Model Predictive Control for Smart Buildings: Applications and Innovations in Energy Management

The integration of advanced control strategies into building energy management systems (BEMS) is essential for achieving energy efficiency and sustaining thermal comfort. Model predictive control (MPC) has gained significant traction as a model-based approach capable of optimizing control actions by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Buildings (Basel) Jg. 15; H. 18; S. 3298
Hauptverfasser: Michailidis, Panagiotis, Michailidis, Iakovos, Minelli, Federico, Coban, Hasan Huseyin, Kosmatopoulos, Elias
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.09.2025
Schlagworte:
ISSN:2075-5309, 2075-5309
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The integration of advanced control strategies into building energy management systems (BEMS) is essential for achieving energy efficiency and sustaining thermal comfort. Model predictive control (MPC) has gained significant traction as a model-based approach capable of optimizing control actions by predicting future system behavior under dynamic conditions. The current review offers an in-depth analysis of MPC, combining its core theoretical foundations with a broad survey of impactful applications in buildings, for extracting key breakthroughs and trends that have defined the field over the past decade. Emphasis is placed on multiverse MPC configurations and their application across various BEMS frameworks integrating HVACs, energy storage, renewable energy, domestic hot water, electric vehicle charging, and lighting systems. A detailed evaluation of MPC key attributes is then conducted, based on essential aspects of MPC, such as algorithms, optimization solvers, baselines, performance indexes, and building types, as well as simulation tools that support system modeling and real-time validation. The study concludes by outlining key research trends and proposing future directions, with a strong emphasis on addressing real-world deployment challenges and advancing scalable, interoperable solutions on smart building ecosystems. According to the evaluation, MPC research is shifting from simple white-box setups to gray- and black-box models paired with metaheuristic or hybrid solvers, leveraging machine learning for forecasting and multi-objective optimization, but still lacking robustness, benchmarks, and real-world validation. Consequently, next-generation MPC is anticipated to evolve into adaptive, hybrid, and multi-agent frameworks that integrate forecasting and control, embed occupant behavior, enable grid-interactive flexibility, and support lightweight, explainable deployment in real building environments.
AbstractList The integration of advanced control strategies into building energy management systems (BEMS) is essential for achieving energy efficiency and sustaining thermal comfort. Model predictive control (MPC) has gained significant traction as a model-based approach capable of optimizing control actions by predicting future system behavior under dynamic conditions. The current review offers an in-depth analysis of MPC, combining its core theoretical foundations with a broad survey of impactful applications in buildings, for extracting key breakthroughs and trends that have defined the field over the past decade. Emphasis is placed on multiverse MPC configurations and their application across various BEMS frameworks integrating HVACs, energy storage, renewable energy, domestic hot water, electric vehicle charging, and lighting systems. A detailed evaluation of MPC key attributes is then conducted, based on essential aspects of MPC, such as algorithms, optimization solvers, baselines, performance indexes, and building types, as well as simulation tools that support system modeling and real-time validation. The study concludes by outlining key research trends and proposing future directions, with a strong emphasis on addressing real-world deployment challenges and advancing scalable, interoperable solutions on smart building ecosystems. According to the evaluation, MPC research is shifting from simple white-box setups to gray- and black-box models paired with metaheuristic or hybrid solvers, leveraging machine learning for forecasting and multi-objective optimization, but still lacking robustness, benchmarks, and real-world validation. Consequently, next-generation MPC is anticipated to evolve into adaptive, hybrid, and multi-agent frameworks that integrate forecasting and control, embed occupant behavior, enable grid-interactive flexibility, and support lightweight, explainable deployment in real building environments.
Audience Academic
Author Michailidis, Panagiotis
Kosmatopoulos, Elias
Minelli, Federico
Michailidis, Iakovos
Coban, Hasan Huseyin
Author_xml – sequence: 1
  givenname: Panagiotis
  orcidid: 0000-0001-7148-7010
  surname: Michailidis
  fullname: Michailidis, Panagiotis
– sequence: 2
  givenname: Iakovos
  orcidid: 0000-0001-7295-8806
  surname: Michailidis
  fullname: Michailidis, Iakovos
– sequence: 3
  givenname: Federico
  orcidid: 0000-0002-5045-6474
  surname: Minelli
  fullname: Minelli, Federico
– sequence: 4
  givenname: Hasan Huseyin
  orcidid: 0000-0002-5284-0568
  surname: Coban
  fullname: Coban, Hasan Huseyin
– sequence: 5
  givenname: Elias
  orcidid: 0000-0002-3735-4238
  surname: Kosmatopoulos
  fullname: Kosmatopoulos, Elias
BookMark eNplkUtrGzEUhUVwIKmTH5CdoGsneoxe2bkmbQ0JLSRZC410Z5AZS65mbMi_rxq7oVBpIZ3LvR9HOp_QLOUECN1Qcsu5IXftPg4hpn6kgmrOjD5Dl4wosRCcmNk_9wt0PY4bUpcWjInmEtmnHGDAPwuE6Kd4ALzKaSp5wF0u-HnryoS__MXf4-VuN0TvppjTiF0KeJ1SPpx0TPghQenf8JNLroctpOkKnXduGOH6dM7R69eHl9X3xeOPb-vV8nHhuRLTQhMHyjPJnTZOSlW19xCMb2UISgAxwSjFWQssUNd0vpEBhHKCBMG1Bj5H6yM3ZLexuxKr8zebXbTvhVx6W58S_QBWKu8FaQOh4BttgpaMt6rKQFmjjK6sz0fWruRfexgnu8n7kqp9y-unNUpRSWvX7bGrdxUaU5en4nzdAbbR14C6WOtLLZSgREpZB-hxwJc8jgW6D5uU2D852v9y5L8BLK2UXA
Cites_doi 10.3390/buildings14072212
10.1016/j.applthermaleng.2019.02.107
10.1016/j.apenergy.2015.11.065
10.1016/j.apenergy.2021.116608
10.3390/buildings13123084
10.1016/j.apenergy.2016.01.088
10.1016/j.apenergy.2023.121165
10.1109/PC.2013.6581444
10.3390/en18174537
10.3390/a16050243
10.1016/j.apenergy.2019.03.205
10.3390/buildings12111879
10.1016/j.asoc.2015.09.022
10.1016/j.apenergy.2017.06.040
10.1016/j.enbuild.2022.112732
10.3390/en17030570
10.1109/CDC.2010.5718175
10.1016/j.scs.2018.05.044
10.1016/j.apenergy.2020.114561
10.1016/j.apenergy.2017.11.046
10.3390/pr10040667
10.1016/j.aej.2024.02.033
10.1016/j.apenergy.2019.113920
10.1016/j.enbuild.2017.04.027
10.1016/j.jobe.2022.105067
10.3390/en17194835
10.1016/j.enbuild.2017.02.035
10.1016/j.enbuild.2017.02.012
10.1016/j.apenergy.2021.117227
10.1109/JIOT.2019.2900558
10.3390/en13236228
10.1016/j.apenergy.2020.115661
10.1016/j.enconman.2022.115995
10.1016/j.apenergy.2015.05.096
10.3390/en16207124
10.1088/1742-6596/2042/1/012043
10.1201/9780367567699-25
10.1016/j.enbuild.2024.114461
10.1016/j.applthermaleng.2018.11.063
10.1080/17512549.2015.1079240
10.1016/j.energy.2025.135958
10.1109/TCST.2015.2415411
10.1016/j.applthermaleng.2016.11.141
10.34659/eis.2024.89.2.748
10.3390/en18071724
10.1016/j.enbuild.2014.10.019
10.1016/j.enbuild.2014.11.037
10.1016/j.apenergy.2021.118346
10.1016/j.apenergy.2023.120936
10.1109/TII.2018.2820421
10.1109/TEC.2021.3116153
10.1016/j.apenergy.2024.122820
10.1016/j.rser.2022.112830
10.1109/TSG.2016.2628897
10.1016/j.arcontrol.2020.09.001
10.1016/j.apenergy.2020.114671
10.1016/j.conengprac.2011.12.004
10.1109/CDC.2013.6760908
10.1145/3360322.3360849
10.1016/j.egypro.2015.11.253
10.3390/buildings15101654
10.1109/TSTE.2021.3064325
10.1016/j.jobe.2020.101692
10.1016/j.enconman.2021.114103
10.29119/1641-3466.2023.184.4
10.1016/j.enbuild.2020.110705
10.1016/j.apenergy.2019.01.093
10.1109/ACCESS.2022.3156581
10.1109/TII.2018.2871159
10.1016/j.enbuild.2024.114520
10.1016/j.scs.2017.02.010
10.3390/en17040855
10.1016/j.enbuild.2016.08.009
10.3390/en17030581
10.1016/j.enbuild.2021.111793
10.1109/TASE.2018.2856908
10.1016/j.enbuild.2022.112147
10.1016/j.enbuild.2023.113624
10.1016/j.enbuild.2023.113271
10.1016/j.enbuild.2015.11.033
10.1016/j.scs.2017.04.006
10.1109/TII.2012.2228876
10.1016/j.scs.2018.05.049
10.1016/j.scs.2018.05.035
10.1016/j.apenergy.2018.05.091
10.1016/j.enbuild.2017.07.077
10.1016/j.buildenv.2021.107952
10.1016/j.apenergy.2021.118491
10.1016/j.rser.2024.114472
10.1016/j.renene.2022.06.046
10.1109/TSG.2016.2523504
10.3390/buildings15152702
10.3390/en16145326
10.1109/MIE.2015.2513749
10.1016/j.apenergy.2019.02.020
10.1016/j.jpowsour.2016.06.076
10.1016/j.compchemeng.2017.10.038
10.1109/TPWRS.2015.2511541
10.1016/j.enbuild.2018.03.057
10.1016/j.egyr.2022.07.037
10.1016/j.energy.2018.03.079
10.1109/TIE.2014.2387095
10.3390/buildings13123089
10.1016/j.apenergy.2018.11.093
10.1016/j.enbuild.2020.110142
10.1016/j.buildenv.2024.112093
10.1016/j.apenergy.2019.03.038
10.1016/j.energy.2020.117188
10.1016/j.jobe.2019.100826
10.1016/j.jobe.2024.109354
10.1016/j.apenergy.2017.08.166
10.1016/j.buildenv.2013.11.016
10.1016/j.enbuild.2016.02.021
10.1016/j.enbuild.2023.113790
10.1016/j.apenergy.2018.12.003
10.1016/j.ifacol.2023.10.548
10.1016/j.enbuild.2024.114562
10.1109/EPEC.2016.7771706
10.1016/j.enbuild.2022.112269
10.1016/j.applthermaleng.2019.03.061
10.1016/j.enbuild.2017.07.027
10.1016/j.rser.2021.111174
10.1016/j.apenergy.2015.07.051
10.1016/j.apenergy.2021.116648
10.1016/j.apenergy.2014.11.064
10.1109/TCST.2013.2272178
10.1016/j.applthermaleng.2024.123611
10.1016/j.solener.2014.11.024
10.1016/j.energy.2018.03.113
10.1016/j.egypro.2017.03.028
10.1016/j.apenergy.2018.11.016
10.1016/j.apenergy.2018.02.126
10.1109/CASE49439.2021.9551423
10.3390/buildings12050581
10.1016/j.enbuild.2015.05.038
10.1016/j.jprocont.2014.04.015
10.3389/fbuil.2020.562239
10.1051/e3sconf/202236212002
10.1016/j.enconman.2015.03.013
10.1109/TCST.2014.2313736
10.3390/s20030781
10.1016/j.apenergy.2020.115147
10.1109/CoDIT62066.2024.10708557
10.1016/j.apenergy.2022.119153
10.1016/j.apenergy.2019.03.063
10.1016/j.apenergy.2016.11.041
10.1016/j.buildenv.2021.107830
10.1016/j.adapen.2022.100099
10.1016/j.est.2019.101186
10.3390/su12104264
10.1016/j.buildenv.2016.05.034
10.1016/j.apenergy.2019.01.097
10.1016/j.buildenv.2021.108681
10.3390/su9020264
10.3390/buildings12101602
10.1016/j.buildenv.2015.04.033
10.1016/j.egyr.2021.03.017
10.1109/ACC.2014.6859016
10.1109/TSG.2013.2279171
10.1016/j.enbuild.2015.03.045
10.1016/j.jprocont.2014.06.011
10.1016/j.buildenv.2017.09.003
10.1016/j.apenergy.2018.03.179
10.1109/TII.2020.2971530
10.1007/s00170-021-07682-3
10.1016/j.jprocont.2020.02.007
10.1016/j.energy.2019.03.171
10.1016/j.apenergy.2019.01.187
10.1007/978-3-319-77489-3_18
10.1109/TSG.2018.2887232
10.1016/j.energy.2016.07.021
10.1016/j.apenergy.2022.119104
10.1051/e3sconf/202560100108
10.3390/en14237910
10.1016/j.enbuild.2016.09.044
10.1016/j.energy.2021.119958
10.1016/j.jprocont.2018.12.013
10.1016/j.ifacol.2019.11.462
10.1186/s42162-021-00153-9
10.1016/j.enbuild.2015.11.014
10.1016/j.renene.2024.120110
10.1016/j.scs.2018.01.030
10.1016/j.scs.2020.102213
10.1109/TPWRS.2014.2365615
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L.-
L6V
M7S
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.3390/buildings15183298
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-5309
ExternalDocumentID oai_doaj_org_article_67cc50bd01ec489d8623b7d01d124798
A857510666
10_3390_buildings15183298
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID .4S
2XV
5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IHM
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
PYCSY
TUS
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
KR7
L.-
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c375t-80ae7c263a89a66780acced9cb6dd75e09d97732be2d1a4fc46de57a50d5388e3
IEDL.DBID M7S
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001580722500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2075-5309
IngestDate Fri Oct 03 12:45:17 EDT 2025
Mon Sep 29 11:11:26 EDT 2025
Tue Nov 04 18:14:29 EST 2025
Sat Nov 29 07:09:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-80ae7c263a89a66780acced9cb6dd75e09d97732be2d1a4fc46de57a50d5388e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5045-6474
0000-0001-7295-8806
0000-0001-7148-7010
0000-0002-3735-4238
0000-0002-5284-0568
OpenAccessLink https://www.proquest.com/docview/3254477161?pq-origsite=%requestingapplication%
PQID 3254477161
PQPubID 2032422
ParticipantIDs doaj_primary_oai_doaj_org_article_67cc50bd01ec489d8623b7d01d124798
proquest_journals_3254477161
gale_infotracacademiconefile_A857510666
crossref_primary_10_3390_buildings15183298
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Buildings (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Killian (ref_138) 2018; 222
ref_92
ref_91
Pallonetto (ref_176) 2019; 239
Banjac (ref_78) 2021; 36
ref_13
Wang (ref_183) 2020; 262
Kordabad (ref_81) 2023; 56
Ascione (ref_172) 2017; 31
Shang (ref_143) 2019; 75
Reynolds (ref_175) 2018; 151
Yu (ref_3) 2015; 106
ref_19
Bracco (ref_98) 2015; 96
ref_18
Vrettos (ref_192) 2016; 31
ref_17
Zong (ref_43) 2017; 114
Finck (ref_153) 2020; 263
Heidari (ref_83) 2024; 252
Stoffel (ref_84) 2021; 2042
ref_15
Jin (ref_135) 2017; 205
Zhang (ref_164) 2022; 7
Darby (ref_42) 2012; 20
Zhao (ref_93) 2015; 86
Yang (ref_182) 2020; 257
Megahed (ref_177) 2019; 6
Hou (ref_115) 2022; 257
Lee (ref_168) 2015; 78
Helsen (ref_127) 2016; 111
Zhang (ref_33) 2022; 10
ref_20
Green (ref_89) 2021; 235
Huber (ref_162) 2022; 310
Oldewurtel (ref_67) 2013; 22
Goyal (ref_97) 2015; 140
(ref_131) 2017; 32
Klanatsky (ref_35) 2023; 300
ref_29
Mantovani (ref_118) 2014; 62
ref_28
Mai (ref_119) 2014; 30
ref_27
ref_26
Sturzenegger (ref_94) 2015; 24
Picard (ref_102) 2017; 152
Hu (ref_106) 2019; 153
Berouine (ref_25) 2022; 8
ref_71
Cai (ref_107) 2019; 236
Picard (ref_110) 2020; 88
ref_77
ref_152
ref_76
Chen (ref_116) 2022; 168
ref_75
ref_154
Smarra (ref_174) 2018; 226
Kuboth (ref_146) 2019; 240
Beneventi (ref_30) 2012; 63
Coban (ref_8) 2024; 89
Razmara (ref_101) 2017; 203
Minelli (ref_4) 2024; 223
Fitzpatrick (ref_156) 2020; 223
Huang (ref_169) 2015; 97
Freund (ref_159) 2021; 197
Biyik (ref_150) 2019; 25
Blum (ref_163) 2022; 318
Carli (ref_155) 2020; 198
Conti (ref_108) 2019; 148
Li (ref_124) 2016; 112
Cox (ref_178) 2019; 238
ref_88
Knudsen (ref_34) 2021; 298
Arroyo (ref_39) 2020; 50
Weeratunge (ref_104) 2018; 152
Arroyo (ref_161) 2022; 309
Afram (ref_61) 2014; 72
Feng (ref_121) 2015; 87
Li (ref_167) 2015; 113
Baniasadi (ref_105) 2018; 10
Jansen (ref_82) 2024; 319
Zhang (ref_185) 2021; 7
Yang (ref_136) 2018; 16
Yu (ref_70) 2013; 4
Mirakhorli (ref_191) 2018; 38
Salakij (ref_100) 2016; 133
Clausen (ref_160) 2021; 4
ref_50
Vasallo (ref_11) 2024; 199
Ay (ref_32) 2019; 52
Kennel (ref_72) 2012; 9
Xiao (ref_190) 2023; 342
Pergantis (ref_23) 2024; 266
Liang (ref_120) 2015; 92
Hilliard (ref_46) 2016; 10
ref_58
ref_57
ref_56
ref_55
Mbungu (ref_139) 2018; 41
ref_54
ref_53
ref_52
Garnier (ref_170) 2015; 37
Ascione (ref_171) 2016; 111
ref_59
Vrettos (ref_122) 2016; 9
Sharma (ref_99) 2016; 130
Hosamo (ref_166) 2023; 281
Zhang (ref_68) 2018; 41
ref_60
Tang (ref_142) 2019; 242
Sun (ref_123) 2016; 325
Brastein (ref_145) 2018; 169
Pedersen (ref_132) 2017; 141
Pergantis (ref_38) 2024; 360
Bianchini (ref_149) 2019; 240
Chen (ref_128) 2016; 164
ref_69
Fiorentini (ref_134) 2017; 187
Cid (ref_37) 2024; 319
Michailidis (ref_21) 2018; 211
ref_66
ref_65
ref_64
Jiang (ref_140) 2018; 226
ref_62
Raza (ref_12) 2024; 92
Shivam (ref_158) 2021; 237
Jiang (ref_86) 2024; 303
Ma (ref_90) 2025; 324
Ma (ref_117) 2014; 23
Bianchini (ref_129) 2016; 168
Yang (ref_181) 2020; 271
Yao (ref_48) 2021; 200
Chen (ref_148) 2019; 235
Coccia (ref_80) 2021; 222
Yamamoto (ref_63) 2024; 318
Li (ref_87) 2021; 146
(ref_24) 2021; 33
Kwak (ref_96) 2015; 155
Luo (ref_141) 2018; 15
ref_36
Bird (ref_165) 2022; 270
Shi (ref_130) 2017; 111
Blum (ref_151) 2019; 236
ref_31
Killian (ref_40) 2016; 105
Minelli (ref_14) 2022; 195
Ma (ref_73) 2014; 24
ref_113
Lee (ref_180) 2019; 153
Taheri (ref_49) 2022; 60
Rawlings (ref_137) 2018; 114
Hedegaard (ref_147) 2019; 242
Yu (ref_22) 2017; 146
Yousefi (ref_157) 2020; 17
Afram (ref_79) 2017; 141
Manic (ref_51) 2016; 10
Jin (ref_114) 2021; 12
Ciancio (ref_6) 2020; 60
Tavakoli (ref_173) 2018; 41
Dong (ref_16) 2018; 15
ref_103
Hilliard (ref_133) 2017; 125
Wirtz (ref_112) 2021; 288
Ding (ref_85) 2023; 295
Langer (ref_109) 2020; 278
Elnour (ref_187) 2022; 318
ref_45
Schwenzer (ref_47) 2021; 117
ref_44
ref_41
ref_1
Harb (ref_125) 2016; 117
ref_2
Mazzella (ref_5) 2022; 267
Yang (ref_184) 2021; 288
Afroz (ref_186) 2022; 209
Ahmed (ref_10) 2024; 89
Zhuang (ref_189) 2023; 338
ref_9
Lv (ref_144) 2019; 243
Gu (ref_126) 2016; 8
Touretzky (ref_74) 2014; 24
Razmara (ref_95) 2015; 156
Finck (ref_179) 2019; 176
Petrucci (ref_188) 2022; 268
ref_7
Baniasadi (ref_111) 2020; 28
References_xml – ident: ref_36
  doi: 10.3390/buildings14072212
– volume: 153
  start-page: 316
  year: 2019
  ident: ref_106
  article-title: Price-responsive model predictive control of floor heating systems for demand response using building thermal mass
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.02.107
– volume: 164
  start-page: 341
  year: 2016
  ident: ref_128
  article-title: Occupant feedback based model predictive control for thermal comfort and energy optimization: A chamber experimental evaluation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.11.065
– volume: 288
  start-page: 116608
  year: 2021
  ident: ref_112
  article-title: Temperature control in 5th generation district heating and cooling networks: An MILP-based operation optimization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116608
– ident: ref_44
  doi: 10.3390/buildings13123084
– volume: 168
  start-page: 159
  year: 2016
  ident: ref_129
  article-title: Demand-response in building heating systems: A Model Predictive Control approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.01.088
– volume: 342
  start-page: 121165
  year: 2023
  ident: ref_190
  article-title: Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.121165
– ident: ref_62
  doi: 10.1109/PC.2013.6581444
– ident: ref_56
  doi: 10.3390/en18174537
– ident: ref_91
  doi: 10.3390/a16050243
– volume: 243
  start-page: 250
  year: 2019
  ident: ref_144
  article-title: Model predictive control based robust scheduling of community integrated energy system with operational flexibility
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.205
– ident: ref_31
  doi: 10.3390/buildings12111879
– volume: 37
  start-page: 847
  year: 2015
  ident: ref_170
  article-title: Predictive control of multizone heating, ventilation and air-conditioning systems in non-residential buildings
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.09.022
– ident: ref_1
– ident: ref_71
– volume: 203
  start-page: 128
  year: 2017
  ident: ref_101
  article-title: Building-to-grid predictive power flow control for demand response and demand flexibility programs
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.06.040
– volume: 281
  start-page: 112732
  year: 2023
  ident: ref_166
  article-title: Digital Twin framework for automated fault source detection and prediction for comfort performance evaluation of existing non-residential Norwegian buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.112732
– ident: ref_50
  doi: 10.3390/en17030570
– ident: ref_75
  doi: 10.1109/CDC.2010.5718175
– volume: 41
  start-page: 349
  year: 2018
  ident: ref_68
  article-title: A stochastic MPC based approach to integrated energy management in microgrids
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.05.044
– volume: 262
  start-page: 114561
  year: 2020
  ident: ref_183
  article-title: A novel improved model for building energy consumption prediction based on model integration
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114561
– volume: 211
  start-page: 113
  year: 2018
  ident: ref_21
  article-title: Energy-efficient HVAC management using cooperative, self-trained, control agents: A real-life German building case study
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.11.046
– ident: ref_55
  doi: 10.3390/pr10040667
– ident: ref_27
– volume: 92
  start-page: 117
  year: 2024
  ident: ref_12
  article-title: Smart home energy management systems: Research challenges and survey
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2024.02.033
– volume: 257
  start-page: 113920
  year: 2020
  ident: ref_182
  article-title: Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113920
– volume: 146
  start-page: 19
  year: 2017
  ident: ref_22
  article-title: Model-based predictive control for building energy management: Part II–Experimental validations
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.04.027
– volume: 60
  start-page: 105067
  year: 2022
  ident: ref_49
  article-title: Model predictive control of heating, ventilation, and air conditioning (HVAC) systems: A state-of-the-art review
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2022.105067
– ident: ref_15
  doi: 10.3390/en17194835
– volume: 141
  start-page: 158
  year: 2017
  ident: ref_132
  article-title: Space heating demand response potential of retrofitted residential apartment blocks
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.02.035
– volume: 63
  start-page: 1097
  year: 2012
  ident: ref_30
  article-title: An effective gray-box identification procedure for multicore thermal modeling
  publication-title: IEEE Trans. Comput.
– volume: 141
  start-page: 96
  year: 2017
  ident: ref_79
  article-title: Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.02.012
– volume: 298
  start-page: 117227
  year: 2021
  ident: ref_34
  article-title: Experimental test of a black-box economic model predictive control for residential space heating
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117227
– volume: 6
  start-page: 5336
  year: 2019
  ident: ref_177
  article-title: Energy management in zero-energy building using neural network predictive control
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2900558
– ident: ref_18
  doi: 10.3390/en13236228
– ident: ref_59
– volume: 278
  start-page: 115661
  year: 2020
  ident: ref_109
  article-title: An optimal home energy management system for modulating heat pumps and photovoltaic systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115661
– volume: 268
  start-page: 115995
  year: 2022
  ident: ref_188
  article-title: Modelling of a multi-stage energy management control routine for energy demand forecasting, flexibility, and optimization of smart communities using a Recurrent Neural Network
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2022.115995
– volume: 155
  start-page: 1
  year: 2015
  ident: ref_96
  article-title: Development of a model predictive control framework through real-time building energy management system data
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.05.096
– ident: ref_2
  doi: 10.3390/en16207124
– volume: 2042
  start-page: 012043
  year: 2021
  ident: ref_84
  article-title: Comparative study of neural network based and white box model predictive control for a room temperature control application
  publication-title: Proc. J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2042/1/012043
– ident: ref_113
  doi: 10.1201/9780367567699-25
– ident: ref_28
– volume: 318
  start-page: 114461
  year: 2024
  ident: ref_63
  article-title: MPC-based robust optimization of smart apartment building considering uncertainty for conservative reduction
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2024.114461
– volume: 148
  start-page: 524
  year: 2019
  ident: ref_108
  article-title: Model predictive control of a hybrid heat pump system and impact of the prediction horizon on cost-saving potential and optimal storage capacity
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.11.063
– volume: 10
  start-page: 172
  year: 2016
  ident: ref_46
  article-title: Model predictive control for commercial buildings: Trends and opportunities
  publication-title: Adv. Build. Energy Res.
  doi: 10.1080/17512549.2015.1079240
– volume: 324
  start-page: 135958
  year: 2025
  ident: ref_90
  article-title: Optimal flexible power allocation energy management strategy for hybrid energy storage system with genetic algorithm based model predictive control
  publication-title: Energy
  doi: 10.1016/j.energy.2025.135958
– volume: 24
  start-page: 1
  year: 2015
  ident: ref_94
  article-title: Model predictive climate control of a swiss office building: Implementation, results, and cost–benefit analysis
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2015.2415411
– volume: 114
  start-page: 1476
  year: 2017
  ident: ref_43
  article-title: Challenges of implementing economic model predictive control strategy for buildings interacting with smart energy systems
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.11.141
– volume: 89
  start-page: 748
  year: 2024
  ident: ref_8
  article-title: Modeling environmental and economic factors in regional energy optimization
  publication-title: Econ. Environ.
  doi: 10.34659/eis.2024.89.2.748
– ident: ref_19
  doi: 10.3390/en18071724
– volume: 86
  start-page: 415
  year: 2015
  ident: ref_93
  article-title: MPC-based optimal scheduling of grid-connected low energy buildings with thermal energy storages
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.10.019
– volume: 87
  start-page: 199
  year: 2015
  ident: ref_121
  article-title: Model predictive control of radiant slab systems with evaporative cooling sources
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.11.037
– volume: 309
  start-page: 118346
  year: 2022
  ident: ref_161
  article-title: Reinforced model predictive control (RL-MPC) for building energy management
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118346
– volume: 338
  start-page: 120936
  year: 2023
  ident: ref_189
  article-title: Data-driven predictive control for smart HVAC system in IoT-integrated buildings with time-series forecasting and reinforcement learning
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.120936
– volume: 15
  start-page: 869
  year: 2018
  ident: ref_16
  article-title: Data-driven energy management in a home microgrid based on Bayesian optimal algorithm
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2820421
– volume: 36
  start-page: 2670
  year: 2021
  ident: ref_78
  article-title: Modular hierarchical model predictive control for coordinated and holistic energy management of buildings
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2021.3116153
– volume: 360
  start-page: 122820
  year: 2024
  ident: ref_38
  article-title: Field demonstration of predictive heating control for an all-electric house in a cold climate
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.122820
– volume: 168
  start-page: 112830
  year: 2022
  ident: ref_116
  article-title: Sustainable building climate control with renewable energy sources using nonlinear model predictive control
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112830
– volume: 9
  start-page: 3213
  year: 2016
  ident: ref_122
  article-title: Experimental demonstration of frequency regulation by commercial buildings—Part I: Modeling and hierarchical control design
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2628897
– volume: 50
  start-page: 190
  year: 2020
  ident: ref_39
  article-title: All you need to know about model predictive control for buildings
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2020.09.001
– volume: 263
  start-page: 114671
  year: 2020
  ident: ref_153
  article-title: Optimal control of demand flexibility under real-time pricing for heating systems in buildings: A real-life demonstration
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114671
– volume: 20
  start-page: 328
  year: 2012
  ident: ref_42
  article-title: MPC: Current practice and challenges
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2011.12.004
– ident: ref_69
  doi: 10.1109/CDC.2013.6760908
– ident: ref_152
  doi: 10.1145/3360322.3360849
– volume: 78
  start-page: 2106
  year: 2015
  ident: ref_168
  article-title: Optimal HVAC control as demand response with on-site energy storage and generation system
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.11.253
– ident: ref_45
  doi: 10.3390/buildings15101654
– volume: 12
  start-page: 1741
  year: 2021
  ident: ref_114
  article-title: Optimal integration of building heating loads in integrated heating/electricity community energy systems: A bi-level MPC approach
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2021.3064325
– volume: 33
  start-page: 101692
  year: 2021
  ident: ref_24
  article-title: A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101692
– volume: 237
  start-page: 114103
  year: 2021
  ident: ref_158
  article-title: A multi-objective predictive energy management strategy for residential grid-connected PV-battery hybrid systems based on machine learning technique
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114103
– ident: ref_58
  doi: 10.29119/1641-3466.2023.184.4
– volume: 235
  start-page: 110705
  year: 2021
  ident: ref_89
  article-title: Residential microgrid optimization using grey-box and black-box modeling methods
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110705
– volume: 238
  start-page: 466
  year: 2019
  ident: ref_178
  article-title: Real time optimal control of district cooling system with thermal energy storage using neural networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.093
– volume: 10
  start-page: 27853
  year: 2022
  ident: ref_33
  article-title: Building energy management with reinforcement learning and model predictive control: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3156581
– volume: 15
  start-page: 116
  year: 2018
  ident: ref_141
  article-title: A multistage home energy management system with residential photovoltaic penetration
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2871159
– volume: 319
  start-page: 114520
  year: 2024
  ident: ref_82
  article-title: Effect of prediction uncertainties on the performance of a white-box model predictive controller for district heating networks
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2024.114520
– volume: 31
  start-page: 136
  year: 2017
  ident: ref_172
  article-title: A new comprehensive approach for cost-optimal building design integrated with the multi-objective model predictive control of HVAC systems
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2017.02.010
– ident: ref_7
  doi: 10.3390/en17040855
– volume: 130
  start-page: 55
  year: 2016
  ident: ref_99
  article-title: A modeling framework for optimal energy management of a residential building
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.08.009
– ident: ref_20
  doi: 10.3390/en17030581
– volume: 257
  start-page: 111793
  year: 2022
  ident: ref_115
  article-title: Model predictive control under weather forecast uncertainty for HVAC systems in university buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.111793
– volume: 16
  start-page: 1002
  year: 2018
  ident: ref_136
  article-title: Decentralized EV-based charging optimization with building integrated wind energy
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2018.2856908
– volume: 267
  start-page: 112147
  year: 2022
  ident: ref_5
  article-title: Obtaining the NZEB target by using photovoltaic systems on the roof for multi-storey buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.112147
– volume: 300
  start-page: 113624
  year: 2023
  ident: ref_35
  article-title: Grey-box model for model predictive control of buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2023.113624
– volume: 295
  start-page: 113271
  year: 2023
  ident: ref_85
  article-title: Development, calibration, and validation of a novel gray-box energy model for residential split air conditioners
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2023.113271
– volume: 111
  start-page: 131
  year: 2016
  ident: ref_171
  article-title: Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.11.033
– volume: 32
  start-page: 338
  year: 2017
  ident: ref_131
  article-title: Scheduling deferrable appliances and energy resources of a smart home applying multi-time scale stochastic model predictive control
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2017.04.006
– volume: 9
  start-page: 1528
  year: 2012
  ident: ref_72
  article-title: Energy management for smart grids with electric vehicles based on hierarchical MPC
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2012.2228876
– volume: 41
  start-page: 392
  year: 2018
  ident: ref_139
  article-title: An optimal energy management system for a commercial building with renewable energy generation under real-time electricity prices
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.05.049
– volume: 41
  start-page: 332
  year: 2018
  ident: ref_173
  article-title: A two stage hierarchical control approach for the optimal energy management in commercial building microgrids based on local wind power and PEVs
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.05.035
– volume: 226
  start-page: 181
  year: 2018
  ident: ref_140
  article-title: Flexible operation of active distribution network using integrated smart buildings with heating, ventilation and air-conditioning systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.05.091
– ident: ref_103
  doi: 10.1016/j.enbuild.2017.07.077
– volume: 200
  start-page: 107952
  year: 2021
  ident: ref_48
  article-title: State of the art review on model predictive control (MPC) in Heating Ventilation and Air-conditioning (HVAC) field
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.107952
– volume: 310
  start-page: 118491
  year: 2022
  ident: ref_162
  article-title: Physics-informed linear regression is competitive with two Machine Learning methods in residential building MPC
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118491
– volume: 199
  start-page: 114472
  year: 2024
  ident: ref_11
  article-title: Challenges and opportunities in European smart buildings energy management: A critical review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2024.114472
– volume: 195
  start-page: 809
  year: 2022
  ident: ref_14
  article-title: Fixed and tracking PV systems for Net Zero Energy Buildings: Comparison between yearly and monthly energy balance
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.06.046
– volume: 8
  start-page: 2332
  year: 2016
  ident: ref_126
  article-title: An online optimal dispatch schedule for CCHP microgrids based on model predictive control
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2523504
– ident: ref_57
  doi: 10.3390/buildings15152702
– ident: ref_17
  doi: 10.3390/en16145326
– volume: 10
  start-page: 25
  year: 2016
  ident: ref_51
  article-title: Building energy management systems: The age of intelligent and adaptive buildings
  publication-title: IEEE Ind. Electron. Mag.
