2020.121144_bib14 article-title: A review of developments in near infrared methane detection based on tunable diode laser publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2012.06.018 – volume: 51 start-page: 233 year: 1998 ident: 10.1016/j.talanta.2020.121144_bib21 article-title: Room temperature InAs photodiode–InGaAs LED pairs for methane detection in the mid-IR publication-title: Sensor. Actuator. B Chem. doi: 10.1016/S0925-4005(98)00200-7 – volume: 113 start-page: 830 year: 2006 ident: 10.1016/j.talanta.2020.121144_bib27 article-title: Design of a portable optical sensor for methane gas detection publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2005.03.105 – volume: 33 start-page: 101 year: 2000 ident: 10.1016/j.talanta.2020.121144_bib22 article-title: Powerful interface light emitting diodes for methane gas detection publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/33/2/301 – volume: 186 start-page: 580 year: 2013 ident: 10.1016/j.talanta.2020.121144_bib39 publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2013.06.006 – volume: 114 year: 2009 ident: 10.1016/j.talanta.2020.121144_bib25 article-title: Reflectance spectroscopy of organic compounds: 1. Alkanes publication-title: J. Geophys. Res. – volume: 23 start-page: 828 year: 1997 ident: 10.1016/j.talanta.2020.121144_bib20 article-title: 3.3-μm LEDs for measuring methane publication-title: Tech. Phys. Lett. doi: 10.1134/1.1261898 – year: 2011 ident: 10.1016/j.talanta.2020.121144_bib53 article-title: A new remote sensing method for landfill emissions quantification – start-page: 223 year: 2004 ident: 10.1016/j.talanta.2020.121144_bib15 – volume: 25 start-page: 920 year: 2014 ident: 10.1016/j.talanta.2020.121144_bib58 article-title: Mesurement of atmospheric trace-gas concentration based on QE65000 spectrometer and DOAS publication-title: Guangdianzi Jiguang/Journal of Optoelectronics Laser – volume: 21 start-page: 105103 year: 2010 ident: 10.1016/j.talanta.2020.121144_bib26 article-title: Methane-specific gas detectors: the effect of natural gas composition publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/21/10/105103 – volume: 12 start-page: 3 year: 2007 ident: 10.1016/j.talanta.2020.121144_bib1 article-title: Summary of documented fatalities in livestock manure storage and handling facilities-1975-2004 publication-title: J. Agromed. doi: 10.1300/J096v12n02_02 – volume: 56 start-page: 144 year: 2006 ident: 10.1016/j.talanta.2020.121144_bib2 article-title: Occupational fatalities among coal mine workers in Zonguldak, Turkey, 1994–2003 publication-title: Occup. Med. (Lond.) doi: 10.1093/occmed/kqj023 – year: 2020 ident: 10.1016/j.talanta.2020.121144_bib38 – volume: 66 start-page: 137 year: 1994 ident: 10.1016/j.talanta.2020.121144_bib47 article-title: Assessment of uncertainties in the projected concentrations of methane in the atmosphere (Technical Report) publication-title: Pure Appl. Chem. doi: 10.1351/pac199466010137 – ident: 10.1016/j.talanta.2020.121144_bib5 – volume: 1 start-page: 847 year: 2016 ident: 10.1016/j.talanta.2020.121144_bib41 article-title: Ihwg-icl: methane sensing with substrate-integrated hollow waveguides directly coupled to interband cascade lasers publication-title: ACS Sens. doi: 10.1021/acssensors.6b00238 – volume: vol. 325 year: 2014 ident: 10.1016/j.talanta.2020.121144_bib43 article-title: National oceanic & atmospheric administration – volume: 114 start-page: 592 year: 2010 ident: 10.1016/j.talanta.2020.121144_bib48 article-title: Mapping methane emissions from a marine geological seep source using imaging spectrometry publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.10.015 – start-page: 87260C year: 2013 ident: 10.1016/j.talanta.2020.121144_bib55 – ident: 10.1016/j.talanta.2020.121144_bib12 doi: 10.1016/j.envres.2015.05.017 |
| SSID | ssj0002303 |
| Score | 2.4605281 |
| Snippet | We designed a simple, portable, low-cost and low-weight nondispersive infrared (NDIR) spectroscopy-based system for continuous remote sensing of atmospheric... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 121144 |
| SubjectTerms | computer software detection limit gases landfills light emitting diodes methane mobile telephones monitoring Near infrared light emitting diodes (NIR LED) near infrared radiation Non-dispersive infrared (NDIR) spectroscopy On-the-fly automated data processing Real-time facile monitoring of gas Remote continuous sensing of methane gas remote sensing unmanned aerial vehicles Wireless data transfer |
| Title | Continuous and real-time indoor and outdoor methane sensing with portable optical sensor using rapidly pulsed IR LEDs |
| URI | https://dx.doi.org/10.1016/j.talanta.2020.121144 https://www.proquest.com/docview/2434478332 https://www.proquest.com/docview/2440703068 |
| Volume | 218 |
| WOSCitedRecordID | wos000564487100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3573 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002303 issn: 0039-9140 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DQleEFcxLpOReKtSqti5-HEaRRTBhEaR-hY5jis6TWmVJlXF3-APc45vgQEbe-AlilzbdXO-Hn8-Of5MyCtYRVQLpkVUyjiJOBCCSHJZRonWCUvUGCXVzGET2elpPp-LT4PBd78XZnuR1XW-24n1fzU1lIGxcevsDcwdOoUCuAejwxXMDtd_MjzqTS3rDlNbTe44MMEIT5Afwup75VImV11r7vH8aAk0c4Np7D4qaxg5bqharW2gGz-Fyp2p0sj1ssKQSAeTajWcng0_TN5sfua4M8yWbKURMt3Z3PkQbfgov5Zdaalrs9XfQiwaRrO0CZYb2YSpAirZ1_wmwefzqI-rO22EkEnsAhewSvUpcMEZMwG-1qo1eWccO29s3Snqz1l5yN88vQ06nKNOJP6mEX7DqK__q7L2pRkv5CH6FLfzwnVTYDeF7WaPHMRZIsBVHhxPJ_P3YYKHVZvTcrbj7zeGvf7jeP5GeS5N_obRzO6Ru24pQo8thO6Tga4fkNsn_gTAh6TroUQBNTRAiVoomUIHJeqgRB2UKEKJeihRByVqoUQNlKiDErVQotMzilB6RL68ncxO3kXumI5IsSxpI8ErHiugemOtqowBLVJsvIiFEqleLEoNjFVWeVWlrEzzVHKVco08Fci-Vlpw9pjs16taPyG0EhqqqwQj8xzYpyzLHDgl9BrjuiE_JNw_yUI5DXs8SuWiuNKSh2QUmq2tiMt1DXJvpsIxUcswC4DfdU1ferMWYC58_QYPHwxVxBzVNXPG4qvqcDMHp_nTm475GbnT_8uek_226fQLcktt2-WmOSJ72Tw_ckj-AZ9GxrQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+and+real-time+indoor+and+outdoor+methane+sensing+with+portable+optical+sensor+using+rapidly+pulsed+IR+LEDs&rft.jtitle=Talanta+%28Oxford%29&rft.au=Mahbub%2C+Parvez&rft.au=Noori%2C+Ansara&rft.au=Parry%2C+John+S.&rft.au=Davis%2C+John&rft.date=2020-10-01&rft.issn=0039-9140&rft.volume=218&rft.spage=121144&rft_id=info:doi/10.1016%2Fj.talanta.2020.121144&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_talanta_2020_121144 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon |