An introduction to machine learning and generative artificial intelligence for otolaryngologists—head and neck surgeons: a narrative review

Purpose Despite the robust expansion of research surrounding artificial intelligence (AI) and machine learning (ML) and their applications to medicine, these methodologies often remain opaque and inaccessible to many otolaryngologists. Especially, with the increasing ubiquity of large-language model...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European archives of oto-rhino-laryngology Ročník 281; číslo 5; s. 2723 - 2731
Hlavní autori: Alter, Isaac L., Chan, Karly, Lechien, Jérome, Rameau, Anaïs
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2024
Springer Nature B.V
Predmet:
ISSN:0937-4477, 1434-4726, 1434-4726
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Purpose Despite the robust expansion of research surrounding artificial intelligence (AI) and machine learning (ML) and their applications to medicine, these methodologies often remain opaque and inaccessible to many otolaryngologists. Especially, with the increasing ubiquity of large-language models (LLMs), such as ChatGPT and their potential implementation in clinical practice, clinicians may benefit from a baseline understanding of some aspects of AI. In this narrative review, we seek to clarify underlying concepts, illustrate applications to otolaryngology, and highlight future directions and limitations of these tools. Methods Recent literature regarding AI principles and otolaryngologic applications of ML and LLMs was reviewed via search in PubMed and Google Scholar. Results Significant recent strides have been made in otolaryngology research utilizing AI and ML, across all subspecialties, including neurotology, head and neck oncology, laryngology, rhinology, and sleep surgery. Potential applications suggested by recent publications include screening and diagnosis, predictive tools, clinical decision support, and clinical workflow improvement via LLMs. Ongoing concerns regarding AI in medicine include ethical concerns around bias and data sharing, as well as the “black box” problem and limitations in explainability. Conclusions Potential implementations of AI in otolaryngology are rapidly expanding. While implementation in clinical practice remains theoretical for most of these tools, their potential power to influence the practice of otolaryngology is substantial. Level of evidence 4.
AbstractList PurposeDespite the robust expansion of research surrounding artificial intelligence (AI) and machine learning (ML) and their applications to medicine, these methodologies often remain opaque and inaccessible to many otolaryngologists. Especially, with the increasing ubiquity of large-language models (LLMs), such as ChatGPT and their potential implementation in clinical practice, clinicians may benefit from a baseline understanding of some aspects of AI. In this narrative review, we seek to clarify underlying concepts, illustrate applications to otolaryngology, and highlight future directions and limitations of these tools.MethodsRecent literature regarding AI principles and otolaryngologic applications of ML and LLMs was reviewed via search in PubMed and Google Scholar.ResultsSignificant recent strides have been made in otolaryngology research utilizing AI and ML, across all subspecialties, including neurotology, head and neck oncology, laryngology, rhinology, and sleep surgery. Potential applications suggested by recent publications include screening and diagnosis, predictive tools, clinical decision support, and clinical workflow improvement via LLMs. Ongoing concerns regarding AI in medicine include ethical concerns around bias and data sharing, as well as the “black box” problem and limitations in explainability.ConclusionsPotential implementations of AI in otolaryngology are rapidly expanding. While implementation in clinical practice remains theoretical for most of these tools, their potential power to influence the practice of otolaryngology is substantial.Level of evidence4.
Purpose Despite the robust expansion of research surrounding artificial intelligence (AI) and machine learning (ML) and their applications to medicine, these methodologies often remain opaque and inaccessible to many otolaryngologists. Especially, with the increasing ubiquity of large-language models (LLMs), such as ChatGPT and their potential implementation in clinical practice, clinicians may benefit from a baseline understanding of some aspects of AI. In this narrative review, we seek to clarify underlying concepts, illustrate applications to otolaryngology, and highlight future directions and limitations of these tools. Methods Recent literature regarding AI principles and otolaryngologic applications of ML and LLMs was reviewed via search in PubMed and Google Scholar. Results Significant recent strides have been made in otolaryngology research utilizing AI and ML, across all subspecialties, including neurotology, head and neck oncology, laryngology, rhinology, and sleep surgery. Potential applications suggested by recent publications include screening and diagnosis, predictive tools, clinical decision support, and clinical workflow improvement via LLMs. Ongoing concerns regarding AI in medicine include ethical concerns around bias and data sharing, as well as the “black box” problem and limitations in explainability. Conclusions Potential implementations of AI in otolaryngology are rapidly expanding. While implementation in clinical practice remains theoretical for most of these tools, their potential power to influence the practice of otolaryngology is substantial. Level of evidence 4.
Despite the robust expansion of research surrounding artificial intelligence (AI) and machine learning (ML) and their applications to medicine, these methodologies often remain opaque and inaccessible to many otolaryngologists. Especially, with the increasing ubiquity of large-language models (LLMs), such as ChatGPT and their potential implementation in clinical practice, clinicians may benefit from a baseline understanding of some aspects of AI. In this narrative review, we seek to clarify underlying concepts, illustrate applications to otolaryngology, and highlight future directions and limitations of these tools. Recent literature regarding AI principles and otolaryngologic applications of ML and LLMs was reviewed via search in PubMed and Google Scholar. Significant recent strides have been made in otolaryngology research utilizing AI and ML, across all subspecialties, including neurotology, head and neck oncology, laryngology, rhinology, and sleep surgery. Potential applications suggested by recent publications include screening and diagnosis, predictive tools, clinical decision support, and clinical workflow improvement via LLMs. Ongoing concerns regarding AI in medicine include ethical concerns around bias and data sharing, as well as the "black box" problem and limitations in explainability. Potential implementations of AI in otolaryngology are rapidly expanding. While implementation in clinical practice remains theoretical for most of these tools, their potential power to influence the practice of otolaryngology is substantial.
Despite the robust expansion of research surrounding artificial intelligence (AI) and machine learning (ML) and their applications to medicine, these methodologies often remain opaque and inaccessible to many otolaryngologists. Especially, with the increasing ubiquity of large-language models (LLMs), such as ChatGPT and their potential implementation in clinical practice, clinicians may benefit from a baseline understanding of some aspects of AI. In this narrative review, we seek to clarify underlying concepts, illustrate applications to otolaryngology, and highlight future directions and limitations of these tools.PURPOSEDespite the robust expansion of research surrounding artificial intelligence (AI) and machine learning (ML) and their applications to medicine, these methodologies often remain opaque and inaccessible to many otolaryngologists. Especially, with the increasing ubiquity of large-language models (LLMs), such as ChatGPT and their potential implementation in clinical practice, clinicians may benefit from a baseline understanding of some aspects of AI. In this narrative review, we seek to clarify underlying concepts, illustrate applications to otolaryngology, and highlight future directions and limitations of these tools.Recent literature regarding AI principles and otolaryngologic applications of ML and LLMs was reviewed via search in PubMed and Google Scholar.METHODSRecent literature regarding AI principles and otolaryngologic applications of ML and LLMs was reviewed via search in PubMed and Google Scholar.Significant recent strides have been made in otolaryngology research utilizing AI and ML, across all subspecialties, including neurotology, head and neck oncology, laryngology, rhinology, and sleep surgery. Potential applications suggested by recent publications include screening and diagnosis, predictive tools, clinical decision support, and clinical workflow improvement via LLMs. Ongoing concerns regarding AI in medicine include ethical concerns around bias and data sharing, as well as the "black box" problem and limitations in explainability.RESULTSSignificant recent strides have been made in otolaryngology research utilizing AI and ML, across all subspecialties, including neurotology, head and neck oncology, laryngology, rhinology, and sleep surgery. Potential applications suggested by recent publications include screening and diagnosis, predictive tools, clinical decision support, and clinical workflow improvement via LLMs. Ongoing concerns regarding AI in medicine include ethical concerns around bias and data sharing, as well as the "black box" problem and limitations in explainability.Potential implementations of AI in otolaryngology are rapidly expanding. While implementation in clinical practice remains theoretical for most of these tools, their potential power to influence the practice of otolaryngology is substantial.CONCLUSIONSPotential implementations of AI in otolaryngology are rapidly expanding. While implementation in clinical practice remains theoretical for most of these tools, their potential power to influence the practice of otolaryngology is substantial.
Author Lechien, Jérome
Rameau, Anaïs
Alter, Isaac L.
Chan, Karly
Author_xml – sequence: 1
  givenname: Isaac L.
  surname: Alter
  fullname: Alter, Isaac L.
  organization: Department of Otolaryngology-Head and Neck Surgery, Sean Parker Institute for the Voice, Weill Cornell Medical College
– sequence: 2
  givenname: Karly
  surname: Chan
  fullname: Chan, Karly
  organization: Department of Otolaryngology-Head and Neck Surgery, Sean Parker Institute for the Voice, Weill Cornell Medical College
– sequence: 3
  givenname: Jérome
  surname: Lechien
  fullname: Lechien, Jérome
  organization: Department of Otorhinolaryngology, Head and Neck Surgery, Hôpital Foch, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, UMONS Research Institute for Health and Sciences Technology, University of Mons (UMons)
– sequence: 4
  givenname: Anaïs
  orcidid: 0000-0003-1543-2634
  surname: Rameau
  fullname: Rameau, Anaïs
  email: Anr2783@med.cornell.edu
  organization: Department of Otolaryngology-Head and Neck Surgery, Sean Parker Institute for the Voice, Weill Cornell Medical College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38393353$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1uFDEQhS0URH7gAiyQJTZsGqrt6u5pdlHEnxSJTfZWjbu649BjB9sdxI4TsOIAnIWjcBI8mQGkLLLyor73XPXesTjwwbMQT2t4WQN0rxIAQlOBwgpWTa0qfCCOatRYYafaA3EEve4qxK47FMcpXQFAg71-JA71SvdaN_pIfD_10vkcw7DY7IKXOcgN2UvnWc5M0Ts_SfKDnNhzpOxuWFLMbnTW0byV8jy7MrT86-cYogw5zBS_-inMYXIpp9_fflwyDbcmnu0nmZY4cfDptSTpKe5NI984_vJYPBxpTvxk_56Ii7dvLs7eV-cf3304Oz2vrO6aXPUKxrFZA5CqqeY1axpqSwNROawBRN2yboe10h30LfYwtGgJVd0PiKD0iXixs72O4fPCKZuNS7ZcQp7DkowuwWoFoPqCPr-DXoUl-rKc0appNLYrbAv1bE8t6w0P5jq6TUnB_A26AGoH2BhSijz-Q2ow2zbNrk1T2jS3bRosotUdkXWZtjXlSG6-X6p30lT-8RPH_2vfo_oDrCq3IA
CitedBy_id crossref_primary_10_1016_j_anl_2025_05_002
crossref_primary_10_3390_s24227126
crossref_primary_10_1016_j_otc_2024_04_006
crossref_primary_10_1007_s11831_025_10368_8
crossref_primary_10_2196_55762
crossref_primary_10_1016_j_jvoice_2024_06_020
crossref_primary_10_3389_fphys_2025_1522090
crossref_primary_10_1016_j_jaip_2024_04_019
crossref_primary_10_1080_10875301_2024_2426793
crossref_primary_10_1108_IJOES_04_2024_0112
crossref_primary_10_1007_s00405_024_08801_y
crossref_primary_10_1016_j_aforl_2025_07_001
crossref_primary_10_1007_s12070_024_04885_4
crossref_primary_10_1002_lary_31812
crossref_primary_10_1016_j_anl_2025_08_010
crossref_primary_10_1007_s00405_024_08868_7
crossref_primary_10_1016_j_anorl_2025_01_001
Cites_doi 10.1177/01945998221076480
10.1177/01945998221119156
10.1159/000520672
10.1186/s12874-019-0681-4
10.3389/fonc.2022.891716
10.1002/oto2.67
10.1038/s43856-021-00028-w
10.1002/hed.26993
10.1177/0194599820931804
10.3389/fsurg.2023.1114922
10.1038/s41586-023-06160-y
10.1038/s41597-023-01960-3
10.2147/CMAR.S341583
10.3390/cancers14143499
10.1001/jama.2023.14217
10.1097/MAO.0000000000003642
10.1177/20539517211047734
10.1126/science.aax2342
10.1002/lary.30351
10.1080/09546634.2021.1944970
10.1016/j.artmed.2021.102233
10.1044/2021_AJA-21-00158
10.2174/1389202922666210705124359
10.3390/jcm10184245
10.1177/00034894231158464
10.1001/jamaoto.2022.1629
10.1111/coa.14088
10.1111/jop.13481
10.1016/j.amjoto.2021.103327
10.1002/lio2.1145
10.1007/s00405-023-08135-1
10.1038/s41591-018-0316-z
10.1080/00016489.2023.2254809
10.3389/fnins.2022.895560
10.1002/lary.30894
10.1007/s00455-022-10547-w
10.1038/s41591-021-01614-0
10.1016/j.amjoto.2020.102858
10.1177/0194599818823200
10.1016/j.ebiom.2021.103522
10.1016/j.critrevonc.2022.103777
10.1186/s12910-021-00687-3
10.1038/s41580-021-00407-0
10.3390/jcm12093077
10.1002/ohn.288
10.1002/lary.29886
10.1177/01945998221110839
10.1186/s40463-023-00621-0
10.3389/fninf.2022.934433
10.1001/jamanetworkopen.2020.25881
10.1121/10.0000927
10.1002/hed.26528
10.1016/j.anl.2021.10.003
10.1002/hed.27434
10.1056/NEJMsr2214184
10.21053/ceo.2020.00654
10.1016/j.artmed.2021.102080
10.1016/j.semcancer.2023.07.002
10.1016/j.ijmedinf.2022.104896
10.1007/s42979-021-00592-x
10.1007/s00405-022-07701-3
10.1016/j.ijporl.2023.111698
10.1001/jamahealthforum.2023.1197
10.1002/lary.29302
10.3390/cancers11060800
10.1016/j.radi.2023.02.018
10.1038/s41586-023-06291-2
10.1016/j.ijmedinf.2021.104557
10.1097/MAO.0000000000002710
10.1017/S0022215123000476
10.1002/lary.30432
10.1002/lary.28508
10.3390/bioengineering10040426
10.1038/s41746-022-00742-2
10.1038/s41598-023-34461-9
10.3390/diagnostics13172736
10.1097/MAO.0000000000003810
10.1186/s12885-021-08899-x
10.1038/s41591-023-02448-8
10.1371/journal.pone.0229226
10.1001/jama.2019.16489
10.1007/s00405-023-08267-4
10.1007/s00405-023-08219-y
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X7
7XB
8FI
AFKRA
BENPR
CCPQU
FYUFA
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
DOI 10.1007/s00405-024-08512-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
ProQuest Central
ProQuest Central
ProQuest One
Health Research Premium Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList ProQuest One Academic Middle East (New)

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1434-4726
EndPage 2731
ExternalDocumentID 38393353
10_1007_s00405_024_08512_4
Genre Journal Article
Review
GrantInformation_xml – fundername: National Institute on Aging
  grantid: K76 AG079040
  funderid: http://dx.doi.org/10.13039/100000049
– fundername: Common Fund
  grantid: OT2 OD032720
  funderid: http://dx.doi.org/10.13039/100015326
– fundername: NIA NIH HHS
  grantid: K76 AG079040
– fundername: NIH HHS
  grantid: OT2 OD032720
– fundername: ODCDC CDC HHS
  grantid: OT2 OD032720
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.55
.86
.GJ
.VR
06C
06D
0R~
0VY
1N0
1SB
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUDM
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9S
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
X7M
YLTOR
Z45
Z7U
Z82
Z87
Z8O
Z8V
Z91
ZMTXR
ZOVNA
~A9
~EX
7X7
8FI
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BENPR
CCPQU
CITATION
FYUFA
HMCUK
M1P
PHGZM
PHGZT
PJZUB
PPXIY
PSQYO
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
7XB
PKEHL
PQEST
PQQKQ
PQUKI
7X8
ID FETCH-LOGICAL-c375t-920ff5b00a21a1ebe3ad1cadaa839504436e36db237096490d64ca4219d44023
IEDL.DBID RSV
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001172207700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0937-4477
1434-4726
IngestDate Fri Sep 05 07:18:01 EDT 2025
Tue Oct 07 07:33:50 EDT 2025
Thu Jul 24 02:16:38 EDT 2025
Sat Nov 29 03:21:22 EST 2025
Tue Nov 18 22:18:33 EST 2025
