Geometric double-entity model for recognizing far-near relations of clusters
When solving many practical problems, we not only need sample labels given by a clustering algorithm, but also rely on the recognition of far-near relations of clusters. Under the difficult condition of many clusters in a high-dimensional data set, the clustering visualization methods based on dimen...
Saved in:
| Published in: | Science China. Information sciences Vol. 54; no. 10; pp. 2040 - 2050 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Heidelberg
SP Science China Press
01.10.2011
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1674-733X, 1869-1919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | When solving many practical problems, we not only need sample labels given by a clustering algorithm, but also rely on the recognition of far-near relations of clusters. Under the difficult condition of many clusters in a high-dimensional data set, the clustering visualization methods based on dimension reductions usually produce the phenomena, e.g., some clusters are overlapping, interlacing, or pushed away; as a result, the far-near relations of some clusters are displayed wrongly or cannot be distinguished. The existing inter-cluster distance methods cannot determine whether two clusters are far away or near. The geometric double-entity model method (GDEM) is proposed to describe far-near relations of clusters, and the methods such as the relative border distance, absolute border distance and region dense degree are designed to measure far-near degrees between clusters. GDEM pays attention to both the absolute distance between nearest sample sets and the dense degrees of border regions of two clusters, and it is able to uncover accurately far-near relations of clusters in a high-dimensional space, especially under the difficult condition mentioned above. The experimental results on four real data sets show that the proposed method can effectively recognize far-near relations of clusters, while the conventional methods cannot. |
|---|---|
| AbstractList | When solving many practical problems, we not only need sample labels given by a clustering algorithm, but also rely on the recognition of far-near relations of clusters. Under the difficult condition of many clusters in a high-dimensional data set, the clustering visualization methods based on dimension reductions usually produce the phenomena, e.g., some clusters are overlapping, interlacing, or pushed away; as a result, the far-near relations of some clusters are displayed wrongly or cannot be distinguished. The existing inter-cluster distance methods cannot determine whether two clusters are far away or near. The geometric double-entity model method (GDEM) is proposed to describe far-near relations of clusters, and the methods such as the relative border distance, absolute border distance and region dense degree are designed to measure far-near degrees between clusters. GDEM pays attention to both the absolute distance between nearest sample sets and the dense degrees of border regions of two clusters, and it is able to uncover accurately far-near relations of clusters in a high-dimensional space, especially under the difficult condition mentioned above. The experimental results on four real data sets show that the proposed method can effectively recognize far-near relations of clusters, while the conventional methods cannot. When solving many practical problems, we not only need sample labels given by a clustering algorithm, but also rely on the recognition of far-near relations of clusters. Under the difficult condition of many clusters in a high-dimensional data set, the clustering visualization methods based on dimension reductions usually produce the phenomena, e.g., some clusters are overlapping, interlacing, or pushed away; as a result, the far-near relations of some clusters are displayed wrongly or cannot be distinguished. The existing inter-cluster distance methods cannot determine whether two clusters are far away or near. The geometric double-entity model method (GDEM) is proposed to describe far-near relations of clusters, and the methods such as the relative border distance, absolute border distance and region dense degree are designed to measure far-near degrees between clusters. GDEM pays attention to both the absolute distance between nearest sample sets and the dense degrees of border regions of two clusters, and it is able to uncover accurately far-near relations of clusters in a high-dimensional space, especially under the difficult condition mentioned above. The experimental results on four real data sets show that the proposed method can effectively recognize far-near relations of clusters, while the conventional methods cannot. |
| Author | WANG KaiJun YAN XuanHui CHEN Li~i |
| AuthorAffiliation | School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350108, China |
| Author_xml | – sequence: 1 givenname: KaiJun surname: Wang fullname: Wang, KaiJun email: wkjwang@gmail.com organization: School of Mathematics and Computer Science, Fujian Normal University – sequence: 2 givenname: XuanHui surname: Yan fullname: Yan, XuanHui organization: School of Mathematics and Computer Science, Fujian Normal University – sequence: 3 givenname: LiFei surname: Chen fullname: Chen, LiFei organization: School of Mathematics and Computer Science, Fujian Normal University |
| BookMark | eNp9kD1LBDEQhoMo-PkD7FZsbKL52E02pYiewoGNgl3IZWfPHHuJJtlCf71Z71CwcJoZhuedj_cQ7frgAaFTSi4pIfIqUVpzhgmluOatwM0OOqCtUJgqqnZLLWSNJecv--gkpRUpwTlhsj1A8xmENeTobNWFcTEABp9d_qjWoYOh6kOsItiw9O7T-WXVm4g9mKk5mOyCT1XoKzuMKUNMx2ivN0OCk20-Qs93t08393j-OHu4uZ5jy2WTsQTbcFGzhbCdANMIYZQUdCFVJ6w1zDCrZMt5BwQ6aDvWFMaS2pKmFaXmR-hiM_cthvcRUtZrlywMg_EQxqTLv7RmrGUTev4HXYUx-nKdZqp4JLhUslByQ9kYUorQa-vy9385GjdoSvRktN4YrYvRejJaT_PpH-VbdGsTP_7VsI0mFdYvIf7e9J_obLvoNfjle9H9bOKKKcZLfAHlmpyi |
| CitedBy_id | crossref_primary_10_1093_sysbio_syae068 crossref_primary_10_1007_s11432_014_5267_5 |
| Cites_doi | 10.1186/1471-2105-6-232 10.1007/11494669_93 10.1038/ng765 10.1093/bioinformatics/btg119 10.1016/j.patcog.2008.12.013 10.1109/TPAMI.2007.250607 10.1109/TNN.2008.2000807 10.1109/34.1000238 10.1162/089976698300017953 10.1126/science.286.5439.531 10.1093/bioinformatics/btg025 10.1109/TNN.2005.853574 10.1126/science.1136800 10.1038/nrc2294 10.1360/crad20050912 10.1016/S0165-1684(02)00475-9 10.1109/72.977314 10.1109/TNN.2005.845141 10.1126/science.290.5500.2323 10.1006/geno.2000.6187 10.1016/j.patcog.2008.08.030 10.1145/1015330.1015345 |
| ContentType | Journal Article |
| Copyright | Science China Press and Springer-Verlag Berlin Heidelberg 2011 Science China Press and Springer-Verlag Berlin Heidelberg 2011. |
| Copyright_xml | – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2011 – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2011. |
| DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 7SC 8FD L7M L~C L~D |
| DOI | 10.1007/s11432-011-4386-5 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Computer and Information Systems Abstracts Technology Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| DocumentTitleAlternate | Geometric double-entity model for recognizing far-near relations of clusters |
| EISSN | 1869-1919 |
| EndPage | 2050 |
| ExternalDocumentID | 10_1007_s11432_011_4386_5 39292333 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .VR 06D 0VY 1N0 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 8TC 8UJ 92E 92I 92L 92Q 93N 95- 95. 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFKRA AFLOW AFNRJ AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BDATZ BENPR BGLVJ BGNMA CAG CCEZO CCPQU CHBEP COF CQIGP CSCUP CUBFJ CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ K7- KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9J P9O PF0 PT4 QOS R89 RIG ROL RSV S16 S3B SAP SCL SCO SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TCJ TGP TR2 TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W92 WK8 YLTOR Z7R Z7S Z7X Z7Z Z83 Z88 ZMTXR ~A9 ~WA -SI -S~ 0R~ AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI AEFQL AEMSY AGQEE AGRTI AIGIU BSONS CAJEI CJPJV H13 Q-- U1G U5S AAPKM AAYXX ABBRH ABDBE ABRTQ ADHKG AFDZB AFFHD AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI 7SC 8FD L7M L~C L~D PUEGO |
| ID | FETCH-LOGICAL-c375t-7ec53642b6cd6ea566a9761b79d6cca2a2c97833de0ede8d25a56c04c05865a53 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000297023300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1674-733X |
| IngestDate | Thu Sep 04 18:39:03 EDT 2025 Fri Nov 07 23:39:51 EST 2025 Sat Nov 29 03:42:09 EST 2025 Tue Nov 18 21:42:59 EST 2025 Fri Feb 21 02:33:11 EST 2025 Wed Feb 14 09:55:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | partitional clustering algorithms geometric double-entity model far-near relations of clusters distance between clusters |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-7ec53642b6cd6ea566a9761b79d6cca2a2c97833de0ede8d25a56c04c05865a53 |
| Notes | 11-5847/TP geometric double-entity model, far-near relations of clusters, distance between clusters, partitionalclustering algorithms When solving many practical problems, we not only need sample labels given by a clustering algorithm, but also rely on the recognition of far-near relations of clusters. Under the difficult condition of many clusters in a high-dimensional data set, the clustering visualization methods based on dimension reductions usually produce the phenomena, e.g., some clusters are overlapping, interlacing, or pushed away; as a result, the far-near relations of some clusters are displayed wrongly or cannot be distinguished. The existing inter-cluster distance methods cannot determine whether two clusters are far away or near. The geometric double-entity model method (GDEM) is proposed to describe far-near relations of clusters, and the methods such as the relative border distance, absolute border distance and region dense degree are designed to measure far-near degrees between clusters. GDEM pays attention to both the absolute distance between nearest sample sets and the dense degrees of border regions of two clusters, and it is able to uncover accurately far-near relations of clusters in a high-dimensional space, especially under the difficult condition mentioned above. The experimental results on four real data sets show that the proposed method can effectively recognize far-near relations of clusters, while the conventional methods cannot. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2918663797 |
| PQPubID | 2043626 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1671422825 proquest_journals_2918663797 crossref_citationtrail_10_1007_s11432_011_4386_5 crossref_primary_10_1007_s11432_011_4386_5 springer_journals_10_1007_s11432_011_4386_5 chongqing_primary_39292333 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-10-01 |
| PublicationDateYYYYMMDD | 2011-10-01 |
| PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Heidelberg |
| PublicationPlace_xml | – name: Heidelberg |
| PublicationTitle | Science China. Information sciences |
| PublicationTitleAbbrev | Sci. China Inf. Sci |
| PublicationTitleAlternate | SCIENCE CHINA Information Sciences |
| PublicationYear | 2011 |
| Publisher | SP Science China Press Springer Nature B.V |
| Publisher_xml | – name: SP Science China Press – name: Springer Nature B.V |
| References | Yin (CR18) 2002; 13 Sun (CR11) 2007 Conover (CR28) 2006 Shamir, Maron-Katz, Tanay (CR8) 2005; 6 Clarke, Ressom, Wang (CR34) 2008; 8 Verleysen, Franois, Cabestany, Prieto, Sandoval (CR35) 2005 Roweis, Saul (CR12) 2000; 290 Zhan, Zhou (CR10) 2005; 42 CR13 Han, Kamber (CR4) 2006 CR33 Dembélé, Kastner (CR32) 2003; 19 Gong (CR24) 2006 Armstrong, Staunton, Silverman (CR3) 2002; 30 Black (CR27) 2010 Bishop, Svensen, Williams (CR16) 1998; 10 Ren (CR9) 2006 Datta, Datta (CR21) 2003; 19 Wang, Zhang, Li (CR29) 2007; 33 Golub, Slonim, Tamayo (CR30) 1999; 286 Xu, Wunsch (CR1) 2005; 16 Yin, Liu (CR7) 2009; 42 Hartuv, Schmitt, Lange (CR31) 2000; 66 Tino, Nabney (CR17) 2002; 24 Abdi, Molin, Salkind (CR25) 2007 Wua, Wang (CR6) 2009; 42 Walpole, Myers, Myers (CR26) 2006 Frey, Dueck (CR2) 2007; 315 Wei, Billings (CR20) 2007; 29 CR23 Suykens (CR15) 2008; 19 CR22 Bolshakova, Azuaje (CR5) 2003; 83 Wu, Chow (CR19) 2005; 16 van der Maaten, Hinton (CR14) 2008; 9 N. Bolshakova (4386_CR5) 2003; 83 G. L. Gong (4386_CR24) 2006 R. Shamir (4386_CR8) 2005; 6 R. E. Walpole (4386_CR26) 2006 R. Clarke (4386_CR34) 2008; 8 T. R. Golub (4386_CR30) 1999; 286 D. C. Zhan (4386_CR10) 2005; 42 J. Han (4386_CR4) 2006 4386_CR13 R. Xu (4386_CR1) 2005; 16 4386_CR33 M. Verleysen (4386_CR35) 2005 H. L. Wei (4386_CR20) 2007; 29 W. J. Conover (4386_CR28) 2006 B. J. Frey (4386_CR2) 2007; 315 K. P. Wua (4386_CR6) 2009; 42 C. Bishop (4386_CR16) 1998; 10 S. Wu (4386_CR19) 2005; 16 K. Black (4386_CR27) 2010 E. Hartuv (4386_CR31) 2000; 66 S. Datta (4386_CR21) 2003; 19 M. M. Sun (4386_CR11) 2007 H. Abdi (4386_CR25) 2007 D. Dembélé (4386_CR32) 2003; 19 S. A. Armstrong (4386_CR3) 2002; 30 4386_CR23 Y. G. Ren (4386_CR9) 2006 4386_CR22 S. T. Roweis (4386_CR12) 2000; 290 P. Tino (4386_CR17) 2002; 24 F. Yin (4386_CR7) 2009; 42 L. J. P. Maaten van der (4386_CR14) 2008; 9 J. A. K. Suykens (4386_CR15) 2008; 19 K. Wang (4386_CR29) 2007; 33 H. Yin (4386_CR18) 2002; 13 |
| References_xml | – ident: CR22 – volume: 6 start-page: 232 year: 2005 ident: CR8 article-title: EXPANDER-an integrative program suite for microarray data analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-232 – start-page: 758 year: 2005 end-page: 770 ident: CR35 article-title: The curse of dimensionality in data mining and time series prediction publication-title: Computational Intelligence and Bioinspired Systems doi: 10.1007/11494669_93 – year: 2006 ident: CR24 publication-title: Probability theory and statistics (in Chinese) – volume: 30 start-page: 41 year: 2002 end-page: 47 ident: CR3 article-title: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia publication-title: Nat Genet doi: 10.1038/ng765 – volume: 19 start-page: 973 year: 2003 end-page: 980 ident: CR32 article-title: Fuzzy C-means method for clustering microarray data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg119 – year: 2010 ident: CR27 publication-title: Business Statistics: Contemporary Decision Making – volume: 42 start-page: 3146 year: 2009 end-page: 3157 ident: CR7 article-title: Handwritten Chinese text line segmentation by clustering with distance metric learning publication-title: Pattern Recogn doi: 10.1016/j.patcog.2008.12.013 – year: 2006 ident: CR28 publication-title: Practical Nonparametric Statistics (in Chinese) – ident: CR33 – volume: 29 start-page: 162 year: 2007 end-page: 166 ident: CR20 article-title: Feature subset selection and ranking for data dimensionality reduction publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.250607 – volume: 19 start-page: 1501 year: 2008 end-page: 1517 ident: CR15 article-title: Data visualization and dimensionality reduction using kernel maps with a reference point publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2000807 – volume: 24 start-page: 639 year: 2002 end-page: 656 ident: CR17 article-title: Hierarchical GTM: constructing localized nonlinear projection manifolds in a principled way publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.1000238 – volume: 10 start-page: 215 year: 1998 end-page: 234 ident: CR16 article-title: GTM: the generative topographic mapping publication-title: Neural Comput doi: 10.1162/089976698300017953 – year: 2006 ident: CR26 publication-title: Probability and Statistics for Engineers and Scientists – year: 2007 ident: CR25 article-title: Lilliefors test of normality publication-title: Encyclopedia of Measurement and Statistics – volume: 286 start-page: 531 year: 1999 end-page: 537 ident: CR30 article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring publication-title: Science doi: 10.1126/science.286.5439.531 – ident: CR23 – volume: 19 start-page: 459 year: 2003 end-page: 466 ident: CR21 article-title: Comparisons and validation of statistical clustering techniques for microarray gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg025 – volume: 16 start-page: 1362 year: 2005 end-page: 1380 ident: CR19 article-title: PRSOM: A new visualization method by hybridizing multidimensional scaling and self-organizing map publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2005.853574 – volume: 315 start-page: 972 year: 2007 end-page: 976 ident: CR2 article-title: Clustering by passing messages between data points publication-title: Science doi: 10.1126/science.1136800 – volume: 8 start-page: 37 year: 2008 end-page: 49 ident: CR34 article-title: The properties of high-dimensional data spaces: implications for exploring gene and protein expression data publication-title: Nat Rev Cancer doi: 10.1038/nrc2294 – volume: 42 start-page: 1533 year: 2005 end-page: 1537 ident: CR10 article-title: Ensemble-based manifold learning for visualization (in Chinese) publication-title: J Comput Res Develop doi: 10.1360/crad20050912 – volume: 83 start-page: 825 year: 2003 end-page: 833 ident: CR5 article-title: Cluster validation techniques for genome expression data publication-title: Signal Process doi: 10.1016/S0165-1684(02)00475-9 – volume: 13 start-page: 237 year: 2002 end-page: 243 ident: CR18 article-title: ViSOM-a novel method for multivariate data projection and structure visualisation publication-title: IEEE Trans Neural Netw doi: 10.1109/72.977314 – volume: 16 start-page: 645 year: 2005 end-page: 678 ident: CR1 article-title: Survey of clustering algorithms publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2005.845141 – volume: 290 start-page: 2323 year: 2000 end-page: 2326 ident: CR12 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – ident: CR13 – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: CR14 article-title: Visualizing high-dimensional data using t-SNE publication-title: J Mach Learn Res – volume: 66 start-page: 249 year: 2000 end-page: 256 ident: CR31 article-title: An algorithm for clustering cDNAs for gene expression analysis publication-title: Genomics doi: 10.1006/geno.2000.6187 – volume: 42 start-page: 710 year: 2009 end-page: 717 ident: CR6 article-title: Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space publication-title: Pattern Recogn doi: 10.1016/j.patcog.2008.08.030 – year: 2006 ident: CR9 publication-title: Study on data visualization methods and related techniques for clustering (in Chinese) – volume: 33 start-page: 1242 year: 2007 end-page: 1246 ident: CR29 article-title: Adaptive affinity propagation clustering (in Chinese) publication-title: Acta Automat Sin – year: 2007 ident: CR11 publication-title: Study on theories and algorithms in manifold learning (in Chinese) – start-page: 300 year: 2006 end-page: 301 ident: CR4 publication-title: Data Mining: Concepts and Techniques – ident: 4386_CR23 – ident: 4386_CR13 doi: 10.1145/1015330.1015345 – volume: 315 start-page: 972 year: 2007 ident: 4386_CR2 publication-title: Science doi: 10.1126/science.1136800 – ident: 4386_CR33 – volume: 10 start-page: 215 year: 1998 ident: 4386_CR16 publication-title: Neural Comput doi: 10.1162/089976698300017953 – volume: 16 start-page: 645 year: 2005 ident: 4386_CR1 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2005.845141 – volume-title: Probability and Statistics for Engineers and Scientists year: 2006 ident: 4386_CR26 – volume: 24 start-page: 639 year: 2002 ident: 4386_CR17 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.1000238 – volume-title: Probability theory and statistics (in Chinese) year: 2006 ident: 4386_CR24 – volume-title: Encyclopedia of Measurement and Statistics year: 2007 ident: 4386_CR25 – volume: 19 start-page: 973 year: 2003 ident: 4386_CR32 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg119 – volume-title: Study on data visualization methods and related techniques for clustering (in Chinese) year: 2006 ident: 4386_CR9 – volume: 42 start-page: 1533 year: 2005 ident: 4386_CR10 publication-title: J Comput Res Develop doi: 10.1360/crad20050912 – volume: 6 start-page: 232 year: 2005 ident: 4386_CR8 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-232 – volume: 13 start-page: 237 year: 2002 ident: 4386_CR18 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.977314 – volume-title: Practical Nonparametric Statistics (in Chinese) year: 2006 ident: 4386_CR28 – volume: 66 start-page: 249 year: 2000 ident: 4386_CR31 publication-title: Genomics doi: 10.1006/geno.2000.6187 – volume: 16 start-page: 1362 year: 2005 ident: 4386_CR19 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2005.853574 – start-page: 300 volume-title: Data Mining: Concepts and Techniques year: 2006 ident: 4386_CR4 – volume-title: Study on theories and algorithms in manifold learning (in Chinese) year: 2007 ident: 4386_CR11 – volume: 83 start-page: 825 year: 2003 ident: 4386_CR5 publication-title: Signal Process doi: 10.1016/S0165-1684(02)00475-9 – ident: 4386_CR22 – volume: 8 start-page: 37 year: 2008 ident: 4386_CR34 publication-title: Nat Rev Cancer doi: 10.1038/nrc2294 – volume: 42 start-page: 710 year: 2009 ident: 4386_CR6 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2008.08.030 – volume: 30 start-page: 41 year: 2002 ident: 4386_CR3 publication-title: Nat Genet doi: 10.1038/ng765 – volume: 290 start-page: 2323 year: 2000 ident: 4386_CR12 publication-title: Science doi: 10.1126/science.290.5500.2323 – volume-title: Business Statistics: Contemporary Decision Making year: 2010 ident: 4386_CR27 – volume: 33 start-page: 1242 year: 2007 ident: 4386_CR29 publication-title: Acta Automat Sin – volume: 42 start-page: 3146 year: 2009 ident: 4386_CR7 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2008.12.013 – volume: 9 start-page: 2579 year: 2008 ident: 4386_CR14 publication-title: J Mach Learn Res – volume: 19 start-page: 459 year: 2003 ident: 4386_CR21 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg025 – volume: 19 start-page: 1501 year: 2008 ident: 4386_CR15 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2000807 – volume: 286 start-page: 531 year: 1999 ident: 4386_CR30 publication-title: Science doi: 10.1126/science.286.5439.531 – start-page: 758 volume-title: Computational Intelligence and Bioinspired Systems year: 2005 ident: 4386_CR35 doi: 10.1007/11494669_93 – volume: 29 start-page: 162 year: 2007 ident: 4386_CR20 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2007.250607 |
| SSID | ssj0000330278 |
| Score | 1.8886758 |
| Snippet | When solving many practical problems, we not only need sample labels given by a clustering algorithm, but also rely on the recognition of far-near relations of... |
| SourceID | proquest crossref springer chongqing |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2040 |
| SubjectTerms | Algorithms Borders China Clustering Clusters Computer Science Datasets Information Systems and Communication Service Mathematical models Recognition Research Papers 几何 可视化方法 实体模型 显示错误 聚类算法 距离和 集群 高维空间 |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68HvTB9cTqKhF8UgLdpuejiMeDiHixbyFXVVhb3e4K-uud1GZXRQV9K3SatDOZzpfMBbCjJEt1YCQVeWhoGOiMSpZJinDfZCxjSkq_bjaRnJ2l3W523uRxVy7a3bkk6z_1ONkNTbsNI8A9D0tjGk3CNFq71PZruLi8GR2s-My64uoUuNjGGjLWdd7M70axNRXuyuL2CWf8bJvGgPOLj7Q2PUetf730Asw3SJPsvy-NRZgwxRK0XBcH0ij1Esx9KEm4DKfHpnywXbYU0eVQ9gytE3lfSN0yhyDEJU3M0SvSk1z0aYHKQvouqI6UOVG9oa2_UK3A9dHh1cEJbTouUMWSaEAToyKGOxIZKx0bgVBPIFzpyCTTMYo6EIGyR0VMG99og0KOkEb5ofKjNMZrtgpTRVmYNSB5FCC6QfCBlGFoRL0T1VLk2iR5xxcerI_4zh_fK2twC9YCxpgHvhMEV02tctsyo8fHVZYtYzkyllvG8siD3dEjbrhfiNtOurzR2YoHmS3-x5Is8WB7dBu1zbpQRGHKYcVxSdlDM_wYD_acxMdD_Djh-p-oN2A2cKGGnTZMDfpDswkz6nlwX_W36uX-BmwN-NQ priority: 102 providerName: Springer Nature |
| Title | Geometric double-entity model for recognizing far-near relations of clusters |
| URI | http://lib.cqvip.com/qk/84009A/201110/39292333.html https://link.springer.com/article/10.1007/s11432-011-4386-5 https://www.proquest.com/docview/2918663797 https://www.proquest.com/docview/1671422825 |
| Volume | 54 |
| WOSCitedRecordID | wos000297023300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1869-1919 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0000330278 issn: 1674-733X databaseCode: P5Z dateStart: 20010201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1869-1919 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0000330278 issn: 1674-733X databaseCode: K7- dateStart: 20010201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1869-1919 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0000330278 issn: 1674-733X databaseCode: BENPR dateStart: 20010201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1869-1919 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000330278 issn: 1674-733X databaseCode: RSV dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOrSHltIiwmPlSpxaWc3GeWxOiCIeEmi1glKterH8Cq20JLDZrVR-PTMm2QUkuPQSRcrEeczY_jwz_gZg12jRs5HTXBWx43Fkc65FrjnCfZeLXBitQ19sIuv3e8NhPmgcbnWTVtmOiX6gtpUhH_m3KCdqNpHl2d7NLaeqURRdbUpoLMIysSRQ6YZB8mvmYwkFReX8briU0g6FGLaBTb97DrEC5SXgIkr0Up4QvcLvqry6xUnj6TQ1x57PwqV-Fjp6_7_vvwrvGvzJ9h8M5gMsuHIN3j5iJfwIZ8euuqZCW4bZaqpHjvu9vP-Yr5rDEOWyJu3oDuVZoca8xP7Cxm1eHasKZkZTomCoP8Hl0eGPgxPeFF3gRmTJhGfOJAIXJTo1NnUK0Z5CxNLVWW5T1HakIkPeImFd6KxDPScoY8LYhEkvxXOxDktlVboNYEUSIcBB_IGSceyUX4xarQrrsqIbqgA2Z_9b3jyQa0jCa5EQIoCwVYA0DV05Vc0YyTnRMulPov4k6U8mAXyZ3dI294rwdqsn2XTbWs6VFMDn2WXscBRFUaWrprVEUyK_GX5MAF9ba5g38eIDN19_4Ba8idr0wu42LE3GU7cDK-bv5E897sDy98P-4LwDi6cZ73grx-P5xc97lCoBCA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQcylukLWAkuIAssnaeB4QQUFrtsuJQpL0Zv9IiLUm72QWVH8VvZCYb7wISvfXALVIcWxN_tj_PE-CJNbJwwhuuq8TzRLiSG1kajnTfl7KU1pi4KzaRj8fFZFJ-3ICfIRaG3CrDntht1K6xpCN_IUpKzSbzMn91csqpahRZV0MJjSUshv7sO17Z2pcHb3F-nwqx9-7wzT7vqwpwK_N0znNvU4ms22TWZV4jndF4JA9MXroMxRFaWFKHSOdj7zwKkmIbGyc2TosMnyX2ewkuJ7LIaV0Nc77S6cSSrIBd9F1Gbo5SToIhtYvWQ25CfhB4aZNFxlNK53Dc1EeneEj9eSyuue5f5tnu1Nu78b_9r5uw1fNr9nq5IG7Bhq9vw_Xfsi7egdF733ylQmKWuWZhpp53scpnrKsKxJDFs96t6ge2Z5We8RoFYbPgN8iaitnpglJMtHfh04WIcw8266b294FVqUACh_wKWyaJ191l2xldOZ9Xg1hHsL2aX3WyTB6iiI8KKWUEcZhwZft07FQVZKrWiaQJLwrxoggvKo3g2eqT0N05jXcDLlS_LbVqDYoIHq9e44ZCViJd-2bRKoQu6QVRmAieB_Stu_jngNvnD_gIru4ffhip0cF4uAPXRHClHOzC5ny28A_giv02_9LOHnZrisHniwblLxphWn8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxNBEB9sLVIfrEZLr1ZdoU8tSy6395F7FDUqlhCwLXlb9utqIb1Lc4mgf70zl9ukFStI3w5ubpfb2WF_szPzG4BDo0XfRk5zVcSOx5HNuRa55gj3XS5yYbQOm2YT2XDYH4_zUdvntPbZ7j4kuaxpIJamct6d2qK7LnzDY55SCtD_Ef2UJxvwMKY8enLXv52vLllCQWG5phwupbxDIcY-svm3UYhf4XtVXlzj7LfPqTX4_CNe2hxDg517_8BTeNIiUPZuuWWewQNXdmDHd3dgrbF34PENqsLncPLJVVfUfcswWy30xPGmwPcna1rpMIS-rM1F-oXyrFAzXqIRsZlPtmNVwcxkQbwM9Qs4G3w8ff-Zt50YuBFZMueZM4lAT0WnxqZOIQRUCGN6OsttilsgUpGhKyRhXeisQ-UnKGPC2IRJP8VnsQubZVW6PWBFEiHqQVCCknHsVOOhWq0K67KiF6oA9lc6kNMl44YkEBcJIQIIvVKkaTnMqZXGRK7Zl2lhJS6spIWVSQBHq0_8cP8QPvCalq0t1zLKiRRQZHkWwNvVa7RCCq2o0lWLWuL2oss0_JkAjr3210PcOeH-f0m_gUejDwN58mX49SVsRz4bsXcAm_PZwr2CLfNjflnPXjdW8BtuLQSr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+double-entity+model+for+recognizing+far-near+relations+of+clusters&rft.jtitle=Science+China.+Information+sciences&rft.au=Wang%2C+KaiJun&rft.au=Yan%2C+XuanHui&rft.au=Chen%2C+LiFei&rft.date=2011-10-01&rft.issn=1674-733X&rft.eissn=1869-1919&rft.volume=54&rft.issue=10&rft.spage=2040&rft.epage=2050&rft_id=info:doi/10.1007%2Fs11432-011-4386-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11432_011_4386_5 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84009A%2F84009A.jpg |