Model Predictive Control for Smart Buildings: Applications and Innovations in Energy Management
The integration of advanced control strategies into building energy management systems (BEMS) is essential for achieving energy efficiency and sustaining thermal comfort. Model predictive control (MPC) has gained significant traction as a model-based approach capable of optimizing control actions by...
Gespeichert in:
| Veröffentlicht in: | Buildings (Basel) Jg. 15; H. 18; S. 3298 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.09.2025
|
| Schlagworte: | |
| ISSN: | 2075-5309, 2075-5309 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The integration of advanced control strategies into building energy management systems (BEMS) is essential for achieving energy efficiency and sustaining thermal comfort. Model predictive control (MPC) has gained significant traction as a model-based approach capable of optimizing control actions by predicting future system behavior under dynamic conditions. The current review offers an in-depth analysis of MPC, combining its core theoretical foundations with a broad survey of impactful applications in buildings, for extracting key breakthroughs and trends that have defined the field over the past decade. Emphasis is placed on multiverse MPC configurations and their application across various BEMS frameworks integrating HVACs, energy storage, renewable energy, domestic hot water, electric vehicle charging, and lighting systems. A detailed evaluation of MPC key attributes is then conducted, based on essential aspects of MPC, such as algorithms, optimization solvers, baselines, performance indexes, and building types, as well as simulation tools that support system modeling and real-time validation. The study concludes by outlining key research trends and proposing future directions, with a strong emphasis on addressing real-world deployment challenges and advancing scalable, interoperable solutions on smart building ecosystems. According to the evaluation, MPC research is shifting from simple white-box setups to gray- and black-box models paired with metaheuristic or hybrid solvers, leveraging machine learning for forecasting and multi-objective optimization, but still lacking robustness, benchmarks, and real-world validation. Consequently, next-generation MPC is anticipated to evolve into adaptive, hybrid, and multi-agent frameworks that integrate forecasting and control, embed occupant behavior, enable grid-interactive flexibility, and support lightweight, explainable deployment in real building environments. |
|---|---|
| AbstractList | The integration of advanced control strategies into building energy management systems (BEMS) is essential for achieving energy efficiency and sustaining thermal comfort. Model predictive control (MPC) has gained significant traction as a model-based approach capable of optimizing control actions by predicting future system behavior under dynamic conditions. The current review offers an in-depth analysis of MPC, combining its core theoretical foundations with a broad survey of impactful applications in buildings, for extracting key breakthroughs and trends that have defined the field over the past decade. Emphasis is placed on multiverse MPC configurations and their application across various BEMS frameworks integrating HVACs, energy storage, renewable energy, domestic hot water, electric vehicle charging, and lighting systems. A detailed evaluation of MPC key attributes is then conducted, based on essential aspects of MPC, such as algorithms, optimization solvers, baselines, performance indexes, and building types, as well as simulation tools that support system modeling and real-time validation. The study concludes by outlining key research trends and proposing future directions, with a strong emphasis on addressing real-world deployment challenges and advancing scalable, interoperable solutions on smart building ecosystems. According to the evaluation, MPC research is shifting from simple white-box setups to gray- and black-box models paired with metaheuristic or hybrid solvers, leveraging machine learning for forecasting and multi-objective optimization, but still lacking robustness, benchmarks, and real-world validation. Consequently, next-generation MPC is anticipated to evolve into adaptive, hybrid, and multi-agent frameworks that integrate forecasting and control, embed occupant behavior, enable grid-interactive flexibility, and support lightweight, explainable deployment in real building environments. |
| Audience | Academic |
| Author | Michailidis, Panagiotis Kosmatopoulos, Elias Minelli, Federico Michailidis, Iakovos Coban, Hasan Huseyin |
| Author_xml | – sequence: 1 givenname: Panagiotis orcidid: 0000-0001-7148-7010 surname: Michailidis fullname: Michailidis, Panagiotis – sequence: 2 givenname: Iakovos orcidid: 0000-0001-7295-8806 surname: Michailidis fullname: Michailidis, Iakovos – sequence: 3 givenname: Federico orcidid: 0000-0002-5045-6474 surname: Minelli fullname: Minelli, Federico – sequence: 4 givenname: Hasan Huseyin orcidid: 0000-0002-5284-0568 surname: Coban fullname: Coban, Hasan Huseyin – sequence: 5 givenname: Elias orcidid: 0000-0002-3735-4238 surname: Kosmatopoulos fullname: Kosmatopoulos, Elias |
| BookMark | eNplkUtrGzEUhUVwIKmTH5CdoGsneoxe2bkmbQ0JLSRZC410Z5AZS65mbMi_rxq7oVBpIZ3LvR9HOp_QLOUECN1Qcsu5IXftPg4hpn6kgmrOjD5Dl4wosRCcmNk_9wt0PY4bUpcWjInmEtmnHGDAPwuE6Kd4ALzKaSp5wF0u-HnryoS__MXf4-VuN0TvppjTiF0KeJ1SPpx0TPghQenf8JNLroctpOkKnXduGOH6dM7R69eHl9X3xeOPb-vV8nHhuRLTQhMHyjPJnTZOSlW19xCMb2UISgAxwSjFWQssUNd0vpEBhHKCBMG1Bj5H6yM3ZLexuxKr8zebXbTvhVx6W58S_QBWKu8FaQOh4BttgpaMt6rKQFmjjK6sz0fWruRfexgnu8n7kqp9y-unNUpRSWvX7bGrdxUaU5en4nzdAbbR14C6WOtLLZSgREpZB-hxwJc8jgW6D5uU2D852v9y5L8BLK2UXA |
| Cites_doi | 10.3390/buildings14072212 10.1016/j.applthermaleng.2019.02.107 10.1016/j.apenergy.2015.11.065 10.1016/j.apenergy.2021.116608 10.3390/buildings13123084 10.1016/j.apenergy.2016.01.088 10.1016/j.apenergy.2023.121165 10.1109/PC.2013.6581444 10.3390/en18174537 10.3390/a16050243 10.1016/j.apenergy.2019.03.205 10.3390/buildings12111879 10.1016/j.asoc.2015.09.022 10.1016/j.apenergy.2017.06.040 10.1016/j.enbuild.2022.112732 10.3390/en17030570 10.1109/CDC.2010.5718175 10.1016/j.scs.2018.05.044 10.1016/j.apenergy.2020.114561 10.1016/j.apenergy.2017.11.046 10.3390/pr10040667 10.1016/j.aej.2024.02.033 10.1016/j.apenergy.2019.113920 10.1016/j.enbuild.2017.04.027 10.1016/j.jobe.2022.105067 10.3390/en17194835 10.1016/j.enbuild.2017.02.035 10.1016/j.enbuild.2017.02.012 10.1016/j.apenergy.2021.117227 10.1109/JIOT.2019.2900558 10.3390/en13236228 10.1016/j.apenergy.2020.115661 10.1016/j.enconman.2022.115995 10.1016/j.apenergy.2015.05.096 10.3390/en16207124 10.1088/1742-6596/2042/1/012043 10.1201/9780367567699-25 10.1016/j.enbuild.2024.114461 10.1016/j.applthermaleng.2018.11.063 10.1080/17512549.2015.1079240 10.1016/j.energy.2025.135958 10.1109/TCST.2015.2415411 10.1016/j.applthermaleng.2016.11.141 10.34659/eis.2024.89.2.748 10.3390/en18071724 10.1016/j.enbuild.2014.10.019 10.1016/j.enbuild.2014.11.037 10.1016/j.apenergy.2021.118346 10.1016/j.apenergy.2023.120936 10.1109/TII.2018.2820421 10.1109/TEC.2021.3116153 10.1016/j.apenergy.2024.122820 10.1016/j.rser.2022.112830 10.1109/TSG.2016.2628897 10.1016/j.arcontrol.2020.09.001 10.1016/j.apenergy.2020.114671 10.1016/j.conengprac.2011.12.004 10.1109/CDC.2013.6760908 10.1145/3360322.3360849 10.1016/j.egypro.2015.11.253 10.3390/buildings15101654 10.1109/TSTE.2021.3064325 10.1016/j.jobe.2020.101692 10.1016/j.enconman.2021.114103 10.29119/1641-3466.2023.184.4 10.1016/j.enbuild.2020.110705 10.1016/j.apenergy.2019.01.093 10.1109/ACCESS.2022.3156581 10.1109/TII.2018.2871159 10.1016/j.enbuild.2024.114520 10.1016/j.scs.2017.02.010 10.3390/en17040855 10.1016/j.enbuild.2016.08.009 10.3390/en17030581 10.1016/j.enbuild.2021.111793 10.1109/TASE.2018.2856908 10.1016/j.enbuild.2022.112147 10.1016/j.enbuild.2023.113624 10.1016/j.enbuild.2023.113271 10.1016/j.enbuild.2015.11.033 10.1016/j.scs.2017.04.006 10.1109/TII.2012.2228876 10.1016/j.scs.2018.05.049 10.1016/j.scs.2018.05.035 10.1016/j.apenergy.2018.05.091 10.1016/j.enbuild.2017.07.077 10.1016/j.buildenv.2021.107952 10.1016/j.apenergy.2021.118491 10.1016/j.rser.2024.114472 10.1016/j.renene.2022.06.046 10.1109/TSG.2016.2523504 10.3390/buildings15152702 10.3390/en16145326 10.1109/MIE.2015.2513749 10.1016/j.apenergy.2019.02.020 10.1016/j.jpowsour.2016.06.076 10.1016/j.compchemeng.2017.10.038 10.1109/TPWRS.2015.2511541 10.1016/j.enbuild.2018.03.057 10.1016/j.egyr.2022.07.037 10.1016/j.energy.2018.03.079 10.1109/TIE.2014.2387095 10.3390/buildings13123089 10.1016/j.apenergy.2018.11.093 10.1016/j.enbuild.2020.110142 10.1016/j.buildenv.2024.112093 10.1016/j.apenergy.2019.03.038 10.1016/j.energy.2020.117188 10.1016/j.jobe.2019.100826 10.1016/j.jobe.2024.109354 10.1016/j.apenergy.2017.08.166 10.1016/j.buildenv.2013.11.016 10.1016/j.enbuild.2016.02.021 10.1016/j.enbuild.2023.113790 10.1016/j.apenergy.2018.12.003 10.1016/j.ifacol.2023.10.548 10.1016/j.enbuild.2024.114562 10.1109/EPEC.2016.7771706 10.1016/j.enbuild.2022.112269 10.1016/j.applthermaleng.2019.03.061 10.1016/j.enbuild.2017.07.027 10.1016/j.rser.2021.111174 10.1016/j.apenergy.2015.07.051 10.1016/j.apenergy.2021.116648 10.1016/j.apenergy.2014.11.064 10.1109/TCST.2013.2272178 10.1016/j.applthermaleng.2024.123611 10.1016/j.solener.2014.11.024 10.1016/j.energy.2018.03.113 10.1016/j.egypro.2017.03.028 10.1016/j.apenergy.2018.11.016 10.1016/j.apenergy.2018.02.126 10.1109/CASE49439.2021.9551423 10.3390/buildings12050581 10.1016/j.enbuild.2015.05.038 10.1016/j.jprocont.2014.04.015 10.3389/fbuil.2020.562239 10.1051/e3sconf/202236212002 10.1016/j.enconman.2015.03.013 10.1109/TCST.2014.2313736 10.3390/s20030781 10.1016/j.apenergy.2020.115147 10.1109/CoDIT62066.2024.10708557 10.1016/j.apenergy.2022.119153 10.1016/j.apenergy.2019.03.063 10.1016/j.apenergy.2016.11.041 10.1016/j.buildenv.2021.107830 10.1016/j.adapen.2022.100099 10.1016/j.est.2019.101186 10.3390/su12104264 10.1016/j.buildenv.2016.05.034 10.1016/j.apenergy.2019.01.097 10.1016/j.buildenv.2021.108681 10.3390/su9020264 10.3390/buildings12101602 10.1016/j.buildenv.2015.04.033 10.1016/j.egyr.2021.03.017 10.1109/ACC.2014.6859016 10.1109/TSG.2013.2279171 10.1016/j.enbuild.2015.03.045 10.1016/j.jprocont.2014.06.011 10.1016/j.buildenv.2017.09.003 10.1016/j.apenergy.2018.03.179 10.1109/TII.2020.2971530 10.1007/s00170-021-07682-3 10.1016/j.jprocont.2020.02.007 10.1016/j.energy.2019.03.171 10.1016/j.apenergy.2019.01.187 10.1007/978-3-319-77489-3_18 10.1109/TSG.2018.2887232 10.1016/j.energy.2016.07.021 10.1016/j.apenergy.2022.119104 10.1051/e3sconf/202560100108 10.3390/en14237910 10.1016/j.enbuild.2016.09.044 10.1016/j.energy.2021.119958 10.1016/j.jprocont.2018.12.013 10.1016/j.ifacol.2019.11.462 10.1186/s42162-021-00153-9 10.1016/j.enbuild.2015.11.014 10.1016/j.renene.2024.120110 10.1016/j.scs.2018.01.030 10.1016/j.scs.2020.102213 10.1109/TPWRS.2014.2365615 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FD 8FE 8FG ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L.- L6V M7S PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
| DOI | 10.3390/buildings15183298 |
| DatabaseName | CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2075-5309 |
| ExternalDocumentID | oai_doaj_org_article_67cc50bd01ec489d8623b7d01d124798 A857510666 10_3390_buildings15183298 |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GroupedDBID | .4S 2XV 5VS 7XC 8FE 8FG 8FH AAFWJ AAYXX ABJCF ADBBV ADMLS AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IHM ITC KQ8 L6V M7S MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PQGLB PROAC PTHSS PYCSY TUS 8FD ABUWG AZQEC DWQXO FR3 GNUQQ KR7 L.- PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
| ID | FETCH-LOGICAL-c375t-80ae7c263a89a66780acced9cb6dd75e09d97732be2d1a4fc46de57a50d5388e3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001580722500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2075-5309 |
| IngestDate | Fri Oct 03 12:45:17 EDT 2025 Mon Sep 29 11:11:26 EDT 2025 Tue Nov 04 18:14:29 EST 2025 Sat Nov 29 07:09:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-80ae7c263a89a66780acced9cb6dd75e09d97732be2d1a4fc46de57a50d5388e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5045-6474 0000-0001-7295-8806 0000-0001-7148-7010 0000-0002-3735-4238 0000-0002-5284-0568 |
| OpenAccessLink | https://www.proquest.com/docview/3254477161?pq-origsite=%requestingapplication% |
| PQID | 3254477161 |
| PQPubID | 2032422 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_67cc50bd01ec489d8623b7d01d124798 proquest_journals_3254477161 gale_infotracacademiconefile_A857510666 crossref_primary_10_3390_buildings15183298 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Buildings (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Killian (ref_138) 2018; 222 ref_92 ref_91 Pallonetto (ref_176) 2019; 239 Banjac (ref_78) 2021; 36 ref_13 Wang (ref_183) 2020; 262 Kordabad (ref_81) 2023; 56 Ascione (ref_172) 2017; 31 Shang (ref_143) 2019; 75 Reynolds (ref_175) 2018; 151 Yu (ref_3) 2015; 106 ref_19 Bracco (ref_98) 2015; 96 ref_18 Vrettos (ref_192) 2016; 31 ref_17 Zong (ref_43) 2017; 114 Finck (ref_153) 2020; 263 Heidari (ref_83) 2024; 252 Stoffel (ref_84) 2021; 2042 ref_15 Jin (ref_135) 2017; 205 Zhang (ref_164) 2022; 7 Darby (ref_42) 2012; 20 Zhao (ref_93) 2015; 86 Yang (ref_182) 2020; 257 Megahed (ref_177) 2019; 6 Hou (ref_115) 2022; 257 Lee (ref_168) 2015; 78 Helsen (ref_127) 2016; 111 Zhang (ref_33) 2022; 10 ref_20 Green (ref_89) 2021; 235 Huber (ref_162) 2022; 310 Oldewurtel (ref_67) 2013; 22 Goyal (ref_97) 2015; 140 (ref_131) 2017; 32 Klanatsky (ref_35) 2023; 300 ref_29 Mantovani (ref_118) 2014; 62 ref_28 Mai (ref_119) 2014; 30 ref_27 ref_26 Sturzenegger (ref_94) 2015; 24 Picard (ref_102) 2017; 152 Hu (ref_106) 2019; 153 Berouine (ref_25) 2022; 8 ref_71 Cai (ref_107) 2019; 236 Picard (ref_110) 2020; 88 ref_77 ref_152 ref_76 Chen (ref_116) 2022; 168 ref_75 ref_154 Smarra (ref_174) 2018; 226 Kuboth (ref_146) 2019; 240 Beneventi (ref_30) 2012; 63 Coban (ref_8) 2024; 89 Razmara (ref_101) 2017; 203 Minelli (ref_4) 2024; 223 Fitzpatrick (ref_156) 2020; 223 Huang (ref_169) 2015; 97 Freund (ref_159) 2021; 197 Biyik (ref_150) 2019; 25 Blum (ref_163) 2022; 318 Carli (ref_155) 2020; 198 Conti (ref_108) 2019; 148 Li (ref_124) 2016; 112 Cox (ref_178) 2019; 238 ref_88 Knudsen (ref_34) 2021; 298 Arroyo (ref_39) 2020; 50 Weeratunge (ref_104) 2018; 152 Arroyo (ref_161) 2022; 309 Afram (ref_61) 2014; 72 Feng (ref_121) 2015; 87 Li (ref_167) 2015; 113 Baniasadi (ref_105) 2018; 10 Jansen (ref_82) 2024; 319 Zhang (ref_185) 2021; 7 Yang (ref_136) 2018; 16 Yu (ref_70) 2013; 4 Mirakhorli (ref_191) 2018; 38 Salakij (ref_100) 2016; 133 Clausen (ref_160) 2021; 4 ref_50 Vasallo (ref_11) 2024; 199 Ay (ref_32) 2019; 52 Kennel (ref_72) 2012; 9 Xiao (ref_190) 2023; 342 Pergantis (ref_23) 2024; 266 Liang (ref_120) 2015; 92 Hilliard (ref_46) 2016; 10 ref_58 ref_57 ref_56 ref_55 Mbungu (ref_139) 2018; 41 ref_54 ref_53 ref_52 Garnier (ref_170) 2015; 37 Ascione (ref_171) 2016; 111 ref_59 Vrettos (ref_122) 2016; 9 Sharma (ref_99) 2016; 130 Hosamo (ref_166) 2023; 281 Zhang (ref_68) 2018; 41 ref_60 Tang (ref_142) 2019; 242 Sun (ref_123) 2016; 325 Brastein (ref_145) 2018; 169 Pedersen (ref_132) 2017; 141 Pergantis (ref_38) 2024; 360 Bianchini (ref_149) 2019; 240 Chen (ref_128) 2016; 164 ref_69 Fiorentini (ref_134) 2017; 187 Cid (ref_37) 2024; 319 Michailidis (ref_21) 2018; 211 ref_66 ref_65 ref_64 Jiang (ref_140) 2018; 226 ref_62 Raza (ref_12) 2024; 92 Shivam (ref_158) 2021; 237 Jiang (ref_86) 2024; 303 Ma (ref_90) 2025; 324 Ma (ref_117) 2014; 23 Bianchini (ref_129) 2016; 168 Yang (ref_181) 2020; 271 Yao (ref_48) 2021; 200 Chen (ref_148) 2019; 235 Coccia (ref_80) 2021; 222 Yamamoto (ref_63) 2024; 318 Li (ref_87) 2021; 146 (ref_24) 2021; 33 Kwak (ref_96) 2015; 155 Luo (ref_141) 2018; 15 ref_36 Bird (ref_165) 2022; 270 Shi (ref_130) 2017; 111 Blum (ref_151) 2019; 236 ref_31 Killian (ref_40) 2016; 105 Minelli (ref_14) 2022; 195 Ma (ref_73) 2014; 24 ref_113 Lee (ref_180) 2019; 153 Taheri (ref_49) 2022; 60 Rawlings (ref_137) 2018; 114 Hedegaard (ref_147) 2019; 242 Yu (ref_22) 2017; 146 Yousefi (ref_157) 2020; 17 Afram (ref_79) 2017; 141 Manic (ref_51) 2016; 10 Jin (ref_114) 2021; 12 Ciancio (ref_6) 2020; 60 Tavakoli (ref_173) 2018; 41 Dong (ref_16) 2018; 15 ref_103 Hilliard (ref_133) 2017; 125 Wirtz (ref_112) 2021; 288 Ding (ref_85) 2023; 295 Langer (ref_109) 2020; 278 Elnour (ref_187) 2022; 318 ref_45 Schwenzer (ref_47) 2021; 117 ref_44 ref_41 ref_1 Harb (ref_125) 2016; 117 ref_2 Mazzella (ref_5) 2022; 267 Yang (ref_184) 2021; 288 Afroz (ref_186) 2022; 209 Ahmed (ref_10) 2024; 89 Zhuang (ref_189) 2023; 338 ref_9 Lv (ref_144) 2019; 243 Gu (ref_126) 2016; 8 Touretzky (ref_74) 2014; 24 Razmara (ref_95) 2015; 156 Finck (ref_179) 2019; 176 Petrucci (ref_188) 2022; 268 ref_7 Baniasadi (ref_111) 2020; 28 |
| References_xml | – ident: ref_36 doi: 10.3390/buildings14072212 – volume: 153 start-page: 316 year: 2019 ident: ref_106 article-title: Price-responsive model predictive control of floor heating systems for demand response using building thermal mass publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.02.107 – volume: 164 start-page: 341 year: 2016 ident: ref_128 article-title: Occupant feedback based model predictive control for thermal comfort and energy optimization: A chamber experimental evaluation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.11.065 – volume: 288 start-page: 116608 year: 2021 ident: ref_112 article-title: Temperature control in 5th generation district heating and cooling networks: An MILP-based operation optimization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116608 – ident: ref_44 doi: 10.3390/buildings13123084 – volume: 168 start-page: 159 year: 2016 ident: ref_129 article-title: Demand-response in building heating systems: A Model Predictive Control approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.01.088 – volume: 342 start-page: 121165 year: 2023 ident: ref_190 article-title: Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.121165 – ident: ref_62 doi: 10.1109/PC.2013.6581444 – ident: ref_56 doi: 10.3390/en18174537 – ident: ref_91 doi: 10.3390/a16050243 – volume: 243 start-page: 250 year: 2019 ident: ref_144 article-title: Model predictive control based robust scheduling of community integrated energy system with operational flexibility publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.03.205 – ident: ref_31 doi: 10.3390/buildings12111879 – volume: 37 start-page: 847 year: 2015 ident: ref_170 article-title: Predictive control of multizone heating, ventilation and air-conditioning systems in non-residential buildings publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.09.022 – ident: ref_1 – ident: ref_71 – volume: 203 start-page: 128 year: 2017 ident: ref_101 article-title: Building-to-grid predictive power flow control for demand response and demand flexibility programs publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.06.040 – volume: 281 start-page: 112732 year: 2023 ident: ref_166 article-title: Digital Twin framework for automated fault source detection and prediction for comfort performance evaluation of existing non-residential Norwegian buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2022.112732 – ident: ref_50 doi: 10.3390/en17030570 – ident: ref_75 doi: 10.1109/CDC.2010.5718175 – volume: 41 start-page: 349 year: 2018 ident: ref_68 article-title: A stochastic MPC based approach to integrated energy management in microgrids publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.05.044 – volume: 262 start-page: 114561 year: 2020 ident: ref_183 article-title: A novel improved model for building energy consumption prediction based on model integration publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114561 – volume: 211 start-page: 113 year: 2018 ident: ref_21 article-title: Energy-efficient HVAC management using cooperative, self-trained, control agents: A real-life German building case study publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.11.046 – ident: ref_55 doi: 10.3390/pr10040667 – ident: ref_27 – volume: 92 start-page: 117 year: 2024 ident: ref_12 article-title: Smart home energy management systems: Research challenges and survey publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2024.02.033 – volume: 257 start-page: 113920 year: 2020 ident: ref_182 article-title: Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113920 – volume: 146 start-page: 19 year: 2017 ident: ref_22 article-title: Model-based predictive control for building energy management: Part II–Experimental validations publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.04.027 – volume: 60 start-page: 105067 year: 2022 ident: ref_49 article-title: Model predictive control of heating, ventilation, and air conditioning (HVAC) systems: A state-of-the-art review publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2022.105067 – ident: ref_15 doi: 10.3390/en17194835 – volume: 141 start-page: 158 year: 2017 ident: ref_132 article-title: Space heating demand response potential of retrofitted residential apartment blocks publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.02.035 – volume: 63 start-page: 1097 year: 2012 ident: ref_30 article-title: An effective gray-box identification procedure for multicore thermal modeling publication-title: IEEE Trans. Comput. – volume: 141 start-page: 96 year: 2017 ident: ref_79 article-title: Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.02.012 – volume: 298 start-page: 117227 year: 2021 ident: ref_34 article-title: Experimental test of a black-box economic model predictive control for residential space heating publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117227 – volume: 6 start-page: 5336 year: 2019 ident: ref_177 article-title: Energy management in zero-energy building using neural network predictive control publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2900558 – ident: ref_18 doi: 10.3390/en13236228 – ident: ref_59 – volume: 278 start-page: 115661 year: 2020 ident: ref_109 article-title: An optimal home energy management system for modulating heat pumps and photovoltaic systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115661 – volume: 268 start-page: 115995 year: 2022 ident: ref_188 article-title: Modelling of a multi-stage energy management control routine for energy demand forecasting, flexibility, and optimization of smart communities using a Recurrent Neural Network publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2022.115995 – volume: 155 start-page: 1 year: 2015 ident: ref_96 article-title: Development of a model predictive control framework through real-time building energy management system data publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.05.096 – ident: ref_2 doi: 10.3390/en16207124 – volume: 2042 start-page: 012043 year: 2021 ident: ref_84 article-title: Comparative study of neural network based and white box model predictive control for a room temperature control application publication-title: Proc. J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2042/1/012043 – ident: ref_113 doi: 10.1201/9780367567699-25 – ident: ref_28 – volume: 318 start-page: 114461 year: 2024 ident: ref_63 article-title: MPC-based robust optimization of smart apartment building considering uncertainty for conservative reduction publication-title: Energy Build. doi: 10.1016/j.enbuild.2024.114461 – volume: 148 start-page: 524 year: 2019 ident: ref_108 article-title: Model predictive control of a hybrid heat pump system and impact of the prediction horizon on cost-saving potential and optimal storage capacity publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.11.063 – volume: 10 start-page: 172 year: 2016 ident: ref_46 article-title: Model predictive control for commercial buildings: Trends and opportunities publication-title: Adv. Build. Energy Res. doi: 10.1080/17512549.2015.1079240 – volume: 324 start-page: 135958 year: 2025 ident: ref_90 article-title: Optimal flexible power allocation energy management strategy for hybrid energy storage system with genetic algorithm based model predictive control publication-title: Energy doi: 10.1016/j.energy.2025.135958 – volume: 24 start-page: 1 year: 2015 ident: ref_94 article-title: Model predictive climate control of a swiss office building: Implementation, results, and cost–benefit analysis publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2015.2415411 – volume: 114 start-page: 1476 year: 2017 ident: ref_43 article-title: Challenges of implementing economic model predictive control strategy for buildings interacting with smart energy systems publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.11.141 – volume: 89 start-page: 748 year: 2024 ident: ref_8 article-title: Modeling environmental and economic factors in regional energy optimization publication-title: Econ. Environ. doi: 10.34659/eis.2024.89.2.748 – ident: ref_19 doi: 10.3390/en18071724 – volume: 86 start-page: 415 year: 2015 ident: ref_93 article-title: MPC-based optimal scheduling of grid-connected low energy buildings with thermal energy storages publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.10.019 – volume: 87 start-page: 199 year: 2015 ident: ref_121 article-title: Model predictive control of radiant slab systems with evaporative cooling sources publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.11.037 – volume: 309 start-page: 118346 year: 2022 ident: ref_161 article-title: Reinforced model predictive control (RL-MPC) for building energy management publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118346 – volume: 338 start-page: 120936 year: 2023 ident: ref_189 article-title: Data-driven predictive control for smart HVAC system in IoT-integrated buildings with time-series forecasting and reinforcement learning publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.120936 – volume: 15 start-page: 869 year: 2018 ident: ref_16 article-title: Data-driven energy management in a home microgrid based on Bayesian optimal algorithm publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2820421 – volume: 36 start-page: 2670 year: 2021 ident: ref_78 article-title: Modular hierarchical model predictive control for coordinated and holistic energy management of buildings publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2021.3116153 – volume: 360 start-page: 122820 year: 2024 ident: ref_38 article-title: Field demonstration of predictive heating control for an all-electric house in a cold climate publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.122820 – volume: 168 start-page: 112830 year: 2022 ident: ref_116 article-title: Sustainable building climate control with renewable energy sources using nonlinear model predictive control publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112830 – volume: 9 start-page: 3213 year: 2016 ident: ref_122 article-title: Experimental demonstration of frequency regulation by commercial buildings—Part I: Modeling and hierarchical control design publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2628897 – volume: 50 start-page: 190 year: 2020 ident: ref_39 article-title: All you need to know about model predictive control for buildings publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2020.09.001 – volume: 263 start-page: 114671 year: 2020 ident: ref_153 article-title: Optimal control of demand flexibility under real-time pricing for heating systems in buildings: A real-life demonstration publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114671 – volume: 20 start-page: 328 year: 2012 ident: ref_42 article-title: MPC: Current practice and challenges publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2011.12.004 – ident: ref_69 doi: 10.1109/CDC.2013.6760908 – ident: ref_152 doi: 10.1145/3360322.3360849 – volume: 78 start-page: 2106 year: 2015 ident: ref_168 article-title: Optimal HVAC control as demand response with on-site energy storage and generation system publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.11.253 – ident: ref_45 doi: 10.3390/buildings15101654 – volume: 12 start-page: 1741 year: 2021 ident: ref_114 article-title: Optimal integration of building heating loads in integrated heating/electricity community energy systems: A bi-level MPC approach publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2021.3064325 – volume: 33 start-page: 101692 year: 2021 ident: ref_24 article-title: A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101692 – volume: 237 start-page: 114103 year: 2021 ident: ref_158 article-title: A multi-objective predictive energy management strategy for residential