  doi: 10.1109/MIE.2015.2513749
– volume: 239
  start-page: 1265
  year: 2019
  ident: ref_176
  article-title: Demand response algorithms for smart-grid ready residential buildings using machine learning models
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.02.020
– volume: 325
  start-page: 723
  year: 2016
  ident: ref_123
  article-title: Nonlinear predictive energy management of residential buildings with photovoltaics & batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.06.076
– volume: 114
  start-page: 89
  year: 2018
  ident: ref_137
  article-title: Economic MPC and real-time decision making with application to large-scale HVAC energy systems
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.10.038
– volume: 31
  start-page: 4272
  year: 2016
  ident: ref_192
  article-title: Robust energy-constrained frequency reserves from aggregations of commercial buildings
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2511541
– volume: 169
  start-page: 58
  year: 2018
  ident: ref_145
  article-title: Parameter estimation for grey-box models of building thermal behaviour
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.03.057
– volume: 8
  start-page: 9127
  year: 2022
  ident: ref_25
  article-title: A predictive control approach for thermal energy management in buildings
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.07.037
– volume: 152
  start-page: 974
  year: 2018
  ident: ref_104
  article-title: Model predictive control for a solar assisted ground source heat pump system
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.079
– volume: 62
  start-page: 2651
  year: 2014
  ident: ref_118
  article-title: Temperature control of a commercial building with model predictive control techniques
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2387095
– ident: ref_53
  doi: 10.3390/buildings13123089
– volume: 236
  start-page: 410
  year: 2019
  ident: ref_151
  article-title: Practical factors of envelope model setup and their effects on the performance of model predictive control for building heating, ventilating, and air conditioning systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.11.093
– volume: 223
  start-page: 110142
  year: 2020
  ident: ref_156
  article-title: Influence of electricity prices on energy flexibility of integrated hybrid heat pump and thermal storage systems in a residential building
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110142
– volume: 266
  start-page: 112093
  year: 2024
  ident: ref_23
  article-title: Humidity-aware model predictive control for residential air conditioning: A field study
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2024.112093
– volume: 242
  start-page: 873
  year: 2019
  ident: ref_142
  article-title: Model predictive control for thermal energy storage and thermal comfort optimization of building demand response in smart grids
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.038
– volume: 198
  start-page: 117188
  year: 2020
  ident: ref_155
  article-title: Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samsø
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117188
– volume: 25
  start-page: 100826
  year: 2019
  ident: ref_150
  article-title: A predictive control strategy for optimal management of peak load, thermal comfort, energy storage and renewables in multi-zone buildings
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2019.100826
– volume: 89
  start-page: 109354
  year: 2024
  ident: ref_10
  article-title: A review on enhancing energy efficiency and adaptability through system integration for smart buildings
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2024.109354
– volume: 205
  start-page: 1583
  year: 2017
  ident: ref_135
  article-title: Foresee: A user-centric home energy management system for energy efficiency and demand response
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.08.166
– volume: 72
  start-page: 343
  year: 2014
  ident: ref_61
  article-title: Theory and applications of HVAC control systems—A review of model predictive control (MPC)
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.11.016
– volume: 117
  start-page: 199
  year: 2016
  ident: ref_125
  article-title: Development and validation of grey-box models for forecasting the thermal response of occupied buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.02.021
– volume: 303
  start-page: 113790
  year: 2024
  ident: ref_86
  article-title: Development, implementation, and impact analysis of model predictive control-based optimal precooling using smart home thermostats
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2023.113790
– volume: 236
  start-page: 478
  year: 2019
  ident: ref_107
  article-title: Aging-aware predictive control of PV-battery assets in buildings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.12.003
– volume: 56
  start-page: 5773
  year: 2023
  ident: ref_81
  article-title: Reinforcement learning for MPC: Fundamentals and current challenges
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2023.10.548
– volume: 319
  start-page: 114562
  year: 2024
  ident: ref_37
  article-title: Energy optimization algorithms for multi-residential buildings: A model predictive control application
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2024.114562
– ident: ref_64
  doi: 10.1109/EPEC.2016.7771706
– volume: 270
  start-page: 112269
  year: 2022
  ident: ref_165
  article-title: Real-world implementation and cost of a cloud-based MPC retrofit for HVAC control systems in commercial buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.112269
– volume: 153
  start-page: 726
  year: 2019
  ident: ref_180
  article-title: Application of artificial neural networks for optimized AHU discharge air temperature set-point and minimized cooling energy in VAV system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.03.061
– volume: 152
  start-page: 739
  year: 2017
  ident: ref_102
  article-title: Impact of the controller model complexity on model predictive control performance for buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.07.027
– ident: ref_41
– volume: 146
  start-page: 111174
  year: 2021
  ident: ref_87
  article-title: Grey-box modeling and application for building energy simulations-A critical review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111174
– volume: 156
  start-page: 555
  year: 2015
  ident: ref_95
  article-title: Optimal exergy control of building HVAC system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.07.051
– volume: 288
  start-page: 116648
  year: 2021
  ident: ref_184
  article-title: Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116648
– volume: 140
  start-page: 75
  year: 2015
  ident: ref_97
  article-title: Experimental study of occupancy-based control of HVAC zones
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.11.064
– volume: 22
  start-page: 1198
  year: 2013
  ident: ref_67
  article-title: Stochastic model predictive control for building climate control
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2013.2272178
– volume: 252
  start-page: 123611
  year: 2024
  ident: ref_83
  article-title: Evaluating advanced HVAC control benefits in operational buildings using historic data—A case study
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2024.123611
– volume: 113
  start-page: 139
  year: 2015
  ident: ref_167
  article-title: System identification and model-predictive control of office buildings with integrated photovoltaic-thermal collectors, radiant floor heating and active thermal storage
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.11.024
– volume: 151
  start-page: 729
  year: 2018
  ident: ref_175
  article-title: A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.113
– volume: 111
  start-page: 267
  year: 2017
  ident: ref_130
  article-title: Energy efficient building HVAC control algorithm with real-time occupancy prediction
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.028
– volume: 235
  start-page: 1141
  year: 2019
  ident: ref_148
  article-title: Achieving natural ventilation potential in practice: Control schemes and levels of automation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.11.016
– volume: 226
  start-page: 1252
  year: 2018
  ident: ref_174
  article-title: Data-driven model predictive control using random forests for building energy optimization and climate control
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.126
– ident: ref_77
  doi: 10.1109/CASE49439.2021.9551423
– ident: ref_26
  doi: 10.3390/buildings12050581
– volume: 106
  start-page: 203
  year: 2015
  ident: ref_3
  article-title: Control strategies for integration of thermal energy storage into buildings: State-of-the-art review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.05.038
– volume: 24
  start-page: 1292
  year: 2014
  ident: ref_74
  article-title: Integrating scheduling and control for economic MPC of buildings with energy storage
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2014.04.015
– ident: ref_92
  doi: 10.3389/fbuil.2020.562239
– ident: ref_29
  doi: 10.1051/e3sconf/202236212002
– volume: 96
  start-page: 511
  year: 2015
  ident: ref_98
  article-title: A dynamic optimization-based architecture for polygeneration microgrids with tri-generation, renewables, storage systems and electrical vehicles
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.03.013
– volume: 23
  start-page: 101
  year: 2014
  ident: ref_117
  article-title: Stochastic model predictive control for building HVAC systems: Complexity and conservatism
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2014.2313736
– ident: ref_154
  doi: 10.3390/s20030781
– volume: 271
  start-page: 115147
  year: 2020
  ident: ref_181
  article-title: Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115147
– ident: ref_88
  doi: 10.1109/CoDIT62066.2024.10708557
– volume: 318
  start-page: 119153
  year: 2022
  ident: ref_187
  article-title: Neural network-based model predictive control system for optimizing building automation and management systems of sports facilities
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119153
– volume: 242
  start-page: 181
  year: 2019
  ident: ref_147
  article-title: Bottom-up modelling methodology for urban-scale analysis of residential space heating demand response
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.063
– volume: 187
  start-page: 465
  year: 2017
  ident: ref_134
  article-title: Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.11.041
– volume: 197
  start-page: 107830
  year: 2021
  ident: ref_159
  article-title: Implementation of model predictive control in a large-sized, low-energy office building
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.107830
– volume: 7
  start-page: 100099
  year: 2022
  ident: ref_164
  article-title: Model predictive control for demand flexibility: Real-world operation of a commercial building with photovoltaic and battery systems
  publication-title: Adv. Appl. Energy
  doi: 10.1016/j.adapen.2022.100099
– volume: 28
  start-page: 101186
  year: 2020
  ident: ref_111
  article-title: Optimal sizing design and operation of electrical and thermal energy storage systems in smart buildings
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.101186
– ident: ref_54
  doi: 10.3390/su12104264
– volume: 105
  start-page: 403
  year: 2016
  ident: ref_40
  article-title: Ten questions concerning model predictive control for energy efficient buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.05.034
– volume: 240
  start-page: 372
  year: 2019
  ident: ref_146
  article-title: Economic model predictive control of combined thermal and electric residential building energy systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.097
– volume: 209
  start-page: 108681
  year: 2022
  ident: ref_186
  article-title: Predictive modelling and optimization of HVAC systems using neural network and particle swarm optimization algorithm
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108681
– ident: ref_76
  doi: 10.3390/su9020264
– ident: ref_52
  doi: 10.3390/buildings12101602
– volume: 92
  start-page: 256
  year: 2015
  ident: ref_120
  article-title: MPC control for improving energy efficiency of a building air handler for multi-zone VAVs
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.04.033
– volume: 7
  start-page: 1588
  year: 2021
  ident: ref_185
  article-title: Predictive model of cooling load for ice storage air-conditioning system by using GBDT
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.03.017
– ident: ref_66
  doi: 10.1109/ACC.2014.6859016
– volume: 4
  start-page: 2244
  year: 2013
  ident: ref_70
  article-title: Modeling and stochastic control for home energy management
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2013.2279171
– volume: 97
  start-page: 86
  year: 2015
  ident: ref_169
  article-title: A neural network-based multi-zone modelling approach for predictive control system design in commercial buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.03.045
– volume: 24
  start-page: 1282
  year: 2014
  ident: ref_73
  article-title: Application of economic MPC to the energy and demand minimization of a commercial building
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2014.06.011
– volume: 125
  start-page: 326
  year: 2017
  ident: ref_133
  article-title: Experimental implementation of whole building MPC with zone based thermal comfort adjustments
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.09.003
– volume: 222
  start-page: 662
  year: 2018
  ident: ref_138
  article-title: Comprehensive smart home energy management system using mixed-integer quadratic-programming
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.03.179
– volume: 17
  start-page: 430
  year: 2020
  ident: ref_157
  article-title: Predictive home energy management system with photovoltaic array, heat pump, and plug-in electric vehicle
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.2971530
– volume: 117
  start-page: 1327
  year: 2021
  ident: ref_47
  article-title: Review on model predictive control: An engineering perspective
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-021-07682-3
– volume: 88
  start-page: 63
  year: 2020
  ident: ref_110
  article-title: Cloud-based implementation of white-box model predictive control for a GEOTABS office building: A field test demonstration
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.02.007
– volume: 176
  start-page: 365
  year: 2019
  ident: ref_179
  article-title: Economic model predictive control for demand flexibility of a residential building
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.171
– volume: 240
  start-page: 327
  year: 2019
  ident: ref_149
  article-title: An integrated model predictive control approach for optimal HVAC and energy storage operation in large-scale buildings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.187
– ident: ref_65
  doi: 10.1007/978-3-319-77489-3_18
– volume: 10
  start-page: 5587
  year: 2018
  ident: ref_105
  article-title: Optimal real-time residential thermal energy management for peak-load shifting with experimental verification
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2887232
– volume: 112
  start-page: 1194
  year: 2016
  ident: ref_124
  article-title: Multi-objective optimization for thermal mass model predictive control in small and medium size commercial buildings under summer weather conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.021
– volume: 318
  start-page: 119104
  year: 2022
  ident: ref_163
  article-title: Field demonstration and implementation analysis of model predictive control in an office HVAC system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119104
– ident: ref_9
  doi: 10.1051/e3sconf/202560100108
– ident: ref_13
  doi: 10.3390/en14237910
– volume: 133
  start-page: 345
  year: 2016
  ident: ref_100
  article-title: Model-Based Predictive Control for building energy management. I: Energy modeling and optimal control
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.09.044
– volume: 222
  start-page: 119958
  year: 2021
  ident: ref_80
  article-title: Artificial-neural-network-based model predictive control to exploit energy flexibility in multi-energy systems comprising district cooling
  publication-title: Energy
  doi: 10.1016/j.energy.2021.119958
– volume: 75
  start-page: 24
  year: 2019
  ident: ref_143
  article-title: A data-driven robust optimization approach to scenario-based stochastic model predictive control
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2018.12.013
– ident: ref_60
– volume: 52
  start-page: 1797
  year: 2019
  ident: ref_32
  article-title: Model predictive control in milling based on support vector machines
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.11.462
– volume: 4
  start-page: 1
  year: 2021
  ident: ref_160
  article-title: A digital twin framework for improving energy efficiency and occupant comfort in public and commercial buildings
  publication-title: Energy Inform.
  doi: 10.1186/s42162-021-00153-9
– volume: 111
  start-page: 290
  year: 2016
  ident: ref_127
  article-title: Practical implementation and evaluation of model predictive control for an office building in Brussels
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.11.014
– volume: 223
  start-page: 120110
  year: 2024
  ident: ref_4
  article-title: From net zero energy buildings to an energy sharing model-The role of NZEBs in renewable energy communities
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2024.120110
– volume: 38
  start-page: 723
  year: 2018
  ident: ref_191
  article-title: Market and behavior driven predictive energy management for residential buildings
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.01.030
– volume: 60
  start-page: 102213
  year: 2020
  ident: ref_6
  article-title: Energy demands of buildings in the framework of climate change: An investigation across Europe
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102213
– volume: 30
  start-page: 2685
  year: 2014
  ident: ref_119
  article-title: Economic MPC of aggregating commercial buildings for providing flexible power reserve
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2014.2365615
SSID ssj0000852254
Score 2.3204877
SecondaryResourceType review_article
Snippet The integration of advanced control strategies into building energy management systems (BEMS) is essential for achieving energy efficiency and sustaining...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 3298
SubjectTerms Algorithms
Alternative energy sources
Benchmarks
building energy management
Buildings
Electric vehicle charging
Electric vehicles
Emission standards
Energy consumption
Energy efficiency
Energy industry
Energy management
Energy management systems
Energy storage
Energy use
Forecasting
Heuristic methods
HVAC
HVAC control
Interactive control
Machine learning
Middleware
model predictive control
Multiagent systems
Multiple objective analysis
Optimization
Optimization techniques
Predictive control
Real time
Renewable energy
Simulation methods
Smart buildings
smart homes
Solvers
Support systems
Thermal comfort
Trends
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA4yfNAH8SdWp-RBEISytmmbxrc5NvRlDFTYW0iTDCZapa3-_d6l3ayI-OJjSxuud2nujrv7PkIuVKRiFVruRxmO5GRC-YJr60PowEwcLYROjCOb4NNpNp-LWYfqC3vCGnjgRnGDlGudBLkJQqthKQNLspzDpQHPxIUb8w246CRTT033FWzUuCljMsjrB3nLMl2Bi4NdLLJvjsjh9f92KjtXM9klO22MSIeNbHtkwxb7ZLuDHHhAJHKYPdNZiXUWPLHoqOk5pxCE0vsX-C56s5Llmg47ZWqqCkPv1mSoFV0WdOwmAOlXL8wheZyMH0a3fsuV4GvGkxocjbJcRylToO4UPFCgtLZG6Dw1hic2EAYiPRblNjKhihc6To1NuEoCA0deZtkR6RWvhT0m1MBKRmULg0X5QEE-gW9HlifgyHSce-RqpTj51kBiSEglUMvyh5Y9coOqXT-IaNbuBthYtjaWf9nYI5doGIn_XF0qrdrRAZAX0avkEGlGQ8zEPNJf2U62P2MlGcKwcUgMw5P_kOaUbEVIAuwazfqkV5fv9oxs6o96WZXnbh9-ArT242I
  priority: 102
  providerName: Directory of Open Access Journals
Title Model Predictive Control for Smart Buildings: Applications and Innovations in Energy Management
URI https://www.proquest.com/docview/3254477161
https://doaj.org/article/67cc50bd01ec489d8623b7d01d124798
Volume 15
WOSCitedRecordID wos001580722500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: M7S
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: PATMY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5R6KE90CdqaIh8qFSp0op9e5cLSlBQORCtSivRk-X1OCgSbGA39Pd3xnFCKlQuHNfrteyd8Tw84_kAvuhYpzqyMogLvpJTlDoopbEBmQ4JpvG0NBk6sAk5mRSXl2XlD9w6n1a5kolOUOPc8Bn5YcK1tCRZ99Hx7V3AqFEcXfUQGi9gh6skRC5172J9xkLmBLFrugxmJuTdH9Yea7qjzsTLZfGPOnJV-_8nm53COX3z3Km-hV1vaorhkjfewZZt3sPrjQKEH0AxFNq1qFoO17DgEyfL1HVBtqy4uCG-EqPVYo7EcCPaLXSD4myNqdqJWSPG7iKheEip-Qi_Tsc_T74HHnIhMInMFqSvtJUmzhNNVMtJkYXaGIulqXNEmdmwRDIYk7i2MUY6nZo0R5tJnYVIkrOwyR5sN_PGfgKBNBLqYooc2w81uSX8dWxlRvrQpHUPvq3-vLpdVtZQ5JEwmdQjMvVgxLRZd-Si2K5h3l4pv8dULo3JwhrDyBriOiTuS2pJj0hGjORBvjJlFW_dRauN9jcQaL5cBEsNGa00YoeuB_0VZZXf0516IOv-068_w6uYUYJdJlofthftvT2Al-bPYta1A9gZjSfVj4Hz_geOYamtOjuvfv8FCrP2Vg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fT9UwFD5BNBEfFH-Fiyh90JiYLGzttq4mxlwQwg14QwImvNWu7TUksIvbBeI_5d_oOd12wRh948HH_Wq69TvfOV1Pzwfw2nCTmsTLiBe0JadQJlLS-ghDB-FSPlE2c0FsQo7HxfGxOliAn_1eGEqr7DkxELWbWvpHviGolpbE6D75eP49ItUoWl3tJTRaWOz5H1c4ZWs-jD7h-L7hfGf7aGs36lQFIitkNkNKNl5anguDHcuRq2NjrXfKlrlzMvOxchgTCV567hKTTmyaO59Jk8UOyaHwAtu9A3cxjOAqpAoezv_pYPiC5pG2i6dCqHij7LStG3SsaDuq-M39BZWAv_mC4OB2Hv1vn2YZHnahNBu22H8MC756Ag9uFFh8Cpqk3k7ZQU3LUUTsbKtNzWcYq7PDM7Qbttl_vPdseGM1n5nKsdFcM7ZhJxXbDhsl2XXK0DP4citv-BwWq2nlV4A5bMmZYuIodyE2OO2ip7mXGfp7m5YDeNePtD5vK4donHERLPQfsBjAJmFhfiMV_Q4npvU33XGIzqW1WVy6OPEWrcqhdYlS4qHDIE1SI28JSZqoaVYba7odFthfKvKlh6TGmtCEdQBrPZJ0x1mNvobR6r8vr8P93aPP-3p_NN57AUucFJFD1t0aLM7qC_8S7tnL2UlTvwrmweDrbYPuF7itULw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4I1YKOADCAkp2sRO4gQJoe1jxaqwWokilZNxPN6qUsmWZAHx1_h1zOSxLUJw64FjXpZjf_N5bI_nA3hqpY1t5HUgMz6Sk-U2yLXzAbkOCmO5yF2CjdiEns2yw8N8vgE_-7MwHFbZc2JD1Lh0vEY-UpxLS5N3H40WXVjEfHfy-vRLwApSvNPay2m0ENn3P77T9K1-Nd2lvn4m5WTvYOdN0CkMBE7pZEX0bL12MlWWKpkSb4fWOY-5K1JEnfgwR_KPlCy8xMjGCxen6BNtkxCJKDKvqNxLsJmlOswGsDkfH7z7uF7hIWeGjCVut1KVysNR0Sld1zTMkiXl2W-DYaMZ8LeRoRnuJjf-54a6Cdc7J1uMW6u4BRu-vA3XzqVevAOGReBOxLzijSqmfLHTBu0L8uLF-89kUWK7b8iXYnxun1_YEsV0rSZbi-NS7DVHKMVZMNFd-HAhf3gPBuWy9PdBIJWENlsgRzWEliZk_LX0OiFPwMXFEF70vW5O25wihuZiDBHzB0SGsM24WL_I6cCbG8vqyHTsYlLtXBIWGEbekb0h2Z0qNF0iuW-aC3nOqDJMWqvKOtudvaD6cvovM2ad1oinskPY6lFlOjarzRmkHvz78RO4Qlgzb6ez_YdwVbJUchOOtwWDVfXVP4LL7tvquK4ed7Yi4NNFo-4XJBta7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Predictive+Control+for+Smart+Buildings%3A+Applications+and+Innovations+in+Energy+Management&rft.jtitle=Buildings+%28Basel%29&rft.au=Michailidis%2C+Panagiotis&rft.au=Michailidis%2C+Iakovos&rft.au=Minelli%2C+Federico&rft.au=Coban%2C+Hasan+Huseyin&rft.date=2025-09-01&rft.pub=MDPI+AG&rft.issn=2075-5309&rft.eissn=2075-5309&rft.volume=15&rft.issue=18&rft_id=info:doi/10.3390%2Fbuildings15183298&rft.externalDocID=A857510666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon