Geometric double-entity model for recognizing far-near relations of clusters

When solving many practical problems, we not only need sample labels given by a clustering algorithm, but also rely on the recognition of far-near relations of clusters. Under the difficult condition of many clusters in a high-dimensional data set, the clustering visualization methods based on dimen...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Information sciences Vol. 54; no. 10; pp. 2040 - 2050
Main Authors: Wang, KaiJun, Yan, XuanHui, Chen, LiFei
Format: Journal Article
Language:English
Published: Heidelberg SP Science China Press 01.10.2011
Springer Nature B.V
Subjects:
ISSN:1674-733X, 1869-1919
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract When solving many practical problems, we not only need sample labels given by a clustering algorithm, but also rely on the recognition of far-near relations of clusters. Under the difficult condition of many clusters in a high-dimensional data set, the clustering visualization methods based on dimension reductions usually produce the phenomena, e.g., some clusters are overlapping, interlacing, or pushed away; as a result, the far-near relations of some clusters are displayed wrongly or cannot be distinguished. The existing inter-cluster distance methods cannot determine whether two clusters are far away or near. The geometric double-entity model method (GDEM) is proposed to describe far-near relations of clusters, and the methods such as the relative border distance, absolute border distance and region dense degree are designed to measure far-near degrees between clusters. GDEM pays attention to both the absolute distance between nearest sample sets and the dense degrees of border regions of two clusters, and it is able to uncover accurately far-near relations of clusters in a high-dimensional space, especially under the difficult condition mentioned above. The experimental results on four real data sets show that the proposed method can effectively recognize far-near relations of clusters, while the conventional methods cannot.
AbstractList When solving many practical problems, we not only need sample labels given by a clustering algorithm, but also rely on the recognition of far-near relations of clusters. Under the difficult condition of many clusters in a high-dimensional data set, the clustering visualization methods based on dimension reductions usually produce the phenomena, e.g., some clusters are overlapping, interlacing, or pushed away; as a result, the far-near relations of some clusters are displayed wrongly or cannot be distinguished. The existing inter-cluster distance methods cannot determine whether two clusters are far away or near. The geometric double-entity model method (GDEM) is proposed to describe far-near relations of clusters, and the methods such as the relative border distance, absolute border distance and region dense degree are designed to measure far-near degrees between clusters. GDEM pays attention to both the absolute distance between nearest sample sets and the dense degrees of border regions of two clusters, and it is able to uncover accurately far-near relations of clusters in a high-dimensional space, especially under the difficult condition mentioned above. The experimental results on four real data sets show that the proposed method can effectively recognize far-near relations of clusters, while the conventional methods cannot.
When solving many practical problems, we not only need sample labels given by a clustering algorithm, but also rely on the recognition of far-near relations of clusters. Under the difficult condition of many clusters in a high-dimensional data set, the clustering visualization methods based on dimension reductions usually produce the phenomena, e.g., some clusters are overlapping, interlacing, or pushed away; as a result, the far-near relations of some clusters are displayed wrongly or cannot be distinguished. The existing inter-cluster distance methods cannot determine whether two clusters are far away or near. The geometric double-entity model method (GDEM) is proposed to describe far-near relations of clusters, and the methods such as the relative border distance, absolute border distance and region dense degree are designed to measure far-near degrees between clusters. GDEM pays attention to both the absolute distance between nearest sample sets and the dense degrees of border regions of two clusters, and it is able to uncover accurately far-near relations of clusters in a high-dimensional space, especially under the difficult condition mentioned above. The experimental results on four real data sets show that the proposed method can effectively recognize far-near relations of clusters, while the conventional methods cannot.
Author WANG KaiJun YAN XuanHui CHEN Li~i
AuthorAffiliation School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350108, China
Author_xml – sequence: 1
  givenname: KaiJun
  surname: Wang
  fullname: Wang, KaiJun
  email: wkjwang@gmail.com
  organization: School of Mathematics and Computer Science, Fujian Normal University
– sequence: 2
  givenname: XuanHui
  surname: Yan
  fullname: Yan, XuanHui
  organization: School of Mathematics and Computer Science, Fujian Normal University
– sequence: 3
  givenname: LiFei
  surname: Chen
  fullname: Chen, LiFei
  organization: School of Mathematics and Computer Science, Fujian Normal University
BookMark eNp9kD1LBDEQhoMo-PkD7FZsbKL52E02pYiewoGNgl3IZWfPHHuJJtlCf71Z71CwcJoZhuedj_cQ7frgAaFTSi4pIfIqUVpzhgmluOatwM0OOqCtUJgqqnZLLWSNJecv--gkpRUpwTlhsj1A8xmENeTobNWFcTEABp9d_qjWoYOh6kOsItiw9O7T-WXVm4g9mKk5mOyCT1XoKzuMKUNMx2ivN0OCk20-Qs93t08393j-OHu4uZ5jy2WTsQTbcFGzhbCdANMIYZQUdCFVJ6w1zDCrZMt5BwQ6aDvWFMaS2pKmFaXmR-hiM_cthvcRUtZrlywMg_EQxqTLv7RmrGUTev4HXYUx-nKdZqp4JLhUslByQ9kYUorQa-vy9385GjdoSvRktN4YrYvRejJaT_PpH-VbdGsTP_7VsI0mFdYvIf7e9J_obLvoNfjle9H9bOKKKcZLfAHlmpyi
CitedBy_id crossref_primary_10_1093_sysbio_syae068
crossref_primary_10_1007_s11432_014_5267_5
Cites_doi 10.1186/1471-2105-6-232
10.1007/11494669_93
10.1038/ng765
10.1093/bioinformatics/btg119
10.1016/j.patcog.2008.12.013
10.1109/TPAMI.2007.250607
10.1109/TNN.2008.2000807
10.1109/34.1000238
10.1162/089976698300017953
10.1126/science.286.5439.531
10.1093/bioinformatics/btg025
10.1109/TNN.2005.853574
10.1126/science.1136800
10.1038/nrc2294
10.1360/crad20050912
10.1016/S0165-1684(02)00475-9
10.1109/72.977314
10.1109/TNN.2005.845141
10.1126/science.290.5500.2323
10.1006/geno.2000.6187
10.1016/j.patcog.2008.08.030
10.1145/1015330.1015345
ContentType Journal Article
Copyright Science China Press and Springer-Verlag Berlin Heidelberg 2011
Science China Press and Springer-Verlag Berlin Heidelberg 2011.
Copyright_xml – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2011
– notice: Science China Press and Springer-Verlag Berlin Heidelberg 2011.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7SC
8FD
L7M
L~C
L~D
DOI 10.1007/s11432-011-4386-5
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Computer and Information Systems Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Advanced Technologies & Aerospace Collection


Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
DocumentTitleAlternate Geometric double-entity model for recognizing far-near relations of clusters
EISSN 1869-1919
EndPage 2050
ExternalDocumentID 10_1007_s11432_011_4386_5
39292333
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0VY
1N0
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFKRA
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCEZO
CCPQU
CHBEP
COF
CQIGP
CSCUP
CUBFJ
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
K7-
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9J
P9O
PF0
PT4
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SCO
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TR2
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W92
WK8
YLTOR
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
ZMTXR
~A9
~WA
-SI
-S~
0R~
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
BSONS
CAJEI
CJPJV
H13
Q--
U1G
U5S
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
AFDZB
AFFHD
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
7SC
8FD
L7M
L~C
L~D
PUEGO
ID FETCH-LOGICAL-c375t-7ec53642b6cd6ea566a9761b79d6cca2a2c97833de0ede8d25a56c04c05865a53
IEDL.DBID P5Z
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000297023300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1674-733X
IngestDate Thu Sep 04 18:39:03 EDT 2025
Fri Nov 07 23:39:51 EST 2025
Sat Nov 29 03:42:09 EST 2025
Tue Nov 18 21:42:59 EST 2025
Fri Feb 21 02:33:11 EST 2025
Wed Feb 14 09:55:10 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords partitional clustering algorithms
geometric double-entity model
far-near relations of clusters
distance between clusters
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-7ec53642b6cd6ea566a9761b79d6cca2a2c97833de0ede8d25a56c04c05865a53
Notes 11-5847/TP
geometric double-entity model, far-near relations of clusters, distance between clusters, partitionalclustering algorithms
When solving many practical problems, we not only need sample labels given by a clustering algorithm, but also rely on the recognition of far-near relations of clusters. Under the difficult condition of many clusters in a high-dimensional data set, the clustering visualization methods based on dimension reductions usually produce the phenomena, e.g., some clusters are overlapping, interlacing, or pushed away; as a result, the far-near relations of some clusters are displayed wrongly or cannot be distinguished. The existing inter-cluster distance methods cannot determine whether two clusters are far away or near. The geometric double-entity model method (GDEM) is proposed to describe far-near relations of clusters, and the methods such as the relative border distance, absolute border distance and region dense degree are designed to measure far-near degrees between clusters. GDEM pays attention to both the absolute distance between nearest sample sets and the dense degrees of border regions of two clusters, and it is able to uncover accurately far-near relations of clusters in a high-dimensional space, especially under the difficult condition mentioned above. The experimental results on four real data sets show that the proposed method can effectively recognize far-near relations of clusters, while the conventional methods cannot.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2918663797
PQPubID 2043626
PageCount 11
ParticipantIDs proquest_miscellaneous_1671422825
proquest_journals_2918663797
crossref_citationtrail_10_1007_s11432_011_4386_5
crossref_primary_10_1007_s11432_011_4386_5
springer_journals_10_1007_s11432_011_4386_5
chongqing_primary_39292333
PublicationCentury 2000
PublicationDate 2011-10-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Science China. Information sciences
PublicationTitleAbbrev Sci. China Inf. Sci
PublicationTitleAlternate SCIENCE CHINA Information Sciences
PublicationYear 2011
Publisher SP Science China Press
Springer Nature B.V
Publisher_xml – name: SP Science China Press
– name: Springer Nature B.V
References Yin (CR18) 2002; 13
Sun (CR11) 2007
Conover (CR28) 2006
Shamir, Maron-Katz, Tanay (CR8) 2005; 6
Clarke, Ressom, Wang (CR34) 2008; 8
Verleysen, Franois, Cabestany, Prieto, Sandoval (CR35) 2005
Roweis, Saul (CR12) 2000; 290
Zhan, Zhou (CR10) 2005; 42
CR13
Han, Kamber (CR4) 2006
CR33
Dembélé, Kastner (CR32) 2003; 19
Gong (CR24) 2006
Armstrong, Staunton, Silverman (CR3) 2002; 30
Black (CR27) 2010
Bishop, Svensen, Williams (CR16) 1998; 10
Ren (CR9) 2006
Datta, Datta (CR21) 2003; 19
Wang, Zhang, Li (CR29) 2007; 33
Golub, Slonim, Tamayo (CR30) 1999; 286
Xu, Wunsch (CR1) 2005; 16
Yin, Liu (CR7) 2009; 42
Hartuv, Schmitt, Lange (CR31) 2000; 66
Tino, Nabney (CR17) 2002; 24
Abdi, Molin, Salkind (CR25) 2007
Wua, Wang (CR6) 2009; 42
Walpole, Myers, Myers (CR26) 2006
Frey, Dueck (CR2) 2007; 315
Wei, Billings (CR20) 2007; 29
CR23
Suykens (CR15) 2008; 19
CR22
Bolshakova, Azuaje (CR5) 2003; 83
Wu, Chow (CR19) 2005; 16
van der Maaten, Hinton (CR14) 2008; 9
N. Bolshakova (4386_CR5) 2003; 83
G. L. Gong (4386_CR24) 2006
R. Shamir (4386_CR8) 2005; 6
R. E. Walpole (4386_CR26) 2006
R. Clarke (4386_CR34) 2008; 8
T. R. Golub (4386_CR30) 1999; 286
D. C. Zhan (4386_CR10) 2005; 42
J. Han (4386_CR4) 2006
4386_CR13
R. Xu (4386_CR1) 2005; 16
4386_CR33
M. Verleysen (4386_CR35) 2005
H. L. Wei (4386_CR20) 2007; 29
W. J. Conover (4386_CR28) 2006
B. J. Frey (4386_CR2) 2007; 315
K. P. Wua (4386_CR6) 2009; 42
C. Bishop (4386_CR16) 1998; 10
S. Wu (4386_CR19) 2005; 16
K. Black (4386_CR27) 2010
E. Hartuv (4386_CR31) 2000; 66
S. Datta (4386_CR21) 2003; 19
M. M. Sun (4386_CR11) 2007
H. Abdi (4386_CR25) 2007
D. Dembélé (4386_CR32) 2003; 19
S. A. Armstrong (4386_CR3) 2002; 30
4386_CR23
Y. G. Ren (4386_CR9) 2006
4386_CR22
S. T. Roweis (4386_CR12) 2000; 290
P. Tino (4386_CR17) 2002; 24
F. Yin (4386_CR7) 2009; 42
L. J. P. Maaten van der (4386_CR14) 2008; 9
J. A. K. Suykens (4386_CR15) 2008; 19
K. Wang (4386_CR29) 2007; 33
H. Yin (4386_CR18) 2002; 13
References_xml – ident: CR22
– volume: 6
  start-page: 232
  year: 2005
  ident: CR8
  article-title: EXPANDER-an integrative program suite for microarray data analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-232
– start-page: 758
  year: 2005
  end-page: 770
  ident: CR35
  article-title: The curse of dimensionality in data mining and time series prediction
  publication-title: Computational Intelligence and Bioinspired Systems
  doi: 10.1007/11494669_93
– year: 2006
  ident: CR24
  publication-title: Probability theory and statistics (in Chinese)
– volume: 30
  start-page: 41
  year: 2002
  end-page: 47
  ident: CR3
  article-title: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
  publication-title: Nat Genet
  doi: 10.1038/ng765
– volume: 19
  start-page: 973
  year: 2003
  end-page: 980
  ident: CR32
  article-title: Fuzzy C-means method for clustering microarray data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg119
– year: 2010
  ident: CR27
  publication-title: Business Statistics: Contemporary Decision Making
– volume: 42
  start-page: 3146
  year: 2009
  end-page: 3157
  ident: CR7
  article-title: Handwritten Chinese text line segmentation by clustering with distance metric learning
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2008.12.013
– year: 2006
  ident: CR28
  publication-title: Practical Nonparametric Statistics (in Chinese)
– ident: CR33
– volume: 29
  start-page: 162
  year: 2007
  end-page: 166
  ident: CR20
  article-title: Feature subset selection and ranking for data dimensionality reduction
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.250607
– volume: 19
  start-page: 1501
  year: 2008
  end-page: 1517
  ident: CR15
  article-title: Data visualization and dimensionality reduction using kernel maps with a reference point
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2000807
– volume: 24
  start-page: 639
  year: 2002
  end-page: 656
  ident: CR17
  article-title: Hierarchical GTM: constructing localized nonlinear projection manifolds in a principled way
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.1000238
– volume: 10
  start-page: 215
  year: 1998
  end-page: 234
  ident: CR16
  article-title: GTM: the generative topographic mapping
  publication-title: Neural Comput
  doi: 10.1162/089976698300017953
– year: 2006
  ident: CR26
  publication-title: Probability and Statistics for Engineers and Scientists
– year: 2007
  ident: CR25
  article-title: Lilliefors test of normality
  publication-title: Encyclopedia of Measurement and Statistics
– volume: 286
  start-page: 531
  year: 1999
  end-page: 537
  ident: CR30
  article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– ident: CR23
– volume: 19
  start-page: 459
  year: 2003
  end-page: 466
  ident: CR21
  article-title: Comparisons and validation of statistical clustering techniques for microarray gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg025
– volume: 16
  start-page: 1362
  year: 2005
  end-page: 1380
  ident: CR19
  article-title: PRSOM: A new visualization method by hybridizing multidimensional scaling and self-organizing map
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2005.853574
– volume: 315
  start-page: 972
  year: 2007
  end-page: 976
  ident: CR2
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– volume: 8
  start-page: 37
  year: 2008
  end-page: 49
  ident: CR34
  article-title: The properties of high-dimensional data spaces: implications for exploring gene and protein expression data
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2294
– volume: 42
  start-page: 1533
  year: 2005
  end-page: 1537
  ident: CR10
  article-title: Ensemble-based manifold learning for visualization (in Chinese)
  publication-title: J Comput Res Develop
  doi: 10.1360/crad20050912
– volume: 83
  start-page: 825
  year: 2003
  end-page: 833
  ident: CR5
  article-title: Cluster validation techniques for genome expression data
  publication-title: Signal Process
  doi: 10.1016/S0165-1684(02)00475-9
– volume: 13
  start-page: 237
  year: 2002
  end-page: 243
  ident: CR18
  article-title: ViSOM-a novel method for multivariate data projection and structure visualisation
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.977314
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: CR1
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2005.845141
– volume: 290
  start-page: 2323
  year: 2000
  end-page: 2326
  ident: CR12
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– ident: CR13
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: CR14
  article-title: Visualizing high-dimensional data using t-SNE
  publication-title: J Mach Learn Res
– volume: 66
  start-page: 249
  year: 2000
  end-page: 256
  ident: CR31
  article-title: An algorithm for clustering cDNAs for gene expression analysis
  publication-title: Genomics
  doi: 10.1006/geno.2000.6187
– volume: 42
  start-page: 710
  year: 2009
  end-page: 717
  ident: CR6
  article-title: Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2008.08.030
– year: 2006
  ident: CR9
  publication-title: Study on data visualization methods and related techniques for clustering (in Chinese)
– volume: 33
  start-page: 1242
  year: 2007
  end-page: 1246
  ident: CR29
  article-title: Adaptive affinity propagation clustering (in Chinese)
  publication-title: Acta Automat Sin
– year: 2007
  ident: CR11
  publication-title: Study on theories and algorithms in manifold learning (in Chinese)
– start-page: 300
  year: 2006
  end-page: 301
  ident: CR4
  publication-title: Data Mining: Concepts and Techniques
– ident: 4386_CR23
– ident: 4386_CR13
  doi: 10.1145/1015330.1015345
– volume: 315
  start-page: 972
  year: 2007
  ident: 4386_CR2
  publication-title: Science
  doi: 10.1126/science.1136800
– ident: 4386_CR33
– volume: 10
  start-page: 215
  year: 1998
  ident: 4386_CR16
  publication-title: Neural Comput
  doi: 10.1162/089976698300017953
– volume: 16
  start-page: 645
  year: 2005
  ident: 4386_CR1
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2005.845141
– volume-title: Probability and Statistics for Engineers and Scientists
  year: 2006
  ident: 4386_CR26
– volume: 24
  start-page: 639
  year: 2002
  ident: 4386_CR17
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.1000238
– volume-title: Probability theory and statistics (in Chinese)
  year: 2006
  ident: 4386_CR24
– volume-title: Encyclopedia of Measurement and Statistics
  year: 2007
  ident: 4386_CR25
– volume: 19
  start-page: 973
  year: 2003
  ident: 4386_CR32
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg119
– volume-title: Study on data visualization methods and related techniques for clustering (in Chinese)
  year: 2006
  ident: 4386_CR9
– volume: 42
  start-page: 1533
  year: 2005
  ident: 4386_CR10
  publication-title: J Comput Res Develop
  doi: 10.1360/crad20050912
– volume: 6
  start-page: 232
  year: 2005
  ident: 4386_CR8
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-232
– volume: 13
  start-page: 237
  year: 2002
  ident: 4386_CR18
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.977314
– volume-title: Practical Nonparametric Statistics (in Chinese)
  year: 2006
  ident: 4386_CR28
– volume: 66
  start-page: 249
  year: 2000
  ident: 4386_CR31
  publication-title: Genomics
  doi: 10.1006/geno.2000.6187
– volume: 16
  start-page: 1362
  year: 2005
  ident: 4386_CR19
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2005.853574
– start-page: 300
  volume-title: Data Mining: Concepts and Techniques
  year: 2006
  ident: 4386_CR4
– volume-title: Study on theories and algorithms in manifold learning (in Chinese)
  year: 2007
  ident: 4386_CR11
– volume: 83
  start-page: 825
  year: 2003
  ident: 4386_CR5
  publication-title: Signal Process
  doi: 10.1016/S0165-1684(02)00475-9
– ident: 4386_CR22
– volume: 8
  start-page: 37
  year: 2008
  ident: 4386_CR34
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2294
– volume: 42
  start-page: 710
  year: 2009
  ident: 4386_CR6
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2008.08.030
– volume: 30
  start-page: 41
  year: 2002
  ident: 4386_CR3
  publication-title: Nat Genet
  doi: 10.1038/ng765
– volume: 290
  start-page: 2323
  year: 2000
  ident: 4386_CR12
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– volume-title: Business Statistics: Contemporary Decision Making
  year: 2010
  ident: 4386_CR27
– volume: 33
  start-page: 1242
  year: 2007
  ident: 4386_CR29
  publication-title: Acta Automat Sin
– volume: 42
  start-page: 3146
  year: 2009
  ident: 4386_CR7
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2008.12.013
– volume: 9
  start-page: 2579
  year: 2008
  ident: 4386_CR14
  publication-title: J Mach Learn Res
– volume: 19
  start-page: 459
  year: 2003
  ident: 4386_CR21
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg025
– volume: 19
  start-page: 1501
  year: 2008
  ident: 4386_CR15
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2000807
– volume: 286
  start-page: 531
  year: 1999
  ident: 4386_CR30
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– start-page: 758
  volume-title: Computational Intelligence and Bioinspired Systems
  year: 2005
  ident: 4386_CR35
  doi: 10.1007/11494669_93
– volume: 29
  start-page: 162
  year: 2007
  ident: 4386_CR20
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.250607
SSID ssj0000330278
Score 1.8886758
Snippet When solving many practical problems, we not only need sample labels given by a clustering algorithm, but also rely on the recognition of far-near relations of...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2040
SubjectTerms Algorithms
Borders
China
Clustering
Clusters
Computer Science
Datasets
Information Systems and Communication Service
Mathematical models
Recognition
Research Papers
几何
可视化方法
实体模型
显示错误
聚类算法
距离和
集群
高维空间
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68HvTB9cTqKhF8UgLdpuejiMeDiHixbyFXVVhb3e4K-uud1GZXRQV9K3SatDOZzpfMBbCjJEt1YCQVeWhoGOiMSpZJinDfZCxjSkq_bjaRnJ2l3W523uRxVy7a3bkk6z_1ONkNTbsNI8A9D0tjGk3CNFq71PZruLi8GR2s-My64uoUuNjGGjLWdd7M70axNRXuyuL2CWf8bJvGgPOLj7Q2PUetf730Asw3SJPsvy-NRZgwxRK0XBcH0ij1Esx9KEm4DKfHpnywXbYU0eVQ9gytE3lfSN0yhyDEJU3M0SvSk1z0aYHKQvouqI6UOVG9oa2_UK3A9dHh1cEJbTouUMWSaEAToyKGOxIZKx0bgVBPIFzpyCTTMYo6EIGyR0VMG99og0KOkEb5ofKjNMZrtgpTRVmYNSB5FCC6QfCBlGFoRL0T1VLk2iR5xxcerI_4zh_fK2twC9YCxpgHvhMEV02tctsyo8fHVZYtYzkyllvG8siD3dEjbrhfiNtOurzR2YoHmS3-x5Is8WB7dBu1zbpQRGHKYcVxSdlDM_wYD_acxMdD_Djh-p-oN2A2cKGGnTZMDfpDswkz6nlwX_W36uX-BmwN-NQ
  priority: 102
  providerName: Springer Nature
Title Geometric double-entity model for recognizing far-near relations of clusters
URI http://lib.cqvip.com/qk/84009A/201110/39292333.html
https://link.springer.com/article/10.1007/s11432-011-4386-5
https://www.proquest.com/docview/2918663797
https://www.proquest.com/docview/1671422825
Volume 54
WOSCitedRecordID wos000297023300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1869-1919
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000330278
  issn: 1674-733X
  databaseCode: P5Z
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1869-1919
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000330278
  issn: 1674-733X
  databaseCode: K7-
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1869-1919
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000330278
  issn: 1674-733X
  databaseCode: BENPR
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1869-1919
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330278
  issn: 1674-733X
  databaseCode: RSV
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOrSHltIiwmPlSpxaWc3GeWxOiCIeEmi1glKterH8Cq20JLDZrVR-PTMm2QUkuPQSRcrEeczY_jwz_gZg12jRs5HTXBWx43Fkc65FrjnCfZeLXBitQ19sIuv3e8NhPmgcbnWTVtmOiX6gtpUhH_m3KCdqNpHl2d7NLaeqURRdbUpoLMIysSRQ6YZB8mvmYwkFReX8briU0g6FGLaBTb97DrEC5SXgIkr0Up4QvcLvqry6xUnj6TQ1x57PwqV-Fjp6_7_vvwrvGvzJ9h8M5gMsuHIN3j5iJfwIZ8euuqZCW4bZaqpHjvu9vP-Yr5rDEOWyJu3oDuVZoca8xP7Cxm1eHasKZkZTomCoP8Hl0eGPgxPeFF3gRmTJhGfOJAIXJTo1NnUK0Z5CxNLVWW5T1HakIkPeImFd6KxDPScoY8LYhEkvxXOxDktlVboNYEUSIcBB_IGSceyUX4xarQrrsqIbqgA2Z_9b3jyQa0jCa5EQIoCwVYA0DV05Vc0YyTnRMulPov4k6U8mAXyZ3dI294rwdqsn2XTbWs6VFMDn2WXscBRFUaWrprVEUyK_GX5MAF9ba5g38eIDN19_4Ba8idr0wu42LE3GU7cDK-bv5E897sDy98P-4LwDi6cZ73grx-P5xc97lCoBCA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQcylukLWAkuIAssnaeB4QQUFrtsuJQpL0Zv9IiLUm72QWVH8VvZCYb7wISvfXALVIcWxN_tj_PE-CJNbJwwhuuq8TzRLiSG1kajnTfl7KU1pi4KzaRj8fFZFJ-3ICfIRaG3CrDntht1K6xpCN_IUpKzSbzMn91csqpahRZV0MJjSUshv7sO17Z2pcHb3F-nwqx9-7wzT7vqwpwK_N0znNvU4ms22TWZV4jndF4JA9MXroMxRFaWFKHSOdj7zwKkmIbGyc2TosMnyX2ewkuJ7LIaV0Nc77S6cSSrIBd9F1Gbo5SToIhtYvWQ25CfhB4aZNFxlNK53Dc1EeneEj9eSyuue5f5tnu1Nu78b_9r5uw1fNr9nq5IG7Bhq9vw_Xfsi7egdF733ylQmKWuWZhpp53scpnrKsKxJDFs96t6ge2Z5We8RoFYbPgN8iaitnpglJMtHfh04WIcw8266b294FVqUACh_wKWyaJ191l2xldOZ9Xg1hHsL2aX3WyTB6iiI8KKWUEcZhwZft07FQVZKrWiaQJLwrxoggvKo3g2eqT0N05jXcDLlS_LbVqDYoIHq9e44ZCViJd-2bRKoQu6QVRmAieB_Stu_jngNvnD_gIru4ffhip0cF4uAPXRHClHOzC5ny28A_giv02_9LOHnZrisHniwblLxphWn8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxNBEB9sLVIfrEZLr1ZdoU8tSy6395F7FDUqlhCwLXlb9utqIb1Lc4mgf70zl9ukFStI3w5ubpfb2WF_szPzG4BDo0XfRk5zVcSOx5HNuRa55gj3XS5yYbQOm2YT2XDYH4_zUdvntPbZ7j4kuaxpIJamct6d2qK7LnzDY55SCtD_Ef2UJxvwMKY8enLXv52vLllCQWG5phwupbxDIcY-svm3UYhf4XtVXlzj7LfPqTX4_CNe2hxDg517_8BTeNIiUPZuuWWewQNXdmDHd3dgrbF34PENqsLncPLJVVfUfcswWy30xPGmwPcna1rpMIS-rM1F-oXyrFAzXqIRsZlPtmNVwcxkQbwM9Qs4G3w8ff-Zt50YuBFZMueZM4lAT0WnxqZOIQRUCGN6OsttilsgUpGhKyRhXeisQ-UnKGPC2IRJP8VnsQubZVW6PWBFEiHqQVCCknHsVOOhWq0K67KiF6oA9lc6kNMl44YkEBcJIQIIvVKkaTnMqZXGRK7Zl2lhJS6spIWVSQBHq0_8cP8QPvCalq0t1zLKiRRQZHkWwNvVa7RCCq2o0lWLWuL2oss0_JkAjr3210PcOeH-f0m_gUejDwN58mX49SVsRz4bsXcAm_PZwr2CLfNjflnPXjdW8BtuLQSr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+double-entity+model+for+recognizing+far-near+relations+of+clusters&rft.jtitle=Science+China.+Information+sciences&rft.au=Wang%2C+KaiJun&rft.au=Yan%2C+XuanHui&rft.au=Chen%2C+LiFei&rft.date=2011-10-01&rft.issn=1674-733X&rft.eissn=1869-1919&rft.volume=54&rft.issue=10&rft.spage=2040&rft.epage=2050&rft_id=info:doi/10.1007%2Fs11432-011-4386-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11432_011_4386_5
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84009A%2F84009A.jpg