Fri Feb 21 02:41:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Clinical decision support tools
Diagnostic tools
Large language models
Predictive algorithms
Machine learning
Otolaryngology
Natural language processing
Artificial intelligence
Language English
License 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-920ff5b00a21a1ebe3ad1cadaa839504436e36db237096490d64ca4219d44023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0003-1543-2634
PMID 38393353
PQID 3255346846
PQPubID 7435137
PageCount 9
ParticipantIDs proquest_miscellaneous_3040320029
proquest_journals_3255346846
pubmed_primary_38393353
crossref_primary_10_1007_s00405_024_08512_4
crossref_citationtrail_10_1007_s00405_024_08512_4
springer_journals_10_1007_s00405_024_08512_4
PublicationCentury 2000
PublicationDate 20240500
2024-05-00
2024-May
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 5
  year: 2024
  text: 20240500
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle and Head & Neck
PublicationTitle European archives of oto-rhino-laryngology
PublicationTitleAbbrev Eur Arch Otorhinolaryngol
PublicationTitleAlternate Eur Arch Otorhinolaryngol
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Kim, Kim, Hwang (CR22) 2022; 14
Qu, Qureshi, Petersen, Lee (CR74) 2023; 7
Yao, Usman, Chen (CR31) 2022; 132
Fujima, Shimizu, Yoshida (CR41) 2019; 11
Jin, Wang, Tang, Liao, Wu, Wang (CR70) 2022; 12
Dixon, Wojdyla, Lee (CR38) 2022; 43
Miller, Goedicke, Crowson, Rathi, Naunheim, Agarwala (CR53) 2023; 168
Shew, New, Bur (CR55) 2019; 160
CR79
CR34
CR77
Wu, Lin, Li (CR5) 2021; 131
Singhal, Azizi, Tu (CR19) 2023; 620
Viscaino, Maass, Delano, Torrente, Stott, Auat (CR20) 2020; 15
Cala, Frassineti, Manfredi (CR27) 2023; 10
Ahervo, Korhonen, Wei, Ming (CR57) 2023; 29
CR73
Zhang (CR28) 2020; 147
Martin-Martinez, Miro, Amado (CR33) 2023; 38
Esteva, Robicquet, Ramsundar (CR13) 2019; 25
Bourdillon, Shah, Cohen, Hajek, Mehra (CR46) 2023; 133
Habehh, Gohel (CR2) 2021; 22
Thirunavukarasu, Ting, Elangovan, Gutierrez, Tan, Ting (CR16) 2023; 29
Reid, Parmar, Lund, Aalto, Jeffery (CR29) 2022; 43
Lu, Xie, Wei (CR36) 2022; 16
Giraldo-Roldan, Ribeiro, Araújo, Penafort, Silva, Câmara, Pontes, Martins, Oliveira, Santos-Silva, Lopes (CR9) 2023; 52
Compton, Cruz, Andreassen (CR26) 2023; 133
Sarker (CR1) 2021; 2
Brennan, Kirby (CR67) 2023; 52
Nielsen, von Buchwald, Gronhoj (CR76) 2023; 143
Tama, Kim, Kim, Kim, Lee (CR84) 2020; 13
Chandak, Huang, Zitnik (CR68) 2023; 10
Liu, Chen, Krause, Peng (CR8) 2019; 322
Bulfamante, Ferella, Miller (CR25) 2023; 280
Du, Ren, Liu, Wu (CR65) 2022; 49
Chen, Chin, Chan, Ho (CR50) 2023; 13
Noel, Sutradhar, Gotlib Conn (CR56) 2022; 148
Yang, Chen, PourNejatian (CR17) 2022; 5
Kou, Carlson, Baumann (CR11) 2022; 124
Kim, Lim, Eun (CR40) 2021; 59
Formeister, Baum, Knott (CR51) 2020; 130
Sher, Godley, Park (CR58) 2021; 29
Hegde, Sreeram, Alter (CR30) 2023; 13
Petruzzi, Coden, Iocca (CR48) 2023; 45
Kishimoto-Urata, Urata, Nishijima (CR49) 2023; 8
Yang, Wu, Chen (CR59) 2023; 12
Lotsch, Hintschich, Petridis, Pade, Hummel (CR39) 2021; 10
Maniaci, Riela, Iannella (CR32) 2023; 13
Aggarwal, Papay (CR85) 2022; 33
Crowson, Dixon, Mahmood (CR35) 2020; 41
Sidey-Gibbons, Sidey-Gibbons (CR7) 2019; 19
Lee, Bubeck, Petro (CR78) 2023; 388
Larrow, Kadosh, Fracchia, Radano, Hartnick (CR80) 2023; 173
Shah, Entwistle, Pfeffer (CR15) 2023; 330
Luitse, Denkena (CR18) 2021; 8
Greener, Kandathil, Moffat, Jones (CR14) 2022; 23
Elmakaty, Elmarasi, Amarah, Abdo, Malki (CR23) 2022; 178
Crowson, Bates, Suresh, Cohen, Hartnick (CR21) 2023; 169
Peng, Xu, Liu, Wang, He (CR6) 2023; 13
Obermeyer, Powers, Vogeli, Mullainathan (CR86) 2019; 366
Taylor, Habib, Kumar, Wong, Hasan, Singh (CR24) 2023; 48
Esce, Redemann, Olson (CR12) 2023; 132
Gathman, Choi, Vasdev, Schoephoerster, Adams (CR43) 2023; 169
Adeoye, Tan, Choi, Thomson (CR44) 2021; 154
Howard, Kochanny, Koshy, Spiotto, Pearson (CR4) 2020; 3
Qi, Abu-Hanna, van Esch (CR72) 2021; 116
Vasan, Cheng, Lerner, Vujovic, van Gerwen, Iloreta (CR82) 2023; 137
Jain, Brooks, Alford (CR87) 2023; 4
Uhm, Lee, Yi (CR42) 2021; 42
Oliver, Karadaghy, Fassas, Arambula, Bur (CR62) 2022; 44
Zeitler, Buchlak, Ramasundara, Farrokhi, Esmaili (CR37) 2023; 134
Hu, Yang, Ma (CR52) 2023; 10
Rajpurkar, Chen, Banerjee, Topol (CR10) 2022; 28
Ng, But, Choi (CR60) 2022; 14
Goshtasbi, Yasaka, Zandi-Toghani (CR54) 2021; 43
Manchaiah, Londero, Deshpande (CR81) 2022; 31
Alabi, Almangush, Elmusrati, Leivo, Makitie (CR3) 2022; 168
Chiesa-Estomba, Grana, Medela (CR47) 2022; 84
Zhu, Yao, Xu (CR71) 2021; 21
Vokinger, Feuerriegel, Kesselheim (CR88) 2021; 1
Jiang, Liu, Nejatian (CR83) 2023; 619
Zhong, Wang, Huang (CR69) 2023; 95
You, Lin, Mijovic, Eskander, Crowson (CR63) 2020; 163
Chee, Kwa, Goh (CR75) 2023; 280
Murdoch (CR89) 2021; 22
Zhong, Dong, Fang (CR61) 2021; 70
Tarnowska, Ras, Jastreboff (CR66) 2022; 16
Bensoussan, Vanstrum, Johns, Rameau (CR45) 2023; 168
Wathour, Govaerts, Lacroix, Naima (CR64) 2023; 44
W Qi (8512_CR72) 2021; 116
JAM Sidey-Gibbons (8512_CR7) 2019; 19
8512_CR77
8512_CR34
Z Zhang (8512_CR28) 2020; 147
8512_CR79
S Hegde (8512_CR30) 2023; 13
TJ Gathman (8512_CR43) 2023; 169
M Shew (8512_CR55) 2019; 160
JS Kim (8512_CR22) 2022; 14
NN Zhong (8512_CR69) 2023; 95
DK Kim (8512_CR40) 2021; 59
X Peng (8512_CR6) 2023; 13
DR Larrow (8512_CR80) 2023; 173
V Vasan (8512_CR82) 2023; 137
A Taylor (8512_CR24) 2023; 48
RW Qu (8512_CR74) 2023; 7
EJ Formeister (8512_CR51) 2020; 130
8512_CR73
LE Miller (8512_CR53) 2023; 168
X Yang (8512_CR17) 2022; 5
J Reid (8512_CR29) 2022; 43
PR Dixon (8512_CR38) 2022; 43
J Lotsch (8512_CR39) 2021; 10
M Kishimoto-Urata (8512_CR49) 2023; 8
A Esteva (8512_CR13) 2019; 25
KN Vokinger (8512_CR88) 2021; 1
L Zhong (8512_CR61) 2021; 70
K Goshtasbi (8512_CR54) 2021; 43
NH Shah (8512_CR15) 2023; 330
Y Liu (8512_CR8) 2019; 322
Y Bensoussan (8512_CR45) 2023; 168
MG Crowson (8512_CR35) 2020; 41
DJ Sher (8512_CR58) 2021; 29
Z Obermeyer (8512_CR86) 2019; 366
A Jain (8512_CR87) 2023; 4
D Giraldo-Roldan (8512_CR9) 2023; 52
P Aggarwal (8512_CR85) 2022; 33
D Luitse (8512_CR18) 2021; 8
BA Tama (8512_CR84) 2020; 13
SL Chen (8512_CR50) 2023; 13
F Cala (8512_CR27) 2023; 10
Y Zhu (8512_CR71) 2021; 21
JR Oliver (8512_CR62) 2022; 44
AM Bulfamante (8512_CR25) 2023; 280
W Kou (8512_CR11) 2022; 124
K Singhal (8512_CR19) 2023; 620
A Martin-Martinez (8512_CR33) 2023; 38
CW Noel (8512_CR56) 2022; 148
RO Alabi (8512_CR3) 2022; 168
P Rajpurkar (8512_CR10) 2022; 28
S Lu (8512_CR36) 2022; 16
Y Du (8512_CR65) 2022; 49
WT Ng (8512_CR60) 2022; 14
A Maniaci (8512_CR32) 2023; 13
IH Sarker (8512_CR1) 2021; 2
A Esce (8512_CR12) 2023; 132
H Ahervo (8512_CR57) 2023; 29
Y Jin (8512_CR70) 2022; 12
E You (8512_CR63) 2020; 163
I Elmakaty (8512_CR23) 2022; 178
M Viscaino (8512_CR20) 2020; 15
LY Jiang (8512_CR83) 2023; 619
V Manchaiah (8512_CR81) 2022; 31
FM Howard (8512_CR4) 2020; 3
N Fujima (8512_CR41) 2019; 11
P Chandak (8512_CR68) 2023; 10
HL Brennan (8512_CR67) 2023; 52
P Lee (8512_CR78) 2023; 388
P Yao (8512_CR31) 2022; 132
AT Bourdillon (8512_CR46) 2023; 133
KA Tarnowska (8512_CR66) 2022; 16
JG Greener (8512_CR14) 2022; 23
CM Chiesa-Estomba (8512_CR47) 2022; 84
H Habehh (8512_CR2) 2021; 22
J Adeoye (8512_CR44) 2021; 154
EC Compton (8512_CR26) 2023; 133
Z Wu (8512_CR5) 2021; 131
DM Zeitler (8512_CR37) 2023; 134
AJ Thirunavukarasu (8512_CR16) 2023; 29
MG Crowson (8512_CR21) 2023; 169
G Petruzzi (8512_CR48) 2023; 45
T Uhm (8512_CR42) 2021; 42
B Murdoch (8512_CR89) 2021; 22
J Wathour (8512_CR64) 2023; 44
J Chee (8512_CR75) 2023; 280
JPS Nielsen (8512_CR76) 2023; 143
X Hu (8512_CR52) 2023; 10
X Yang (8512_CR59) 2023; 12
References_xml – volume: 168
  start-page: 241
  year: 2023
  end-page: 247
  ident: CR53
  article-title: Using machine learning to predict operating room case duration: a case study in otolaryngology
  publication-title: Otolaryngol Head Neck Surg
  doi: 10.1177/01945998221076480
– volume: 169
  start-page: 41
  year: 2023
  end-page: 46
  ident: CR21
  article-title: "Human vs Machine" validation of a deep learning algorithm for pediatric middle ear infection diagnosis
  publication-title: Otolaryngol Head Neck Surg
  doi: 10.1177/01945998221119156
– volume: 84
  start-page: 278
  year: 2022
  end-page: 288
  ident: CR47
  article-title: Machine learning algorithms as a computer-assisted decision tool for oral cancer prognosis and management decisions: a systematic review
  publication-title: ORL J Otorhinolaryngol Relat Spec
  doi: 10.1159/000520672
– volume: 19
  start-page: 64
  year: 2019
  ident: CR7
  article-title: Machine learning in medicine: a practical introduction
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-019-0681-4
– volume: 12
  year: 2022
  ident: CR70
  article-title: An integrated analysis of prognostic signature and immune microenvironment in tongue squamous cell carcinoma
  publication-title: Front Oncol
  doi: 10.3389/fonc.2022.891716
– volume: 7
  year: 2023
  ident: CR74
  article-title: Diagnostic and management applications of ChatGPT in structured otolaryngology clinical scenarios
  publication-title: OTO Open
  doi: 10.1002/oto2.67
– volume: 1
  start-page: 25
  year: 2021
  ident: CR88
  article-title: Mitigating bias in machine learning for medicine
  publication-title: Commun Med (Lond)
  doi: 10.1038/s43856-021-00028-w
– volume: 44
  start-page: 975
  year: 2022
  end-page: 988
  ident: CR62
  article-title: Machine learning directed sentinel lymph node biopsy in cutaneous head and neck melanoma
  publication-title: Head Neck
  doi: 10.1002/hed.26993
– volume: 163
  start-page: 1123
  year: 2020
  end-page: 1133
  ident: CR63
  article-title: Artificial intelligence applications in otology: a state of the art review
  publication-title: Otolaryngol Head Neck Surg
  doi: 10.1177/0194599820931804
– volume: 10
  start-page: 1114922
  year: 2023
  ident: CR52
  article-title: Development and validation of a machine learning-based predictive model for secondary post-tonsillectomy hemorrhage
  publication-title: Front Surg
  doi: 10.3389/fsurg.2023.1114922
– volume: 619
  start-page: 357
  year: 2023
  end-page: 362
  ident: CR83
  article-title: Health system-scale language models are all-purpose prediction engines
  publication-title: Nature
  doi: 10.1038/s41586-023-06160-y
– volume: 10
  start-page: 67
  year: 2023
  ident: CR68
  article-title: Building a knowledge graph to enable precision medicine
  publication-title: Sci Data
  doi: 10.1038/s41597-023-01960-3
– volume: 14
  start-page: 339
  year: 2022
  end-page: 366
  ident: CR60
  article-title: Application of artificial intelligence for nasopharyngeal carcinoma management—a systematic review
  publication-title: Cancer Manag Res
  doi: 10.2147/CMAR.S341583
– volume: 14
  start-page: 3499
  year: 2022
  ident: CR22
  article-title: Efficacy of artificial intelligence-assisted discrimination of oral cancerous lesions from normal mucosa based on the oral mucosal image: a systematic review and meta-analysis
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14143499
– volume: 330
  start-page: 866
  year: 2023
  end-page: 869
  ident: CR15
  article-title: Creation and adoption of large language models in medicine
  publication-title: JAMA
  doi: 10.1001/jama.2023.14217
– volume: 43
  start-page: 1072
  year: 2022
  end-page: 1077
  ident: CR38
  article-title: Machine learning to predict hearing preservation after middle cranial fossa approach for sporadic vestibular schwannomas
  publication-title: Otol Neurotol
  doi: 10.1097/MAO.0000000000003642
– volume: 8
  start-page: 20539517211047734
  year: 2021
  ident: CR18
  article-title: The great Transformer: Examining the role of large language models in the political economy of AI
  publication-title: Big Data Soc
  doi: 10.1177/20539517211047734
– volume: 366
  start-page: 447
  year: 2019
  end-page: 453
  ident: CR86
  article-title: Dissecting racial bias in an algorithm used to manage the health of populations
  publication-title: Science
  doi: 10.1126/science.aax2342
– volume: 133
  start-page: 1652
  year: 2023
  end-page: 1659
  ident: CR46
  article-title: Novel machine learning model to predict interval of oral cancer recurrence for surveillance stratification
  publication-title: Laryngoscope
  doi: 10.1002/lary.30351
– ident: CR77
– volume: 33
  start-page: 2257
  year: 2022
  end-page: 2262
  ident: CR85
  article-title: Artificial intelligence image recognition of melanoma and basal cell carcinoma in racially diverse populations
  publication-title: J Dermatolog Treat
  doi: 10.1080/09546634.2021.1944970
– volume: 124
  year: 2022
  ident: CR11
  article-title: A multi-stage machine learning model for diagnosis of esophageal manometry
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2021.102233
– volume: 31
  start-page: 993
  year: 2022
  end-page: 1002
  ident: CR81
  article-title: Online discussions about tinnitus: what can we learn from natural language processing of reddit posts?
  publication-title: Am J Audiol
  doi: 10.1044/2021_AJA-21-00158
– volume: 22
  start-page: 291
  year: 2021
  end-page: 300
  ident: CR2
  article-title: Machine learning in healthcare
  publication-title: Curr Genom
  doi: 10.2174/1389202922666210705124359
– volume: 10
  start-page: 4245
  year: 2021
  ident: CR39
  article-title: Machine-learning points at endoscopic, quality of life, and olfactory parameters as outcome criteria for endoscopic paranasal sinus surgery in chronic rhinosinusitis
  publication-title: J Clin Med
  doi: 10.3390/jcm10184245
– volume: 132
  start-page: 1373
  year: 2023
  end-page: 1379
  ident: CR12
  article-title: Lymph node metastases in papillary thyroid carcinoma can be predicted by a convolutional neural network: a multi-institution study
  publication-title: Ann Otol Rhinol Laryngol
  doi: 10.1177/00034894231158464
– volume: 148
  start-page: 764
  year: 2022
  end-page: 772
  ident: CR56
  article-title: Development and validation of a machine learning algorithm predicting emergency department use and unplanned hospitalization in patients with head and neck cancer
  publication-title: JAMA Otolaryngol Head Neck Surg
  doi: 10.1001/jamaoto.2022.1629
– volume: 48
  start-page: 888
  issue: 6
  year: 2023
  end-page: 894
  ident: CR24
  article-title: An artificial intelligence algorithm for the classification of sphenoid sinus pneumatisation on sinus computed tomography scans
  publication-title: Clin Otolaryngol
  doi: 10.1111/coa.14088
– volume: 52
  start-page: 988
  issue: 10
  year: 2023
  end-page: 995
  ident: CR9
  article-title: Deep learning applied to the histopathological diagnosis of ameloblastomas and ameloblastic carcinomas
  publication-title: J Oral Pathol Med
  doi: 10.1111/jop.13481
– volume: 43
  year: 2022
  ident: CR29
  article-title: Development of a machine-learning based voice disorder screening tool
  publication-title: Am J Otolaryngol
  doi: 10.1016/j.amjoto.2021.103327
– volume: 13
  start-page: 1023
  year: 2023
  end-page: 1031
  ident: CR30
  article-title: Cough sounds in screening and diagnostics: a scoping review
  publication-title: Laryngoscope
– volume: 8
  start-page: 1189
  issue: 5
  year: 2023
  end-page: 1195
  ident: CR49
  article-title: Predicting synkinesis caused by Bell's palsy or Ramsay Hunt syndrome using machine learning-based logistic regression
  publication-title: Laryngosc Investig Otolaryngol
  doi: 10.1002/lio2.1145
– volume: 280
  start-page: 4687
  year: 2023
  end-page: 4689
  ident: CR75
  article-title: "Vertigo, likely peripheral": the dizzying rise of ChatGPT
  publication-title: Eur Arch Otorhinolaryngol
  doi: 10.1007/s00405-023-08135-1
– volume: 25
  start-page: 24
  year: 2019
  end-page: 29
  ident: CR13
  article-title: A guide to deep learning in healthcare
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0316-z
– volume: 143
  start-page: 779
  issue: 9
  year: 2023
  end-page: 782
  ident: CR76
  article-title: Validity of the large language model ChatGPT (GPT4) as a patient information source in otolaryngology by a variety of doctors in a tertiary otorhinolaryngology department
  publication-title: Acta Otolaryngol
  doi: 10.1080/00016489.2023.2254809
– volume: 16
  year: 2022
  ident: CR36
  article-title: Machine learning-based prediction of the outcomes of cochlear implantation in patients with cochlear nerve deficiency and normal cochlea: a 2-year follow-up of 70 children
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2022.895560
– volume: 134
  start-page: 926
  issue: 2
  year: 2023
  end-page: 936
  ident: CR37
  article-title: Predicting acoustic hearing preservation following cochlear implant surgery using machine learning
  publication-title: Laryngoscope
  doi: 10.1002/lary.30894
– volume: 38
  start-page: 1224
  year: 2023
  end-page: 1237
  ident: CR33
  article-title: A Systematic and universal artificial intelligence screening method for oropharyngeal dysphagia: improving diagnosis through risk management
  publication-title: Dysphagia
  doi: 10.1007/s00455-022-10547-w
– volume: 28
  start-page: 31
  year: 2022
  end-page: 38
  ident: CR10
  article-title: AI in health and medicine
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01614-0
– volume: 42
  year: 2021
  ident: CR42
  article-title: Predicting hearing recovery following treatment of idiopathic sudden sensorineural hearing loss with machine learning models
  publication-title: Am J Otolaryngol
  doi: 10.1016/j.amjoto.2020.102858
– volume: 160
  start-page: 1058
  year: 2019
  end-page: 1064
  ident: CR55
  article-title: Machine learning to predict delays in adjuvant radiation following surgery for head and neck cancer
  publication-title: Otolaryngol Head Neck Surg
  doi: 10.1177/0194599818823200
– volume: 70
  year: 2021
  ident: CR61
  article-title: A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: a multicentre study
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2021.103522
– volume: 178
  year: 2022
  ident: CR23
  article-title: Accuracy of artificial intelligence-assisted detection of oral squamous cell carcinoma: a systematic review and meta-analysis
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/j.critrevonc.2022.103777
– volume: 22
  start-page: 122
  year: 2021
  ident: CR89
  article-title: Privacy and artificial intelligence: challenges for protecting health information in a new era
  publication-title: BMC Med Ethics
  doi: 10.1186/s12910-021-00687-3
– volume: 23
  start-page: 40
  year: 2022
  end-page: 55
  ident: CR14
  article-title: A guide to machine learning for biologists
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-021-00407-0
– volume: 12
  start-page: 3077
  year: 2023
  ident: CR59
  article-title: Application of artificial intelligence to the diagnosis and therapy of nasopharyngeal carcinoma
  publication-title: J Clin Med
  doi: 10.3390/jcm12093077
– volume: 169
  start-page: 504
  year: 2023
  end-page: 513
  ident: CR43
  article-title: Machine learning prediction of objective hearing loss with demographics, clinical factors, and subjective hearing status
  publication-title: Otolaryngol Head Neck Surg
  doi: 10.1002/ohn.288
– volume: 132
  start-page: 1993
  year: 2022
  end-page: 2016
  ident: CR31
  article-title: Applications of artificial intelligence to office laryngoscopy: a scoping review
  publication-title: Laryngoscope
  doi: 10.1002/lary.29886
– volume: 29
  start-page: 65
  year: 2021
  end-page: 70
  ident: CR58
  article-title: Prospective study of artificial intelligence-based decision support to improve head and neck radiotherapy plan quality
  publication-title: Clin Transl Radiat Oncol
– volume: 168
  start-page: 319
  year: 2023
  end-page: 329
  ident: CR45
  article-title: Artificial intelligence and laryngeal cancer: from screening to prognosis: a state of the art review
  publication-title: Otolaryngol Head Neck Surg
  doi: 10.1177/01945998221110839
– volume: 52
  start-page: 7
  year: 2023
  ident: CR67
  article-title: The role of artificial intelligence in the treatment of obstructive sleep apnea
  publication-title: J Otolaryngol Head Neck Surg
  doi: 10.1186/s40463-023-00621-0
– volume: 16
  year: 2022
  ident: CR66
  article-title: A data-driven approach to clinical decision support in tinnitus retraining therapy
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2022.934433
– volume: 3
  year: 2020
  ident: CR4
  article-title: Machine learning-guided adjuvant treatment of head and neck cancer
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2020.25881
– volume: 147
  start-page: EL264
  year: 2020
  ident: CR28
  article-title: Estimation of vocal fold physiology from voice acoustics using machine learning
  publication-title: J Acoust Soc Am
  doi: 10.1121/10.0000927
– volume: 43
  start-page: 788
  year: 2021
  end-page: 797
  ident: CR54
  article-title: Machine learning models to predict length of stay and discharge destination in complex head and neck surgery
  publication-title: Head Neck
  doi: 10.1002/hed.26528
– volume: 49
  start-page: 564
  year: 2022
  end-page: 570
  ident: CR65
  article-title: Machine learning method intervention: determine proper screening tests for vestibular disorders
  publication-title: Auris Nasus Larynx
  doi: 10.1016/j.anl.2021.10.003
– volume: 13
  start-page: 702
  year: 2023
  ident: CR32
  article-title: Machine learning identification of obstructive sleep apnea severity through the patient clinical features: a retrospective study
  publication-title: Life (Basel)
– volume: 45
  start-page: 2068
  year: 2023
  end-page: 2078
  ident: CR48
  article-title: Machine learning in laryngeal cancer: a pilot study to predict oncological outcomes and the role of adverse features
  publication-title: Head Neck
  doi: 10.1002/hed.27434
– volume: 388
  start-page: 1233
  year: 2023
  end-page: 1239
  ident: CR78
  article-title: Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for Medicine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMsr2214184
– volume: 13
  start-page: 326
  year: 2020
  end-page: 339
  ident: CR84
  article-title: Recent advances in the application of artificial intelligence in otorhinolaryngology-head and neck surgery
  publication-title: Clin Exp Otorhinolaryngol
  doi: 10.21053/ceo.2020.00654
– volume: 116
  year: 2021
  ident: CR72
  article-title: Explaining heterogeneity of individual treatment causal effects by subgroup discovery: an observational case study in antibiotics treatment of acute rhino-sinusitis
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2021.102080
– volume: 95
  start-page: 52
  year: 2023
  end-page: 74
  ident: CR69
  article-title: Enhancing head and neck tumor management with artificial intelligence: integration and perspectives
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2023.07.002
– ident: CR79
– volume: 168
  year: 2022
  ident: CR3
  article-title: An interpretable machine learning prognostic system for risk stratification in oropharyngeal cancer
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2022.104896
– volume: 2
  start-page: 160
  year: 2021
  ident: CR1
  article-title: Machine learning: algorithms, real-world applications and research directions
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-021-00592-x
– volume: 280
  start-page: 529
  year: 2023
  end-page: 542
  ident: CR25
  article-title: Artificial intelligence, machine learning, and deep learning in rhinology: a systematic review
  publication-title: Eur Arch Otorhinolaryngol
  doi: 10.1007/s00405-022-07701-3
– volume: 173
  year: 2023
  ident: CR80
  article-title: Harnessing the power of electronic health records and open natural language data mining to capture meaningful patient experience during routine clinical care
  publication-title: Int J Pediatr Otorhinolaryngol
  doi: 10.1016/j.ijporl.2023.111698
– volume: 4
  year: 2023
  ident: CR87
  article-title: Awareness of racial and ethnic bias and potential solutions to address bias with use of health care algorithms
  publication-title: JAMA Health Forum
  doi: 10.1001/jamahealthforum.2023.1197
– volume: 131
  start-page: E2344
  year: 2021
  end-page: E2351
  ident: CR5
  article-title: Deep learning for classification of pediatric otitis media
  publication-title: Laryngoscope
  doi: 10.1002/lary.29302
– volume: 11
  start-page: 800
  year: 2019
  ident: CR41
  article-title: Machine-learning-based prediction of treatment outcomes using MR imaging-derived quantitative tumor information in patients with sinonasal squamous cell carcinomas: a preliminary study
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers11060800
– volume: 29
  start-page: 496
  year: 2023
  end-page: 502
  ident: CR57
  article-title: Artificial intelligence-supported applications in head and neck cancer radiotherapy treatment planning and dose optimisation
  publication-title: Radiography (Lond)
  doi: 10.1016/j.radi.2023.02.018
– volume: 620
  start-page: 172
  year: 2023
  end-page: 180
  ident: CR19
  article-title: Large language models encode clinical knowledge
  publication-title: Nature
  doi: 10.1038/s41586-023-06291-2
– volume: 154
  year: 2021
  ident: CR44
  article-title: Prediction models applying machine learning to oral cavity cancer outcomes: a systematic review
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2021.104557
– ident: CR73
– volume: 41
  start-page: e1013
  year: 2020
  end-page: e1023
  ident: CR35
  article-title: Predicting postoperative cochlear implant performance using supervised machine learning
  publication-title: Otol Neurotol
  doi: 10.1097/MAO.0000000000002710
– volume: 137
  start-page: 1384
  issue: 12
  year: 2023
  end-page: 1388
  ident: CR82
  article-title: A natural language processing approach to uncover patterns among online ratings of otolaryngologists
  publication-title: J Laryngol Otol
  doi: 10.1017/S0022215123000476
– volume: 133
  start-page: 1952
  year: 2023
  end-page: 1960
  ident: CR26
  article-title: Developing an artificial intelligence tool to predict vocal cord pathology in primary care settings
  publication-title: Laryngoscope
  doi: 10.1002/lary.30432
– volume: 130
  start-page: E843
  year: 2020
  end-page: E849
  ident: CR51
  article-title: Machine learning for predicting complications in head and neck microvascular free tissue transfer
  publication-title: Laryngoscope
  doi: 10.1002/lary.28508
– volume: 10
  start-page: 426
  year: 2023
  ident: CR27
  article-title: Machine learning assessment of spasmodic dysphonia based on acoustical and perceptual parameters
  publication-title: Bioengineering (Basel)
  doi: 10.3390/bioengineering10040426
– volume: 5
  start-page: 194
  year: 2022
  ident: CR17
  article-title: A large language model for electronic health records
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-022-00742-2
– ident: CR34
– volume: 13
  start-page: 7264
  year: 2023
  ident: CR6
  article-title: Voice disorder classification using convolutional neural network based on deep transfer learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-34461-9
– volume: 13
  start-page: 2736
  year: 2023
  ident: CR50
  article-title: A machine learning approach to assess patients with deep neck infection progression to descending mediastinitis: preliminary results
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics13172736
– volume: 44
  start-page: 209
  year: 2023
  end-page: 215
  ident: CR64
  article-title: Effect of a CI programming fitting tool with artificial intelligence in experienced cochlear implant patients
  publication-title: Otol Neurotol
  doi: 10.1097/MAO.0000000000003810
– volume: 21
  start-page: 1167
  year: 2021
  ident: CR71
  article-title: Predicting response to immunotherapy plus chemotherapy in patients with esophageal squamous cell carcinoma using non-invasive Radiomic biomarkers
  publication-title: BMC Cancer
  doi: 10.1186/s12885-021-08899-x
– volume: 29
  start-page: 1930
  year: 2023
  end-page: 1940
  ident: CR16
  article-title: Large language models in medicine
  publication-title: Nat Med
  doi: 10.1038/s41591-023-02448-8
– volume: 59
  start-page: 173
  year: 2021
  end-page: 180
  ident: CR40
  article-title: Subepithelial neutrophil infiltration as a predictor of the surgical outcome of chronic rhinosinusitis with nasal polyps
  publication-title: Rhinology
– volume: 15
  year: 2020
  ident: CR20
  article-title: Computer-aided diagnosis of external and middle ear conditions: a machine learning approach
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0229226
– volume: 322
  start-page: 1806
  year: 2019
  end-page: 1816
  ident: CR8
  article-title: How to read articles that use machine learning: users' guides to the medical literature
  publication-title: JAMA
  doi: 10.1001/jama.2019.16489
– volume: 620
  start-page: 172
  year: 2023
  ident: 8512_CR19
  publication-title: Nature
  doi: 10.1038/s41586-023-06291-2
– volume: 33
  start-page: 2257
  year: 2022
  ident: 8512_CR85
  publication-title: J Dermatolog Treat
  doi: 10.1080/09546634.2021.1944970
– volume: 147
  start-page: EL264
  year: 2020
  ident: 8512_CR28
  publication-title: J Acoust Soc Am
  doi: 10.1121/10.0000927
– volume: 22
  start-page: 291
  year: 2021
  ident: 8512_CR2
  publication-title: Curr Genom
  doi: 10.2174/1389202922666210705124359
– volume: 19
  start-page: 64
  year: 2019
  ident: 8512_CR7
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-019-0681-4
– volume: 31
  start-page: 993
  year: 2022
  ident: 8512_CR81
  publication-title: Am J Audiol
  doi: 10.1044/2021_AJA-21-00158
– volume: 168
  start-page: 319
  year: 2023
  ident: 8512_CR45
  publication-title: Otolaryngol Head Neck Surg
  doi: 10.1177/01945998221110839
– volume: 130
  start-page: E843
  year: 2020
  ident: 8512_CR51
  publication-title: Laryngoscope
  doi: 10.1002/lary.28508
– volume: 3
  year: 2020
  ident: 8512_CR4
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2020.25881
– volume: 388
  start-page: 1233
  year: 2023
  ident: 8512_CR78
  publication-title: N Engl J Med
  doi: 10.1056/NEJMsr2214184
– volume: 173
  year: 2023
  ident: 8512_CR80
  publication-title: Int J Pediatr Otorhinolaryngol
  doi: 10.1016/j.ijporl.2023.111698
– volume: 13
  start-page: 326
  year: 2020
  ident: 8512_CR84
  publication-title: Clin Exp Otorhinolaryngol
  doi: 10.21053/ceo.2020.00654
– volume: 5
  start-page: 194
  year: 2022
  ident: 8512_CR17
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-022-00742-2
– volume: 29
  start-page: 496
  year: 2023
  ident: 8512_CR57
  publication-title: Radiography (Lond)
  doi: 10.1016/j.radi.2023.02.018
– volume: 23
  start-page: 40
  year: 2022
  ident: 8512_CR14
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-021-00407-0
– volume: 13
  start-page: 702
  year: 2023
  ident: 8512_CR32
  publication-title: Life (Basel)
– ident: 8512_CR73
  doi: 10.1007/s00405-023-08267-4
– volume: 7
  year: 2023
  ident: 8512_CR74
  publication-title: OTO Open
  doi: 10.1002/oto2.67
– volume: 132
  start-page: 1993
  year: 2022
  ident: 8512_CR31
  publication-title: Laryngoscope
  doi: 10.1002/lary.29886
– volume: 45
  start-page: 2068
  year: 2023
  ident: 8512_CR48
  publication-title: Head Neck
  doi: 10.1002/hed.27434
– volume: 43
  start-page: 788
  year: 2021
  ident: 8512_CR54
  publication-title: Head Neck
  doi: 10.1002/hed.26528
– volume: 16
  year: 2022
  ident: 8512_CR66
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2022.934433
– volume: 41
  start-page: e1013
  year: 2020
  ident: 8512_CR35
  publication-title: Otol Neurotol
  doi: 10.1097/MAO.0000000000002710
– volume: 134
  start-page: 926
  issue: 2
  year: 2023
  ident: 8512_CR37
  publication-title: Laryngoscope
  doi: 10.1002/lary.30894
– volume: 10
  start-page: 4245
  year: 2021
  ident: 8512_CR39
  publication-title: J Clin Med
  doi: 10.3390/jcm10184245
– volume: 143
  start-page: 779
  issue: 9
  year: 2023
  ident: 8512_CR76
  publication-title: Acta Otolaryngol
  doi: 10.1080/00016489.2023.2254809
– volume: 29
  start-page: 1930
  year: 2023
  ident: 8512_CR16
  publication-title: Nat Med
  doi: 10.1038/s41591-023-02448-8
– volume: 13
  start-page: 2736
  year: 2023
  ident: 8512_CR50
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics13172736
– volume: 366
  start-page: 447
  year: 2019
  ident: 8512_CR86
  publication-title: Science
  doi: 10.1126/science.aax2342
– volume: 137
  start-page: 1384
  issue: 12
  year: 2023
  ident: 8512_CR82
  publication-title: J Laryngol Otol
  doi: 10.1017/S0022215123000476
– volume: 28
  start-page: 31
  year: 2022
  ident: 8512_CR10
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01614-0
– ident: 8512_CR77
  doi: 10.1007/s00405-023-08219-y
– volume: 38
  start-page: 1224
  year: 2023
  ident: 8512_CR33
  publication-title: Dysphagia
  doi: 10.1007/s00455-022-10547-w
– volume: 42
  year: 2021
  ident: 8512_CR42
  publication-title: Am J Otolaryngol
  doi: 10.1016/j.amjoto.2020.102858
– volume: 70
  year: 2021
  ident: 8512_CR61
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2021.103522
– volume: 154
  year: 2021
  ident: 8512_CR44
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2021.104557
– volume: 178
  year: 2022
  ident: 8512_CR23
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/j.critrevonc.2022.103777
– volume: 2
  start-page: 160
  year: 2021
  ident: 8512_CR1
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-021-00592-x
– volume: 12
  year: 2022
  ident: 8512_CR70
  publication-title: Front Oncol
  doi: 10.3389/fonc.2022.891716
– volume: 1
  start-page: 25
  year: 2021
  ident: 8512_CR88
  publication-title: Commun Med (Lond)
  doi: 10.1038/s43856-021-00028-w
– volume: 131
  start-page: E2344
  year: 2021
  ident: 8512_CR5
  publication-title: Laryngoscope
  doi: 10.1002/lary.29302
– volume: 10
  start-page: 1114922
  year: 2023
  ident: 8512_CR52
  publication-title: Front Surg
  doi: 10.3389/fsurg.2023.1114922
– volume: 330
  start-page: 866
  year: 2023
  ident: 8512_CR15
  publication-title: JAMA
  doi: 10.1001/jama.2023.14217
– volume: 8
  start-page: 205395172110477
  year: 2021
  ident: 8512_CR18
  publication-title: Big Data Soc
  doi: 10.1177/20539517211047734
– volume: 44
  start-page: 209
  year: 2023
  ident: 8512_CR64
  publication-title: Otol Neurotol
  doi: 10.1097/MAO.0000000000003810
– volume: 48
  start-page: 888
  issue: 6
  year: 2023
  ident: 8512_CR24
  publication-title: Clin Otolaryngol
  doi: 10.1111/coa.14088
– volume: 169
  start-page: 504
  year: 2023
  ident: 8512_CR43
  publication-title: Otolaryngol Head Neck Surg
  doi: 10.1002/ohn.288
– volume: 280
  start-page: 4687
  year: 2023
  ident: 8512_CR75
  publication-title: Eur Arch Otorhinolaryngol
  doi: 10.1007/s00405-023-08135-1
– volume: 25
  start-page: 24
  year: 2019
  ident: 8512_CR13
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0316-z
– volume: 13
  start-page: 7264
  year: 2023
  ident: 8512_CR6
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-34461-9
– ident: 8512_CR34
– volume: 148
  start-page: 764
  year: 2022
  ident: 8512_CR56
  publication-title: JAMA Otolaryngol Head Neck Surg
  doi: 10.1001/jamaoto.2022.1629
– volume: 133
  start-page: 1652
  year: 2023
  ident: 8512_CR46
  publication-title: Laryngoscope
  doi: 10.1002/lary.30351
– volume: 619
  start-page: 357
  year: 2023
  ident: 8512_CR83
  publication-title: Nature
  doi: 10.1038/s41586-023-06160-y
– volume: 59
  start-page: 173
  year: 2021
  ident: 8512_CR40
  publication-title: Rhinology
– volume: 12
  start-page: 3077
  year: 2023
  ident: 8512_CR59
  publication-title: J Clin Med
  doi: 10.3390/jcm12093077
– volume: 14
  start-page: 339
  year: 2022
  ident: 8512_CR60
  publication-title: Cancer Manag Res
  doi: 10.2147/CMAR.S341583
– volume: 168
  start-page: 241
  year: 2023
  ident: 8512_CR53
  publication-title: Otolaryngol Head Neck Surg
  doi: 10.1177/01945998221076480
– volume: 10
  start-page: 67
  year: 2023
  ident: 8512_CR68
  publication-title: Sci Data
  doi: 10.1038/s41597-023-01960-3
– volume: 52
  start-page: 988
  issue: 10
  year: 2023
  ident: 8512_CR9
  publication-title: J Oral Pathol Med
  doi: 10.1111/jop.13481
– volume: 280
  start-page: 529
  year: 2023
  ident: 8512_CR25
  publication-title: Eur Arch Otorhinolaryngol
  doi: 10.1007/s00405-022-07701-3
– volume: 95
  start-page: 52
  year: 2023
  ident: 8512_CR69
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2023.07.002
– volume: 133
  start-page: 1952
  year: 2023
  ident: 8512_CR26
  publication-title: Laryngoscope
  doi: 10.1002/lary.30432
– volume: 21
  start-page: 1167
  year: 2021
  ident: 8512_CR71
  publication-title: BMC Cancer
  doi: 10.1186/s12885-021-08899-x
– volume: 22
  start-page: 122
  year: 2021
  ident: 8512_CR89
  publication-title: BMC Med Ethics
  doi: 10.1186/s12910-021-00687-3
– volume: 43
  start-page: 1072
  year: 2022
  ident: 8512_CR38
  publication-title: Otol Neurotol
  doi: 10.1097/MAO.0000000000003642
– ident: 8512_CR79
– volume: 132
  start-page: 1373
  year: 2023
  ident: 8512_CR12
  publication-title: Ann Otol Rhinol Laryngol
  doi: 10.1177/00034894231158464
– volume: 15
  year: 2020
  ident: 8512_CR20
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0229226
– volume: 4
  year: 2023
  ident: 8512_CR87
  publication-title: JAMA Health Forum
  doi: 10.1001/jamahealthforum.2023.1197
– volume: 168
  year: 2022
  ident: 8512_CR3
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2022.104896
– volume: 10
  start-page: 426
  year: 2023
  ident: 8512_CR27
  publication-title: Bioengineering (Basel)
  doi: 10.3390/bioengineering10040426
– volume: 14
  start-page: 3499
  year: 2022
  ident: 8512_CR22
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14143499
– volume: 43
  year: 2022
  ident: 8512_CR29
  publication-title: Am J Otolaryngol
  doi: 10.1016/j.amjoto.2021.103327
– volume: 52
  start-page: 7
  year: 2023
  ident: 8512_CR67
  publication-title: J Otolaryngol Head Neck Surg
  doi: 10.1186/s40463-023-00621-0
– volume: 29
  start-page: 65
  year: 2021
  ident: 8512_CR58
  publication-title: Clin Transl Radiat Oncol
– volume: 116
  year: 2021
  ident: 8512_CR72
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2021.102080
– volume: 160
  start-page: 1058
  year: 2019
  ident: 8512_CR55
  publication-title: Otolaryngol Head Neck Surg
  doi: 10.1177/0194599818823200
– volume: 124
  year: 2022
  ident: 8512_CR11
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2021.102233
– volume: 13
  start-page: 1023
  year: 2023
  ident: 8512_CR30
  publication-title: Laryngoscope
– volume: 11
  start-page: 800
  year: 2019
  ident: 8512_CR41
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers11060800
– volume: 49
  start-page: 564
  year: 2022
  ident: 8512_CR65
  publication-title: Auris Nasus Larynx
  doi: 10.1016/j.anl.2021.10.003
– volume: 322
  start-page: 1806
  year: 2019
  ident: 8512_CR8
  publication-title: JAMA
  doi: 10.1001/jama.2019.16489
– volume: 44
  start-page: 975
  year: 2022
  ident: 8512_CR62
  publication-title: Head Neck
  doi: 10.1002/hed.26993
– volume: 16
  year: 2022
  ident: 8512_CR36
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2022.895560
– volume: 84
  start-page: 278
  year: 2022
  ident: 8512_CR47
  publication-title: ORL J Otorhinolaryngol Relat Spec
  doi: 10.1159/000520672
– volume: 163
  start-page: 1123
  year: 2020
  ident: 8512_CR63
  publication-title: Otolaryngol Head Neck Surg
  doi: 10.1177/0194599820931804
– volume: 8
  start-page: 1189
  issue: 5
  year: 2023
  ident: 8512_CR49
  publication-title: Laryngosc Investig Otolaryngol
  doi: 10.1002/lio2.1145
– volume: 169
  start-page: 41
  year: 2023
  ident: 8512_CR21
  publication-title: Otolaryngol Head Neck Surg
  doi: 10.1177/01945998221119156
SSID ssj0005493
Score 2.4559183
SecondaryResourceType review_article
Snippet Purpose Despite the robust expansion of research surrounding artificial intelligence (AI) and machine learning (ML) and their applications to medicine, these...
Despite the robust expansion of research surrounding artificial intelligence (AI) and machine learning (ML) and their applications to medicine, these...
PurposeDespite the robust expansion of research surrounding artificial intelligence (AI) and machine learning (ML) and their applications to medicine, these...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2723
SubjectTerms Artificial Intelligence
Head and Neck Surgery
Humans
Machine Learning
Medicine
Medicine & Public Health
Miscellaneous
Neurosurgery
Otolaryngologists
Otolaryngology
Otorhinolaryngology
Surgeons
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RLap6AfoDLJTKSL1Rq5vY-eOCFtSKQ7uqUIV6i7y2s6oKTrvJInHjBbjxhDwJM443K1TRC6ccYjtW5vN47Jn5BuCgMtmoUNOIE9EJl5nOubK54MLoSOe5TgrPW_D5NJtM8svL4jxcuDUhrHKpE72iNrWmO_IjgbavkClul-9ubjlVjSLvaiihsQbrxFQmB7D-_nhy_mkV5CE72l3chLmUWRbSZnzyHOGXspMlJ7Mj5vLvremOvXnHV-q3oJPH_zv5J_AoGJ9s3KFlCx5Ytw0bZ8G9vgM_x45dUei66ThlWVuzrz7a0rJQXmLGlDNs5smqSVMygl7HQkFde3pPhsYwq1s6OH93s7pLNGp-__iFyt_4MZzV16yhrGwE_lummFPzMGaXT7MLFyfHFx8-8lCvgWuRJS0v4lFVJbiOVRypCNEhlIm0MkqhFZaMpBSpFVS_SiA-UlmMTCq1kqgzjcRjrHgKA1c7-xyYRqjkskJTDh82VoWx1TTVRseF0mYqhhAtJVXqwGVOJTW-lD0Ls5duidItvXRLOYQ3fZ-bjsnj3tZ7S0mWYVU35UqMQ3jdv8b1SE4W5Wy9wDY4kqDIl2IIzzrg9J8T-B-ESHD6h0skrQb_91xe3D-Xl7AZexRTFOYeDNr5wr6Ch_pbe9XM98OK-ANbZBPx
  priority: 102
  providerName: ProQuest
Title An introduction to machine learning and generative artificial intelligence for otolaryngologists—head and neck surgeons: a narrative review
URI https://link.springer.com/article/10.1007/s00405-024-08512-4
https://www.ncbi.nlm.nih.gov/pubmed/38393353
https://www.proquest.com/docview/3255346846
https://www.proquest.com/docview/3040320029
Volume 281
WOSCitedRecordID wos001172207700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1434-4726
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005493
  issn: 0937-4477
  databaseCode: 7X7
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1434-4726
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005493
  issn: 0937-4477
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1434-4726
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005493
  issn: 0937-4477
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFL3iUVVsCn1Ah8fIlbprLU1i52F2tAJ1QUeIIjS7yGM7IwQ4aBIqseMLuuoH9Fv4FL6k144TVNFWajfJIvaNZZ_7sHzvMcDbUmcjIacRdUQnlGcqp9LkjDKtIpXnKhGet-D0MBuP88lEHIWisLrLdu-OJL2l7ovdHN5cNTGnLkyIKV-EZXR3uVPH4y-nD4kdvKXaRcdLOc-yUCrzexm_uqNHMeaj81Hvdg5W_2_Aa_AshJlkr8XFc1gw9gU8_RwO0l_Ctz1LzlySum7ZY0lTkUufV2lIuEhiRqTVZOZpqZ1NJA5kLd-E69oTed79wLiXVI3bI9_YWdXWFNX3t9_RzmsvxBp1TmpXgI0Y3yWSWDkPQtvSmVdwcrB_8vETDVczUMWypKEiHpVlgior40hGCAQmdaSklhIDrmTEOUsNc1dVMYRCysVIp1xJjuZRc9yxsnVYspU1r4EoREXOS4za8GViKbQpp6nSKhZS6SkbQNQtUKECbbm7PeOi6AmX_TwXOM-Fn-eCD-Bd3-eqJe34a-vtbt2LoMB1wXCrxXiK0dkA3vSfUfXceYq0prrGNiiJuSQXMYCNFi_973DjLxhLcPjvO3A8CP_zWDb_rfkWrMQeXy4BcxuWmvm12YEn6mtzVs-HsJhNMv_Mh7D8YX98dDz0qvIT6ngNIg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VBUEv_NMuFDASnMDqJnb-kBCqgKpVtysOK7S3yGs7q4o2aTcpqDdegBuvwUvxJMzYSVaoorceOOWQ2LGdb35iz3wD8KIwyTBTs4AT0QmXiU65sqngwuhAp6mOMsdb8HmUjMfpdJp9WoFfXS4MhVV2OtEpalNp2iPfEuj7ChmjuXx3csqpahSdrnYlNDws9u35N_xlq9_ufcDv-zIMdz5O3u_ytqoA1yKJGp6Fw6KIEG0qDFSAcxDKBFoZpdBXiIZSitgKqrIkcBaxzIYmllpJlGwjpeM5QI1_DdV4QhFkyTRZRpRIz_GLFp9LmSRtjo7L1CNhoVRoycnHCbn82w5ecG4vHMw6e7dz-z9bqTtwq3Ws2baXhLuwYst7cOOgDR24Dz-2S3ZIYfnG8-WypmLHLpLUsrZ0xpyp0rC5I-ImK8BIrDzDBjXtqUsZOvqsamhT4LycVz6Jqv79_ScaNuP6KK3-wmrKOEehfsMUK9Wi7dPnCj2AyVWsxUNYLavSbgDTKAapLNBNxYsNVWZsMYu10WGmtJmJAQQdMHLd8rRTuZCjvGeYdmDKEUy5A1MuB_Cqb3PiWUoufXqzA07eaqw6X6JmAM_726hr6ABJlbY6w2ewJ0FRPdkA1j1O-9cJXAchIhz-6w64y87_PZZHl4_lGdzcnRyM8tHeeP8xrIVOgCjadBNWm8WZfQLX9dfmsF48daLIIL9iQP8Ba4dtAw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fTxQxEJ8oEsKLKAKeItaEN2m43Xb_-UaAi0S8kEAIb5te270QtEvuFhPf_AQ--QH8LH4UP4kz7d6iQUmIT_uw7Wwz-5t2mpn5DcBmZbJ-oUYRJ6ITLjOdc2VzwYXRkc5znRSet-D0MBsO87Oz4ui3Kn6f7T4LSYaaBmJpcs32pam2u8I3wh5VFktOLkPM5X14IKlpEN3Xj0-vkzxkoN3FQ5hLmWVt2czfZfx5NN3wN2_ESv0RNFj6_8U_goet-8l2Al4ewz3rlmHhfRtgfwJfdxw7p-R1E1hlWVOzjz7f0rK2wcSYKWfY2NNV017JCHyBh4KmdgSfP76jP8zqhu7On924DrVG059fvuH-b7wQZ_UFm1JhNmL_DVPMqUkrNJTUrMDJYP9k9y1vWzZwLbKk4UXcr6oETVnFkYoQIEKZSCujFDpiSV9KkVpBLawEQiSVRd-kUiuJ26aReJMVqzDnamefAtOIllxW6M3hw8aqMLYapdrouFDajEQPotnPKnVLZ05dNT6UHRGz13OJei69nkvZg9fdnMtA5nHr6PUZBsrWsKelwCuYkCl6bT141b1Gk6Q4i3K2vsIxKElQ8kvRg7WAne5zAvUgRILL35oB5Vr4v9fy7G7DX8LC0d6gPDwYvnsOi7GHGuVorsNcM7myL2Bef2rOp5MNby2_ADBVFYE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+introduction+to+machine+learning+and+generative+artificial+intelligence%C2%A0for+otolaryngologists%E2%80%94head+and+neck+surgeons%3A+a+narrative+review&rft.jtitle=European+archives+of+oto-rhino-laryngology&rft.au=Alter%2C+Isaac+L.&rft.au=Chan%2C+Karly&rft.au=Lechien%2C+J%C3%A9rome&rft.au=Rameau%2C+Ana%C3%AFs&rft.date=2024-05-01&rft.issn=0937-4477&rft.eissn=1434-4726&rft.volume=281&rft.issue=5&rft.spage=2723&rft.epage=2731&rft_id=info:doi/10.1007%2Fs00405-024-08512-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00405_024_08512_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0937-4477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0937-4477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0937-4477&client=summon