grid-connected PV-battery hybrid systems based on machine learning technique publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114103 – ident: ref_58 doi: 10.29119/1641-3466.2023.184.4 – volume: 235 start-page: 110705 year: 2021 ident: ref_89 article-title: Residential microgrid optimization using grey-box and black-box modeling methods publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110705 – volume: 238 start-page: 466 year: 2019 ident: ref_178 article-title: Real time optimal control of district cooling system with thermal energy storage using neural networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.093 – volume: 10 start-page: 27853 year: 2022 ident: ref_33 article-title: Building energy management with reinforcement learning and model predictive control: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3156581 – volume: 15 start-page: 116 year: 2018 ident: ref_141 article-title: A multistage home energy management system with residential photovoltaic penetration publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2871159 – volume: 319 start-page: 114520 year: 2024 ident: ref_82 article-title: Effect of prediction uncertainties on the performance of a white-box model predictive controller for district heating networks publication-title: Energy Build. doi: 10.1016/j.enbuild.2024.114520 – volume: 31 start-page: 136 year: 2017 ident: ref_172 article-title: A new comprehensive approach for cost-optimal building design integrated with the multi-objective model predictive control of HVAC systems publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2017.02.010 – ident: ref_7 doi: 10.3390/en17040855 – volume: 130 start-page: 55 year: 2016 ident: ref_99 article-title: A modeling framework for optimal energy management of a residential building publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.08.009 – ident: ref_20 doi: 10.3390/en17030581 – volume: 257 start-page: 111793 year: 2022 ident: ref_115 article-title: Model predictive control under weather forecast uncertainty for HVAC systems in university buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2021.111793 – volume: 16 start-page: 1002 year: 2018 ident: ref_136 article-title: Decentralized EV-based charging optimization with building integrated wind energy publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2018.2856908 – volume: 267 start-page: 112147 year: 2022 ident: ref_5 article-title: Obtaining the NZEB target by using photovoltaic systems on the roof for multi-storey buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2022.112147 – volume: 300 start-page: 113624 year: 2023 ident: ref_35 article-title: Grey-box model for model predictive control of buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2023.113624 – volume: 295 start-page: 113271 year: 2023 ident: ref_85 article-title: Development, calibration, and validation of a novel gray-box energy model for residential split air conditioners publication-title: Energy Build. doi: 10.1016/j.enbuild.2023.113271 – volume: 111 start-page: 131 year: 2016 ident: ref_171 article-title: Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.11.033 – volume: 32 start-page: 338 year: 2017 ident: ref_131 article-title: Scheduling deferrable appliances and energy resources of a smart home applying multi-time scale stochastic model predictive control publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2017.04.006 – volume: 9 start-page: 1528 year: 2012 ident: ref_72 article-title: Energy management for smart grids with electric vehicles based on hierarchical MPC publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2012.2228876 – volume: 41 start-page: 392 year: 2018 ident: ref_139 article-title: An optimal energy management system for a commercial building with renewable energy generation under real-time electricity prices publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.05.049 – volume: 41 start-page: 332 year: 2018 ident: ref_173 article-title: A two stage hierarchical control approach for the optimal energy management in commercial building microgrids based on local wind power and PEVs publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.05.035 – volume: 226 start-page: 181 year: 2018 ident: ref_140 article-title: Flexible operation of active distribution network using integrated smart buildings with heating, ventilation and air-conditioning systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.05.091 – ident: ref_103 doi: 10.1016/j.enbuild.2017.07.077 – volume: 200 start-page: 107952 year: 2021 ident: ref_48 article-title: State of the art review on model predictive control (MPC) in Heating Ventilation and Air-conditioning (HVAC) field publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.107952 – volume: 310 start-page: 118491 year: 2022 ident: ref_162 article-title: Physics-informed linear regression is competitive with two Machine Learning methods in residential building MPC publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118491 – volume: 199 start-page: 114472 year: 2024 ident: ref_11 article-title: Challenges and opportunities in European smart buildings energy management: A critical review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2024.114472 – volume: 195 start-page: 809 year: 2022 ident: ref_14 article-title: Fixed and tracking PV systems for Net Zero Energy Buildings: Comparison between yearly and monthly energy balance publication-title: Renew. Energy doi: 10.1016/j.renene.2022.06.046 – volume: 8 start-page: 2332 year: 2016 ident: ref_126 article-title: An online optimal dispatch schedule for CCHP microgrids based on model predictive control publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2523504 – ident: ref_57 doi: 10.3390/buildings15152702 – ident: ref_17 doi: 10.3390/en16145326 – volume: 10 start-page: 25 year: 2016 ident: ref_51 article-title: Building energy management systems: The age of intelligent and adaptive buildings publication-title: IEEE Ind. Electron. Mag. doi: 10.1109/MIE.2015.2513749 – volume: 239 start-page: 1265 year: 2019 ident: ref_176 article-title: Demand response algorithms for smart-grid ready residential buildings using machine learning models publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.02.020 – volume: 325 start-page: 723 year: 2016 ident: ref_123 article-title: Nonlinear predictive energy management of residential buildings with photovoltaics & batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.06.076 – volume: 114 start-page: 89 year: 2018 ident: ref_137 article-title: Economic MPC and real-time decision making with application to large-scale HVAC energy systems publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.10.038 – volume: 31 start-page: 4272 year: 2016 ident: ref_192 article-title: Robust energy-constrained frequency reserves from aggregations of commercial buildings publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2511541 – volume: 169 start-page: 58 year: 2018 ident: ref_145 article-title: Parameter estimation for grey-box models of building thermal behaviour publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.03.057 – volume: 8 start-page: 9127 year: 2022 ident: ref_25 article-title: A predictive control approach for thermal energy management in buildings publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.07.037 – volume: 152 start-page: 974 year: 2018 ident: ref_104 article-title: Model predictive control for a solar assisted ground source heat pump system publication-title: Energy doi: 10.1016/j.energy.2018.03.079 – volume: 62 start-page: 2651 year: 2014 ident: ref_118 article-title: Temperature control of a commercial building with model predictive control techniques publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2387095 – ident: ref_53 doi: 10.3390/buildings13123089 – volume: 236 start-page: 410 year: 2019 ident: ref_151 article-title: Practical factors of envelope model setup and their effects on the performance of model predictive control for building heating, ventilating, and air conditioning systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.11.093 – volume: 223 start-page: 110142 year: 2020 ident: ref_156 article-title: Influence of electricity prices on energy flexibility of integrated hybrid heat pump and thermal storage systems in a residential building publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110142 – volume: 266 start-page: 112093 year: 2024 ident: ref_23 article-title: Humidity-aware model predictive control for residential air conditioning: A field study publication-title: Build. Environ. doi: 10.1016/j.buildenv.2024.112093 – volume: 242 start-page: 873 year: 2019 ident: ref_142 article-title: Model predictive control for thermal energy storage and thermal comfort optimization of building demand response in smart grids publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.03.038 – volume: 198 start-page: 117188 year: 2020 ident: ref_155 article-title: Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samsø publication-title: Energy doi: 10.1016/j.energy.2020.117188 – volume: 25 start-page: 100826 year: 2019 ident: ref_150 article-title: A predictive control strategy for optimal management of peak load, thermal comfort, energy storage and renewables in multi-zone buildings publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2019.100826 – volume: 89 start-page: 109354 year: 2024 ident: ref_10 article-title: A review on enhancing energy efficiency and adaptability through system integration for smart buildings publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2024.109354 – volume: 205 start-page: 1583 year: 2017 ident: ref_135 article-title: Foresee: A user-centric home energy management system for energy efficiency and demand response publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.08.166 – volume: 72 start-page: 343 year: 2014 ident: ref_61 article-title: Theory and applications of HVAC control systems—A review of model predictive control (MPC) publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.11.016 – volume: 117 start-page: 199 year: 2016 ident: ref_125 article-title: Development and validation of grey-box models for forecasting the thermal response of occupied buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.02.021 – volume: 303 start-page: 113790 year: 2024 ident: ref_86 article-title: Development, implementation, and impact analysis of model predictive control-based optimal precooling using smart home thermostats publication-title: Energy Build. doi: 10.1016/j.enbuild.2023.113790 – volume: 236 start-page: 478 year: 2019 ident: ref_107 article-title: Aging-aware predictive control of PV-battery assets in buildings publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.12.003 – volume: 56 start-page: 5773 year: 2023 ident: ref_81 article-title: Reinforcement learning for MPC: Fundamentals and current challenges publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2023.10.548 – volume: 319 start-page: 114562 year: 2024 ident: ref_37 article-title: Energy optimization algorithms for multi-residential buildings: A model predictive control application publication-title: Energy Build. doi: 10.1016/j.enbuild.2024.114562 – ident: ref_64 doi: 10.1109/EPEC.2016.7771706 – volume: 270 start-page: 112269 year: 2022 ident: ref_165 article-title: Real-world implementation and cost of a cloud-based MPC retrofit for HVAC control systems in commercial buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2022.112269 – volume: 153 start-page: 726 year: 2019 ident: ref_180 article-title: Application of artificial neural networks for optimized AHU discharge air temperature set-point and minimized cooling energy in VAV system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.03.061 – volume: 152 start-page: 739 year: 2017 ident: ref_102 article-title: Impact of the controller model complexity on model predictive control performance for buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.07.027 – ident: ref_41 – volume: 146 start-page: 111174 year: 2021 ident: ref_87 article-title: Grey-box modeling and application for building energy simulations-A critical review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111174 – volume: 156 start-page: 555 year: 2015 ident: ref_95 article-title: Optimal exergy control of building HVAC system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.07.051 – volume: 288 start-page: 116648 year: 2021 ident: ref_184 article-title: Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116648 – volume: 140 start-page: 75 year: 2015 ident: ref_97 article-title: Experimental study of occupancy-based control of HVAC zones publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.11.064 – volume: 22 start-page: 1198 year: 2013 ident: ref_67 article-title: Stochastic model predictive control for building climate control publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2013.2272178 – volume: 252 start-page: 123611 year: 2024 ident: ref_83 article-title: Evaluating advanced HVAC control benefits in operational buildings using historic data—A case study publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2024.123611 – volume: 113 start-page: 139 year: 2015 ident: ref_167 article-title: System identification and model-predictive control of office buildings with integrated photovoltaic-thermal collectors, radiant floor heating and active thermal storage publication-title: Sol. Energy doi: 10.1016/j.solener.2014.11.024 – volume: 151 start-page: 729 year: 2018 ident: ref_175 article-title: A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control publication-title: Energy doi: 10.1016/j.energy.2018.03.113 – volume: 111 start-page: 267 year: 2017 ident: ref_130 article-title: Energy efficient building HVAC control algorithm with real-time occupancy prediction publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.028 – volume: 235 start-page: 1141 year: 2019 ident: ref_148 article-title: Achieving natural ventilation potential in practice: Control schemes and levels of automation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.11.016 – volume: 226 start-page: 1252 year: 2018 ident: ref_174 article-title: Data-driven model predictive control using random forests for building energy optimization and climate control publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.126 – ident: ref_77 doi: 10.1109/CASE49439.2021.9551423 – ident: ref_26 doi: 10.3390/buildings12050581 – volume: 106 start-page: 203 year: 2015 ident: ref_3 article-title: Control strategies for integration of thermal energy storage into buildings: State-of-the-art review publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.05.038 – volume: 24 start-page: 1292 year: 2014 ident: ref_74 article-title: Integrating scheduling and control for economic MPC of buildings with energy storage publication-title: J. Process Control doi: 10.1016/j.jprocont.2014.04.015 – ident: ref_92 doi: 10.3389/fbuil.2020.562239 – ident: ref_29 doi: 10.1051/e3sconf/202236212002 – volume: 96 start-page: 511 year: 2015 ident: ref_98 article-title: A dynamic optimization-based architecture for polygeneration microgrids with tri-generation, renewables, storage systems and electrical vehicles publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.03.013 – volume: 23 start-page: 101 year: 2014 ident: ref_117 article-title: Stochastic model predictive control for building HVAC systems: Complexity and conservatism publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2014.2313736 – ident: ref_154 doi: 10.3390/s20030781 – volume: 271 start-page: 115147 year: 2020 ident: ref_181 article-title: Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115147 – ident: ref_88 doi: 10.1109/CoDIT62066.2024.10708557 – volume: 318 start-page: 119153 year: 2022 ident: ref_187 article-title: Neural network-based model predictive control system for optimizing building automation and management systems of sports facilities publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119153 – volume: 242 start-page: 181 year: 2019 ident: ref_147 article-title: Bottom-up modelling methodology for urban-scale analysis of residential space heating demand response publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.03.063 – volume: 187 start-page: 465 year: 2017 ident: ref_134 article-title: Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.11.041 – volume: 197 start-page: 107830 year: 2021 ident: ref_159 article-title: Implementation of model predictive control in a large-sized, low-energy office building publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.107830 – volume: 7 start-page: 100099 year: 2022 ident: ref_164 article-title: Model predictive control for demand flexibility: Real-world operation of a commercial building with photovoltaic and battery systems publication-title: Adv. Appl. Energy doi: 10.1016/j.adapen.2022.100099 – volume: 28 start-page: 101186 year: 2020 ident: ref_111 article-title: Optimal sizing design and operation of electrical and thermal energy storage systems in smart buildings publication-title: J. Energy Storage doi: 10.1016/j.est.2019.101186 – ident: ref_54 doi: 10.3390/su12104264 – volume: 105 start-page: 403 year: 2016 ident: ref_40 article-title: Ten questions concerning model predictive control for energy efficient buildings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2016.05.034 – volume: 240 start-page: 372 year: 2019 ident: ref_146 article-title: Economic model predictive control of combined thermal and electric residential building energy systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.097 – volume: 209 start-page: 108681 year: 2022 ident: ref_186 article-title: Predictive modelling and optimization of HVAC systems using neural network and particle swarm optimization algorithm publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.108681 – ident: ref_76 doi: 10.3390/su9020264 – ident: ref_52 doi: 10.3390/buildings12101602 – volume: 92 start-page: 256 year: 2015 ident: ref_120 article-title: MPC control for improving energy efficiency of a building air handler for multi-zone VAVs publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.04.033 – volume: 7 start-page: 1588 year: 2021 ident: ref_185 article-title: Predictive model of cooling load for ice storage air-conditioning system by using GBDT publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.03.017 – ident: ref_66 doi: 10.1109/ACC.2014.6859016 – volume: 4 start-page: 2244 year: 2013 ident: ref_70 article-title: Modeling and stochastic control for home energy management publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2013.2279171 – volume: 97 start-page: 86 year: 2015 ident: ref_169 article-title: A neural network-based multi-zone modelling approach for predictive control system design in commercial buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.03.045 – volume: 24 start-page: 1282 year: 2014 ident: ref_73 article-title: Application of economic MPC to the energy and demand minimization of a commercial building publication-title: J. Process Control doi: 10.1016/j.jprocont.2014.06.011 – volume: 125 start-page: 326 year: 2017 ident: ref_133 article-title: Experimental implementation of whole building MPC with zone based thermal comfort adjustments publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.09.003 – volume: 222 start-page: 662 year: 2018 ident: ref_138 article-title: Comprehensive smart home energy management system using mixed-integer quadratic-programming publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.03.179 – volume: 17 start-page: 430 year: 2020 ident: ref_157 article-title: Predictive home energy management system with photovoltaic array, heat pump, and plug-in electric vehicle publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.2971530 – volume: 117 start-page: 1327 year: 2021 ident: ref_47 article-title: Review on model predictive control: An engineering perspective publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-07682-3 – volume: 88 start-page: 63 year: 2020 ident: ref_110 article-title: Cloud-based implementation of white-box model predictive control for a GEOTABS office building: A field test demonstration publication-title: J. Process Control doi: 10.1016/j.jprocont.2020.02.007 – volume: 176 start-page: 365 year: 2019 ident: ref_179 article-title: Economic model predictive control for demand flexibility of a residential building publication-title: Energy doi: 10.1016/j.energy.2019.03.171 – volume: 240 start-page: 327 year: 2019 ident: ref_149 article-title: An integrated model predictive control approach for optimal HVAC and energy storage operation in large-scale buildings publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.187 – ident: ref_65 doi: 10.1007/978-3-319-77489-3_18 – volume: 10 start-page: 5587 year: 2018 ident: ref_105 article-title: Optimal real-time residential thermal energy management for peak-load shifting with experimental verification publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2887232 – volume: 112 start-page: 1194 year: 2016 ident: ref_124 article-title: Multi-objective optimization for thermal mass model predictive control in small and medium size commercial buildings under summer weather conditions publication-title: Energy doi: 10.1016/j.energy.2016.07.021 – volume: 318 start-page: 119104 year: 2022 ident: ref_163 article-title: Field demonstration and implementation analysis of model predictive control in an office HVAC system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119104 – ident: ref_9 doi: 10.1051/e3sconf/202560100108 – ident: ref_13 doi: 10.3390/en14237910 – volume: 133 start-page: 345 year: 2016 ident: ref_100 article-title: Model-Based Predictive Control for building energy management. I: Energy modeling and optimal control publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.09.044 – volume: 222 start-page: 119958 year: 2021 ident: ref_80 article-title: Artificial-neural-network-based model predictive control to exploit energy flexibility in multi-energy systems comprising district cooling publication-title: Energy doi: 10.1016/j.energy.2021.119958 – volume: 75 start-page: 24 year: 2019 ident: ref_143 article-title: A data-driven robust optimization approach to scenario-based stochastic model predictive control publication-title: J. Process Control doi: 10.1016/j.jprocont.2018.12.013 – ident: ref_60 – volume: 52 start-page: 1797 year: 2019 ident: ref_32 article-title: Model predictive control in milling based on support vector machines publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.11.462 – volume: 4 start-page: 1 year: 2021 ident: ref_160 article-title: A digital twin framework for improving energy efficiency and occupant comfort in public and commercial buildings publication-title: Energy Inform. doi: 10.1186/s42162-021-00153-9 – volume: 111 start-page: 290 year: 2016 ident: ref_127 article-title: Practical implementation and evaluation of model predictive control for an office building in Brussels publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.11.014 – volume: 223 start-page: 120110 year: 2024 ident: ref_4 article-title: From net zero energy buildings to an energy sharing model-The role of NZEBs in renewable energy communities publication-title: Renew. Energy doi: 10.1016/j.renene.2024.120110 – volume: 38 start-page: 723 year: 2018 ident: ref_191 article-title: Market and behavior driven predictive energy management for residential buildings publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.01.030 – volume: 60 start-page: 102213 year: 2020 ident: ref_6 article-title: Energy demands of buildings in the framework of climate change: An investigation across Europe publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102213 – volume: 30 start-page: 2685 year: 2014 ident: ref_119 article-title: Economic MPC of aggregating commercial buildings for providing flexible power reserve publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2014.2365615 |
| SSID | ssj0000852254 |
| Score | 2.3204877 |
| SecondaryResourceType | review_article |
| Snippet | The integration of advanced control strategies into building energy management systems (BEMS) is essential for achieving energy efficiency and sustaining... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 3298 |
| SubjectTerms | Algorithms Alternative energy sources Benchmarks building energy management Buildings Electric vehicle charging Electric vehicles Emission standards Energy consumption Energy efficiency Energy industry Energy management Energy management systems Energy storage Energy use Forecasting Heuristic methods HVAC HVAC control Interactive control Machine learning Middleware model predictive control Multiagent systems Multiple objective analysis Optimization Optimization techniques Predictive control Real time Renewable energy Simulation methods Smart buildings smart homes Solvers Support systems Thermal comfort Trends |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA4yfNAH8SdWp-RBEISytmmbxrc5NvRlDFTYW0iTDCZapa3-_d6l3ayI-OJjSxuud2nujrv7PkIuVKRiFVruRxmO5GRC-YJr60PowEwcLYROjCOb4NNpNp-LWYfqC3vCGnjgRnGDlGudBLkJQqthKQNLspzDpQHPxIUb8w246CRTT033FWzUuCljMsjrB3nLMl2Bi4NdLLJvjsjh9f92KjtXM9klO22MSIeNbHtkwxb7ZLuDHHhAJHKYPdNZiXUWPLHoqOk5pxCE0vsX-C56s5Llmg47ZWqqCkPv1mSoFV0WdOwmAOlXL8wheZyMH0a3fsuV4GvGkxocjbJcRylToO4UPFCgtLZG6Dw1hic2EAYiPRblNjKhihc6To1NuEoCA0deZtkR6RWvhT0m1MBKRmULg0X5QEE-gW9HlifgyHSce-RqpTj51kBiSEglUMvyh5Y9coOqXT-IaNbuBthYtjaWf9nYI5doGIn_XF0qrdrRAZAX0avkEGlGQ8zEPNJf2U62P2MlGcKwcUgMw5P_kOaUbEVIAuwazfqkV5fv9oxs6o96WZXnbh9-ArT242I priority: 102 providerName: Directory of Open Access Journals |
| Title | Model Predictive Control for Smart Buildings: Applications and Innovations in Energy Management |
| URI | https://www.proquest.com/docview/3254477161 https://doaj.org/article/67cc50bd01ec489d8623b7d01d124798 |
| Volume | 15 |
| WOSCitedRecordID | wos001580722500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: M7S dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: PATMY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5R6KE90CdqaIh8qFSp0op9e5cLSlBQORCtSivRk-X1OCgSbGA39Pd3xnFCKlQuHNfrteyd8Tw84_kAvuhYpzqyMogLvpJTlDoopbEBmQ4JpvG0NBk6sAk5mRSXl2XlD9w6n1a5kolOUOPc8Bn5YcK1tCRZ99Hx7V3AqFEcXfUQGi9gh6skRC5172J9xkLmBLFrugxmJuTdH9Yea7qjzsTLZfGPOnJV-_8nm53COX3z3Km-hV1vaorhkjfewZZt3sPrjQKEH0AxFNq1qFoO17DgEyfL1HVBtqy4uCG-EqPVYo7EcCPaLXSD4myNqdqJWSPG7iKheEip-Qi_Tsc_T74HHnIhMInMFqSvtJUmzhNNVMtJkYXaGIulqXNEmdmwRDIYk7i2MUY6nZo0R5tJnYVIkrOwyR5sN_PGfgKBNBLqYooc2w81uSX8dWxlRvrQpHUPvq3-vLpdVtZQ5JEwmdQjMvVgxLRZd-Si2K5h3l4pv8dULo3JwhrDyBriOiTuS2pJj0hGjORBvjJlFW_dRauN9jcQaL5cBEsNGa00YoeuB_0VZZXf0516IOv-068_w6uYUYJdJlofthftvT2Al-bPYta1A9gZjSfVj4Hz_geOYamtOjuvfv8FCrP2Vg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fT9UwFD5BNBEfFH-Fiyh90JiYLGzttq4mxlwQwg14QwImvNWu7TUksIvbBeI_5d_oOd12wRh948HH_Wq69TvfOV1Pzwfw2nCTmsTLiBe0JadQJlLS-ghDB-FSPlE2c0FsQo7HxfGxOliAn_1eGEqr7DkxELWbWvpHviGolpbE6D75eP49ItUoWl3tJTRaWOz5H1c4ZWs-jD7h-L7hfGf7aGs36lQFIitkNkNKNl5anguDHcuRq2NjrXfKlrlzMvOxchgTCV567hKTTmyaO59Jk8UOyaHwAtu9A3cxjOAqpAoezv_pYPiC5pG2i6dCqHij7LStG3SsaDuq-M39BZWAv_mC4OB2Hv1vn2YZHnahNBu22H8MC756Ag9uFFh8Cpqk3k7ZQU3LUUTsbKtNzWcYq7PDM7Qbttl_vPdseGM1n5nKsdFcM7ZhJxXbDhsl2XXK0DP4citv-BwWq2nlV4A5bMmZYuIodyE2OO2ip7mXGfp7m5YDeNePtD5vK4donHERLPQfsBjAJmFhfiMV_Q4npvU33XGIzqW1WVy6OPEWrcqhdYlS4qHDIE1SI28JSZqoaVYba7odFthfKvKlh6TGmtCEdQBrPZJ0x1mNvobR6r8vr8P93aPP-3p_NN57AUucFJFD1t0aLM7qC_8S7tnL2UlTvwrmweDrbYPuF7itULw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJw4I1YKOADCAkp2sRO4gQJoe1jxaqwWokilZNxPN6qUsmWZAHx1_h1zOSxLUJw64FjXpZjf_N5bI_nA3hqpY1t5HUgMz6Sk-U2yLXzAbkOCmO5yF2CjdiEns2yw8N8vgE_-7MwHFbZc2JD1Lh0vEY-UpxLS5N3H40WXVjEfHfy-vRLwApSvNPay2m0ENn3P77T9K1-Nd2lvn4m5WTvYOdN0CkMBE7pZEX0bL12MlWWKpkSb4fWOY-5K1JEnfgwR_KPlCy8xMjGCxen6BNtkxCJKDKvqNxLsJmlOswGsDkfH7z7uF7hIWeGjCVut1KVysNR0Sld1zTMkiXl2W-DYaMZ8LeRoRnuJjf-54a6Cdc7J1uMW6u4BRu-vA3XzqVevAOGReBOxLzijSqmfLHTBu0L8uLF-89kUWK7b8iXYnxun1_YEsV0rSZbi-NS7DVHKMVZMNFd-HAhf3gPBuWy9PdBIJWENlsgRzWEliZk_LX0OiFPwMXFEF70vW5O25wihuZiDBHzB0SGsM24WL_I6cCbG8vqyHTsYlLtXBIWGEbekb0h2Z0qNF0iuW-aC3nOqDJMWqvKOtudvaD6cvovM2ad1oinskPY6lFlOjarzRmkHvz78RO4Qlgzb6ez_YdwVbJUchOOtwWDVfXVP4LL7tvquK4ed7Yi4NNFo-4XJBta7w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Predictive+Control+for+Smart+Buildings%3A+Applications+and+Innovations+in+Energy+Management&rft.jtitle=Buildings+%28Basel%29&rft.au=Michailidis%2C+Panagiotis&rft.au=Michailidis%2C+Iakovos&rft.au=Minelli%2C+Federico&rft.au=Coban%2C+Hasan+Huseyin&rft.date=2025-09-01&rft.pub=MDPI+AG&rft.issn=2075-5309&rft.eissn=2075-5309&rft.volume=15&rft.issue=18&rft_id=info:doi/10.3390%2Fbuildings15183298&rft.externalDocID=A857510666 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon |