An overview and comparison of supervised data mining techniques for student exam performance prediction
Recent increase in the availability of learning data has given educational data mining an importance and momentum, in order to better understand and optimize the learning process and environments in which it occurs. The aim of this paper is to provide a comprehensive analysis and comparison of state...
Uložené v:
| Vydané v: | Computers and education Ročník 143; s. 103676 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.01.2020
|
| Predmet: | |
| ISSN: | 0360-1315, 1873-782X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Recent increase in the availability of learning data has given educational data mining an importance and momentum, in order to better understand and optimize the learning process and environments in which it occurs. The aim of this paper is to provide a comprehensive analysis and comparison of state of the art supervised machine learning techniques applied for solving the task of student exam performance prediction, i.e. discovering students at a “high risk” of dropping out from the course, and predicting their future achievements, such as for instance, the final exam scores. For both classification and regression tasks, the overall highest precision was obtained with artificial neural networks by feeding the student engagement data and past performance data, while the usage of demographic data did not show significant influence on the precision of predictions. To exploit the full potential of the student exam performance prediction, it was concluded that adequate data acquisition functionalities and the student interaction with the learning environment is a prerequisite to ensure sufficient amount of data for analysis.
•Overview of state of the art machine learning techniques in the context of student performance prediction.•Comparison of performance trends and computational requirements of analysed machine learning techniques.•Identification of optimal input data sets for optimisation of particular machine learning technique.•Artificial Neural Networks showed overall best results for solving student performance prediction tasks. |
|---|---|
| AbstractList | Recent increase in the availability of learning data has given educational data mining an importance and momentum, in order to better understand and optimize the learning process and environments in which it occurs. The aim of this paper is to provide a comprehensive analysis and comparison of state of the art supervised machine learning techniques applied for solving the task of student exam performance prediction, i.e. discovering students at a “high risk” of dropping out from the course, and predicting their future achievements, such as for instance, the final exam scores. For both classification and regression tasks, the overall highest precision was obtained with artificial neural networks by feeding the student engagement data and past performance data, while the usage of demographic data did not show significant influence on the precision of predictions. To exploit the full potential of the student exam performance prediction, it was concluded that adequate data acquisition functionalities and the student interaction with the learning environment is a prerequisite to ensure sufficient amount of data for analysis.
•Overview of state of the art machine learning techniques in the context of student performance prediction.•Comparison of performance trends and computational requirements of analysed machine learning techniques.•Identification of optimal input data sets for optimisation of particular machine learning technique.•Artificial Neural Networks showed overall best results for solving student performance prediction tasks. |
| ArticleNumber | 103676 |
| Author | Tomasevic, Nikola Vranes, Sanja Gvozdenovic, Nikola |
| Author_xml | – sequence: 1 givenname: Nikola surname: Tomasevic fullname: Tomasevic, Nikola email: nikola_tomashevic@yahoo.com – sequence: 2 givenname: Nikola surname: Gvozdenovic fullname: Gvozdenovic, Nikola – sequence: 3 givenname: Sanja surname: Vranes fullname: Vranes, Sanja |
| BookMark | eNqFkM1KAzEURoNUsFYfQcgLTE2ayWQGF1KKf1Bwo-AupMlNTelkapKp-vZmaFduurrwXc7HvecSjXznAaEbSqaU0Op2M9VduwPTT2eENjljlajO0JjWghWinn2M0DhnpKCM8gt0GeOGEFJWJR-j9dzjbg9h7-AbK2_wUKWCi13OLY79bthFMNiopHDrvPNrnEB_evfVQ8S2Czim3oBPGH5UizOQs1Z5DXgXwDidXOev0LlV2wjXxzlB748Pb4vnYvn69LKYLwvNBE-FYNxWhgtqa26JVoSImpWsVhZKLrgxBla8trTShldNs1oxKOumYXYlCBBesQnih14duhgDWLkLrlXhV1IiB1tyI4-25GBLHmxl7u4fp11Sw-UpKLc9Sd8faMivZZVBRu0gGzAugE7SdO5Ewx-b_45w |
| CitedBy_id | crossref_primary_10_1080_09639284_2022_2147799 crossref_primary_10_1109_ACCESS_2020_2992869 crossref_primary_10_1088_1757_899X_1096_1_012083 crossref_primary_10_31681_jetol_1335906 crossref_primary_10_1155_2022_7611623 crossref_primary_10_1109_ACCESS_2022_3195531 crossref_primary_10_3390_s21196629 crossref_primary_10_1016_j_engappai_2023_106649 crossref_primary_10_1007_s10639_022_11146_w crossref_primary_10_1177_00483931231188825 crossref_primary_10_26599_BDMA_2021_9020030 crossref_primary_10_1016_j_eswa_2023_121555 crossref_primary_10_1155_2022_5205371 crossref_primary_10_1007_s00500_020_05110_4 crossref_primary_10_1007_s10639_023_11592_0 crossref_primary_10_3390_bdcc6030094 crossref_primary_10_3390_math11143088 crossref_primary_10_22399_ijcesen_734 crossref_primary_10_3390_en16135206 crossref_primary_10_1109_ACCESS_2024_3349979 crossref_primary_10_1109_ACCESS_2022_3227505 crossref_primary_10_1177_14727978241305756 crossref_primary_10_1371_journal_pone_0309838 crossref_primary_10_1051_e3sconf_202342602044 crossref_primary_10_1109_ACCESS_2020_3031572 crossref_primary_10_1007_s11277_023_10838_x crossref_primary_10_1155_2022_2581951 crossref_primary_10_3390_mti9070069 crossref_primary_10_1371_journal_pone_0295808 crossref_primary_10_1016_j_eswa_2022_117681 crossref_primary_10_1057_s41270_024_00290_6 crossref_primary_10_1155_2022_5100860 crossref_primary_10_1051_e3sconf_202344802003 crossref_primary_10_1111_bjet_12999 crossref_primary_10_1371_journal_pone_0276943 crossref_primary_10_1080_15391523_2024_2437741 crossref_primary_10_1088_1742_6596_1651_1_012019 crossref_primary_10_1016_j_ijedudev_2023_102814 crossref_primary_10_1007_s10639_024_13002_5 crossref_primary_10_1007_s12564_024_09933_w crossref_primary_10_1007_s10639_023_11672_1 crossref_primary_10_1186_s40536_023_00151_1 crossref_primary_10_1186_s41239_022_00372_4 crossref_primary_10_3390_app112110237 crossref_primary_10_1007_s10639_025_13357_3 crossref_primary_10_47164_ijngc_v13i3_837 crossref_primary_10_1007_s10639_022_10925_9 crossref_primary_10_1109_ACCESS_2024_3471681 crossref_primary_10_12677_CES_2021_95202 crossref_primary_10_1016_j_heliyon_2023_e18248 crossref_primary_10_1109_ACCESS_2023_3266731 crossref_primary_10_1016_j_heliyon_2024_e40025 crossref_primary_10_3390_informatics12020044 crossref_primary_10_1007_s10462_022_10155_y crossref_primary_10_1109_TLT_2025_3554174 crossref_primary_10_1111_exsy_13837 crossref_primary_10_1007_s13369_021_06548_w crossref_primary_10_1016_j_caeai_2025_100369 crossref_primary_10_5753_rbie_2025_4641 crossref_primary_10_1007_s42979_024_02909_y crossref_primary_10_1177_00131644241255109 crossref_primary_10_1371_journal_pone_0326488 crossref_primary_10_3390_pharmacy9020093 crossref_primary_10_1016_j_eswa_2023_120604 crossref_primary_10_3390_su12114663 crossref_primary_10_1155_2022_7846247 crossref_primary_10_1109_TLT_2023_3333029 crossref_primary_10_1007_s10639_023_11700_0 crossref_primary_10_1007_s10489_023_04810_2 crossref_primary_10_1016_j_compedu_2021_104397 crossref_primary_10_1371_journal_pone_0312124 crossref_primary_10_1186_s41239_021_00300_y crossref_primary_10_1016_j_autcon_2025_105992 crossref_primary_10_1007_s13042_024_02124_4 crossref_primary_10_1007_s11205_020_02334_7 crossref_primary_10_1109_ACCESS_2024_3351186 crossref_primary_10_1177_20427530221108027 crossref_primary_10_3390_electronics11233995 crossref_primary_10_1016_j_asoc_2023_110591 crossref_primary_10_1109_ACCESS_2021_3061368 crossref_primary_10_3390_data6110110 crossref_primary_10_1007_s00500_022_06917_z crossref_primary_10_1007_s10639_022_10926_8 crossref_primary_10_3390_electronics12030731 crossref_primary_10_1016_j_ipm_2025_104351 crossref_primary_10_1007_s13198_021_01259_9 crossref_primary_10_3390_a18050284 crossref_primary_10_3390_e24050722 crossref_primary_10_1016_j_patcog_2024_111265 crossref_primary_10_3390_math10203737 crossref_primary_10_1080_09639284_2022_2145570 crossref_primary_10_1007_s10639_023_11831_4 crossref_primary_10_1109_ACCESS_2023_3335985 crossref_primary_10_1002_cae_70007 crossref_primary_10_1109_ACCESS_2021_3105956 crossref_primary_10_1109_TBDATA_2021_3125204 crossref_primary_10_1038_s41598_025_07460_1 crossref_primary_10_3390_educsci13010017 crossref_primary_10_1177_13272314241296866 crossref_primary_10_3390_su142214795 crossref_primary_10_1007_s10639_021_10699_6 crossref_primary_10_1007_s10639_022_11152_y crossref_primary_10_1002_cae_22572 crossref_primary_10_3390_info14080440 crossref_primary_10_1002_cae_22452 crossref_primary_10_3390_su14137654 crossref_primary_10_1016_j_ins_2020_08_017 crossref_primary_10_3390_computers11060097 crossref_primary_10_3390_math10142381 crossref_primary_10_3390_e22010012 crossref_primary_10_1080_01969722_2023_2166259 crossref_primary_10_1007_s40012_023_00388_9 crossref_primary_10_1038_s41598_022_15880_6 crossref_primary_10_4018_IJICTE_293235 crossref_primary_10_4018_IJVPLE_328772 crossref_primary_10_1016_j_procs_2021_03_104 crossref_primary_10_1109_ACCESS_2023_3287972 crossref_primary_10_1016_j_compedu_2020_104108 crossref_primary_10_1109_ACCESS_2025_3581751 crossref_primary_10_1109_TLT_2021_3118279 crossref_primary_10_1007_s11036_020_01699_w crossref_primary_10_1108_TQM_07_2022_0226 crossref_primary_10_3390_app112411845 crossref_primary_10_3390_data10030027 crossref_primary_10_3390_electronics13142808 crossref_primary_10_1080_03057925_2024_2393138 crossref_primary_10_1002_cpe_7601 crossref_primary_10_1109_ACCESS_2023_3327624 crossref_primary_10_3390_info13040203 crossref_primary_10_3390_su14137965 crossref_primary_10_1007_s10648_024_09879_w crossref_primary_10_1109_ACCESS_2023_3332818 crossref_primary_10_3389_fphy_2024_1324719 crossref_primary_10_3390_bdcc8120187 crossref_primary_10_1080_10494820_2023_2212726 crossref_primary_10_7717_peerj_cs_1699 crossref_primary_10_1016_j_engappai_2024_109189 crossref_primary_10_1108_ITSE_10_2021_0192 crossref_primary_10_3390_e23101252 crossref_primary_10_1007_s10639_024_12619_w crossref_primary_10_1007_s12652_020_02041_8 crossref_primary_10_3390_app112110145 crossref_primary_10_46632_jitl_1_1_8 crossref_primary_10_1016_j_compeleceng_2022_107827 crossref_primary_10_1007_s10639_023_12394_0 crossref_primary_10_1109_TETC_2023_3344131 crossref_primary_10_3390_app122111251 crossref_primary_10_1016_j_heliyon_2024_e32570 crossref_primary_10_1002_cae_22678 crossref_primary_10_1080_09639284_2022_2075707 crossref_primary_10_1016_j_entcom_2024_100912 crossref_primary_10_3390_info15110738 crossref_primary_10_1007_s10639_021_10738_2 crossref_primary_10_3390_app13127334 crossref_primary_10_56294_dm2025730 crossref_primary_10_1088_1742_6596_2129_1_012047 crossref_primary_10_1109_ACCESS_2021_3088901 crossref_primary_10_1109_TLT_2021_3072159 crossref_primary_10_2478_amns_2023_2_00363 crossref_primary_10_3390_app10113894 crossref_primary_10_1016_j_compedu_2024_105093 crossref_primary_10_22144_ctujoisd_2024_321 crossref_primary_10_1007_s10639_025_13526_4 crossref_primary_10_3390_info15120777 crossref_primary_10_1007_s40692_021_00196_7 crossref_primary_10_1088_1742_6596_1852_4_042088 |
| Cites_doi | 10.2307/2333849 10.9781/ijimai.2014.275 10.1016/j.chb.2018.07.027 10.1504/IJLT.2010.038772 10.1109/TSMC.1976.5408784 10.1111/ropr.12082 10.1177/0002764213479366 10.1214/ss/1177013622 10.1037/0003-066X.48.1.26 10.1080/00031305.1992.10475879 |
| ContentType | Journal Article |
| Copyright | 2019 |
| Copyright_xml | – notice: 2019 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compedu.2019.103676 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Education |
| EISSN | 1873-782X |
| ExternalDocumentID | 10_1016_j_compedu_2019_103676 S0360131519302295 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 41~ 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABIVO ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACHQT ACRLP ACTDY ADBBV ADEZE ADHUB ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HF~ HLZ HMY HVGLF HZ~ IHE J1W KOM LG9 M3Y M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPCBC SSB SSO SSS SSZ T5K UNMZH VH1 WUQ XSW ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADMHG ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c375t-735f6d571f85f0ca00783438afe4575dddeb58f16cd5699bb3e48993fb70e0563 |
| ISICitedReferencesCount | 198 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000493216800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-1315 |
| IngestDate | Sat Nov 29 02:48:02 EST 2025 Tue Nov 18 21:04:42 EST 2025 Fri Feb 23 02:49:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Adult learning Evaluation methodologies Programming and programming languages Intelligent tutoring systems |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c375t-735f6d571f85f0ca00783438afe4575dddeb58f16cd5699bb3e48993fb70e0563 |
| ParticipantIDs | crossref_primary_10_1016_j_compedu_2019_103676 crossref_citationtrail_10_1016_j_compedu_2019_103676 elsevier_sciencedirect_doi_10_1016_j_compedu_2019_103676 |
| PublicationCentury | 2000 |
| PublicationDate | January 2020 2020-01-00 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers and education |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Platt (bib35) 1998 Drucker, Burges, Kaufman, Smola, Vapnik (bib13) 1997 Kuzilek, Hlosta, Zdrahal (bib26) 2016 Smith (bib48) 2017 Avella, Kebritchi, Nunn, Kanai (bib2) 2016; 20 Minaei-Bidgoli, Kashy, Kortmeyer, Punch (bib30) 2003; 1 McGonagle, George, Hsu, Khim, Williams (bib28) 2018 McNeely, Hahm (bib29) 2014; 31 Verbert, Manouselis, Drachsler, Duval (bib54) 2012; 15 Baker (bib3) 2014 Tanner, Toivonen (bib50) 2010; 5 Costa, McCrae (bib8) 1992 Ding, Er, Orey (bib10) 2018; Vol. 120 Kay, Korn, Oppenheim (bib24) 2012 Shapiro, Lee, Roth, Li, Canelas (bib44) 2017; Vol. 110 Hsu, Chang, Lin (bib20) 2016 Ng (bib31) 2004 Ray (bib39) 2015 . Chatterjee, Hadi (bib7) 1986; 1 Kotsiantis, Pierrakeas, Pintelas (bib25) 2003; Vol. 2774 Dietz-Uhler, Hurn (bib9) 2013; 12 Bottles, Begoli, Worley (bib4) 2014; 40 Dudani (bib14) 1976; 6 Picciano, Anthony (bib34) 2012; 16 Saxena (bib41) 2017 Gunn (bib18) 1998; 14 Thai-Nghe, Drumond, Horvith, Krohn-Grimberghe, Nanopoulos, Schmidt-Thieme (bib52) 2012 Thai-Nghe, Drumond, Horvath, Nanopoulos, Schmidt-Thieme (bib51) 2011 Dobson, Barnett (bib11) 2008 Rokach, Oded, Maimon (bib40) 2010 Imlawi, Gregg, Karimi (bib21) 2015; Vol. 88 Rajaraman, Ullman (bib38) 2011 Shalizi (bib43) 2012 Weber, Schek, Blott (bib56) 1998 Vapnik (bib53) 1995 Kamiński, Jakubczyk, Szufel (bib23) 2018; Vol. 26 Byers, Imms, Hartnell-Young (bib5) 2018; Vol. 58 Viberg, Hatakka, Bälter, Anna (bib55) 2018; 89 Slade, Prinsloo (bib47) 2013; 57 van Gerven, Bohte (bib15) 2017; 11 bib22 Picciano (bib33) 2014; 2 Altman (bib1) 1992; 46 Ng (bib32) 2011 Siemens, Gasevic, Haythornthwaite, Dawson, Shum, Ferguson (bib46) 2011 Marin, Robert (bib27) 2007 Goldberg (bib16) 1993; 48 Call for Papers of the 1st International Conference on Learning Analytics & Knowledge (LAK 2011)”". Retrieved 12 February 2014. Hastie, Tibshirani, Friedman (bib19) 2008 Powell, MacNeill (bib36) 2012 Goodman (bib17) 2004 Zhang (bib57) 2016; Vol. 95 Dringus (bib12) 2012; 16 Su-In Lee, Lee, Abbeel, Andrew, Ng (bib49) 2006 Shih, Lee (bib45) 2001; Vol. 1 Seal (bib42) 1967; 54 McNeely (10.1016/j.compedu.2019.103676_bib29) 2014; 31 Drucker (10.1016/j.compedu.2019.103676_bib13) 1997 Shih (10.1016/j.compedu.2019.103676_bib45) 2001; Vol. 1 van Gerven (10.1016/j.compedu.2019.103676_bib15) 2017; 11 Weber (10.1016/j.compedu.2019.103676_bib56) 1998 Kotsiantis (10.1016/j.compedu.2019.103676_bib25) 2003; Vol. 2774 Rajaraman (10.1016/j.compedu.2019.103676_bib38) 2011 Seal (10.1016/j.compedu.2019.103676_bib42) 1967; 54 Thai-Nghe (10.1016/j.compedu.2019.103676_bib52) 2012 Verbert (10.1016/j.compedu.2019.103676_bib54) 2012; 15 Marin (10.1016/j.compedu.2019.103676_bib27) 2007 Ng (10.1016/j.compedu.2019.103676_bib32) 2011 Dringus (10.1016/j.compedu.2019.103676_bib12) 2012; 16 Costa (10.1016/j.compedu.2019.103676_bib8) 1992 Shapiro (10.1016/j.compedu.2019.103676_bib44) 2017; Vol. 110 Altman (10.1016/j.compedu.2019.103676_bib1) 1992; 46 Zhang (10.1016/j.compedu.2019.103676_bib57) 2016; Vol. 95 Smith (10.1016/j.compedu.2019.103676_bib48) 2017 Viberg (10.1016/j.compedu.2019.103676_bib55) 2018; 89 Baker (10.1016/j.compedu.2019.103676_bib3) 2014 Ding (10.1016/j.compedu.2019.103676_bib10) 2018; Vol. 120 Dudani (10.1016/j.compedu.2019.103676_bib14) 1976; 6 Hastie (10.1016/j.compedu.2019.103676_bib19) 2008 Kay (10.1016/j.compedu.2019.103676_bib24) 2012 Minaei-Bidgoli (10.1016/j.compedu.2019.103676_bib30) 2003; 1 Picciano (10.1016/j.compedu.2019.103676_bib34) 2012; 16 Shalizi (10.1016/j.compedu.2019.103676_bib43) 2012 Picciano (10.1016/j.compedu.2019.103676_bib33) 2014; 2 Tanner (10.1016/j.compedu.2019.103676_bib50) 2010; 5 Dietz-Uhler (10.1016/j.compedu.2019.103676_bib9) 2013; 12 Siemens (10.1016/j.compedu.2019.103676_bib46) 2011 Saxena (10.1016/j.compedu.2019.103676_bib41) Chatterjee (10.1016/j.compedu.2019.103676_bib7) 1986; 1 Powell (10.1016/j.compedu.2019.103676_bib36) 2012 Hsu (10.1016/j.compedu.2019.103676_bib20) 2016 Ray (10.1016/j.compedu.2019.103676_bib39) 10.1016/j.compedu.2019.103676_bib6 Kuzilek (10.1016/j.compedu.2019.103676_bib26) 2016 McGonagle (10.1016/j.compedu.2019.103676_bib28) 2018 Dobson (10.1016/j.compedu.2019.103676_bib11) 2008 Slade (10.1016/j.compedu.2019.103676_bib47) 2013; 57 Thai-Nghe (10.1016/j.compedu.2019.103676_bib51) 2011 Goodman (10.1016/j.compedu.2019.103676_bib17) 2004 Avella (10.1016/j.compedu.2019.103676_bib2) 2016; 20 Gunn (10.1016/j.compedu.2019.103676_bib18) 1998; 14 Kamiński (10.1016/j.compedu.2019.103676_bib23) 2018; Vol. 26 Goldberg (10.1016/j.compedu.2019.103676_bib16) 1993; 48 Su-In Lee (10.1016/j.compedu.2019.103676_bib49) 2006 Vapnik (10.1016/j.compedu.2019.103676_bib53) 1995 Imlawi (10.1016/j.compedu.2019.103676_bib21) 2015; Vol. 88 Byers (10.1016/j.compedu.2019.103676_bib5) 2018; Vol. 58 Ng (10.1016/j.compedu.2019.103676_bib31) 2004 Platt (10.1016/j.compedu.2019.103676_bib35) 1998 Bottles (10.1016/j.compedu.2019.103676_bib4) 2014; 40 Rokach (10.1016/j.compedu.2019.103676_bib40) 2010 |
| References_xml | – year: 2007 ident: bib27 article-title: Bayesian Core: A practical approach to computational bayesian statistics – year: 2017 ident: bib48 article-title: Predictive analytics with Matlab. Machine learning techniques – volume: 14 start-page: 85 year: 1998 end-page: 86 ident: bib18 article-title: Support vector machines for classification and regression publication-title: ISIS Technical Report – volume: 16 start-page: 87 year: 2012 end-page: 100 ident: bib12 article-title: Learning analytics considered harmful publication-title: Journal of Asynchronous Learning Networks – volume: 2 start-page: 35 year: 2014 end-page: 43 ident: bib33 article-title: Big data and learning analytics in blended learning environments: Benefits and concerns publication-title: International Journal of Artificial Intelligence and Interactive Multimedia – year: 2012 ident: bib43 article-title: Chapter 12 - logistic regression publication-title: In: Carnegie melon university – volume: 89 start-page: 98 year: 2018 end-page: 110 ident: bib55 article-title: The current landscape of learning analytics in higher education publication-title: Computers in Human Behavior – volume: Vol. 95 start-page: 340 year: 2016 end-page: 351 ident: bib57 article-title: Can MOOCs be interesting to students? An experimental investigation from regulatory focus perspective publication-title: Computers & education – start-page: 78 year: 2004 end-page: 85 ident: bib31 article-title: Feature selection, l1 vs. l2 regularization, and rotational invariance publication-title: Proceedings of the 21st international conference on machine learning (ICML), Banff, Canada, 04-08. July, 2004 – start-page: 305 year: 2004 end-page: 312 ident: bib17 article-title: Exponential priors for maximum entropy models publication-title: Proceedings of the human language technology conference of the north American chapter of the association for computational linguistics (HLT-NAACL), 02-07. May 2004 – volume: 5 start-page: 356 year: 2010 end-page: 377 ident: bib50 article-title: Predicting and preventing student failure – using the k-nearest neighbour method to predict student performance in an online course environment publication-title: International Journal of Learning Technology archive – year: 2006 ident: bib49 article-title: Efficient L1 regularized logistic regression – volume: 31 start-page: 304 year: 2014 end-page: 310 ident: bib29 article-title: The big (data) bang: Policy, prospects, and challenges publication-title: The Review of Policy Research – volume: 40 start-page: 6 year: 2014 end-page: 12 ident: bib4 article-title: Understanding the pros and cons of big data analytics publication-title: Physician Executive – reference: Call for Papers of the 1st International Conference on Learning Analytics & Knowledge (LAK 2011)”". Retrieved 12 February 2014. – volume: 6 start-page: 325 year: 1976 end-page: 327 ident: bib14 article-title: The distance-weighted k-nearest neighbour rule publication-title: IEEE Transactions on Systems, Man and Cybernetics – year: 2018 ident: bib28 article-title: Backpropagation, Brilliant.org – start-page: 155 year: 1997 end-page: 161 ident: bib13 article-title: Support vector regression machines publication-title: Advances in neural information processing systems – year: 2011 ident: bib38 article-title: “Mining of massive datasets, ch. 3,” finding similar items – volume: 1 start-page: T2A year: 2003 end-page: T18 ident: bib30 article-title: Predicting student performance: An application of data mining methods with an educational web-based system publication-title: 33rd Annual Frontiers in Education – volume: 54 start-page: 1 year: 1967 end-page: 24 ident: bib42 article-title: The historical development of the Gauss linear model publication-title: Biometrika – volume: 48 start-page: 26 year: 1993 end-page: 34 ident: bib16 article-title: The structure of phenotypic personality traits publication-title: American Psychologist – volume: 46 start-page: 175 year: 1992 end-page: 184 ident: bib1 article-title: Introduction to kernel and nearest-neighbour nonparametric regression publication-title: The American Statistician – volume: 16 start-page: 9 year: 2012 end-page: 20 ident: bib34 article-title: The evolution of big data and learning analytics in American higher education publication-title: Journal of Asynchronous Learning Networks – year: 2016 ident: bib20 article-title: A practical guide to support vector classification – volume: 11 year: 2017 ident: bib15 article-title: Editorial: Artificial neural networks as models of neural information processing publication-title: Frontiers in Computational Neuroscience – volume: Vol. 1 year: 2001 ident: bib45 article-title: The application of nearest neighbour algorithm on creating an adaptive on-line learning system publication-title: 31st annual frontiers in education conference – year: 1992 ident: bib8 article-title: Revised NEO personality inventory (NEO-PI-R) and NEO five-factor inventory (NEO-FFI) manual – year: 2012 ident: bib24 article-title: Legal, risk and ethical aspects of analytics in higher education – volume: Vol. 26 start-page: 135 year: 2018 end-page: 159 ident: bib23 article-title: A framework for sensitivity analysis of decision trees publication-title: Central european journal of operations research – volume: Vol. 58 start-page: 167 year: 2018 end-page: 177 ident: bib5 article-title: Comparative analysis of the impact of traditional versus innovative learning environment on student attitudes and learning outcomes publication-title: Studies in educational evaluation – year: 1998 ident: bib35 article-title: Sequential minimal optimization: A fast algorithm for training support vector machines (PDF) publication-title: CiteSeerX – year: 2011 ident: bib46 article-title: Open learning analytics: An integrated & modularized platform – volume: 1 start-page: 379 year: 1986 end-page: 416 ident: bib7 article-title: Influential observations, high leverage points, and outliers in linear regression publication-title: Statistical Science – volume: Vol. 120 start-page: 213 year: 2018 end-page: 226 ident: bib10 article-title: An exploratory study of student engagement in gamified online discussions publication-title: Computers & education – volume: Vol. 88 start-page: 84 year: 2015 end-page: 96 ident: bib21 article-title: Student engagement in course-based social networks: The impact of instructor credibility and use of communication publication-title: Computers & education – volume: 12 start-page: 17 year: 2013 end-page: 26 ident: bib9 article-title: Using learning analytics to predict (and improve) student success: A faculty perspective publication-title: The Journal of Interactive Online Learning – year: 1998 ident: bib56 article-title: A quantitative analysis and performance study for similarity search methods in high dimensional spaces – year: 2011 ident: bib32 article-title: “CS229 lecture notes,” stanford machine learning – year: 2014 ident: bib3 article-title: Data mining for education – volume: Vol. 110 start-page: 35 year: 2017 end-page: 50 ident: bib44 article-title: Understanding the massive open online course (MOOC) student experience: An examination of attitudes, motivations, and barriers publication-title: Computers & education – year: 2008 ident: bib19 article-title: The elements of statistical learning – volume: 15 start-page: 133 year: 2012 end-page: 148 ident: bib54 article-title: Dataset-driven research to support learning and knowledge analytics publication-title: Educational Technology & Society – volume: Vol. 2774 start-page: 267 year: 2003 end-page: 274 ident: bib25 article-title: Preventing student dropout in distance learning systems using machine learning techniques publication-title: 7th international conference on knowledge-based intelligent information & engineering systems, lecture notes in artificial intelligence – start-page: 129 year: 2012 end-page: 153 ident: bib52 article-title: Factorization techniques for predicting student performance publication-title: Educational recommender systems and technologies: Practices and challenges – year: 2015 ident: bib39 article-title: Decision tree – simplified! Analytics vidhya, business analytics – year: 2010 ident: bib40 article-title: Data mining and knowledge discovery handbook – ident: bib22 article-title: International educational data mining society – year: 1995 ident: bib53 article-title: The nature of statistical learning theory – reference: . – year: 2016 ident: bib26 article-title: “Open university learning analytics dataset,” copyright © by the paper's authors – volume: 20 start-page: 2 year: 2016 ident: bib2 article-title: Learning analytics methods, benefits, and challenges in higher education: A systematic literature review publication-title: Online Learning – year: 2008 ident: bib11 article-title: An introduction to generalized linear models – volume: 57 start-page: 1510 year: 2013 end-page: 1529 ident: bib47 article-title: Learning analytics: Ethical issues and dilemmas publication-title: American Behavioral Scientist – start-page: 69 year: 2011 end-page: 78 ident: bib51 article-title: Matrix and tensor factorization for predicting student performance publication-title: Proceedings of the 3rd international conference on computer supported education (CSEDU 2011), noordwijkerhout, The Netherlands – year: 2017 ident: bib41 article-title: How the naive Bayes classifier works in machine learning – year: 2012 ident: bib36 article-title: “Institutional readiness for analytics,” a briefing paper, CETIS analytics series – ident: 10.1016/j.compedu.2019.103676_bib6 – start-page: 129 year: 2012 ident: 10.1016/j.compedu.2019.103676_bib52 article-title: Factorization techniques for predicting student performance – volume: 11 issue: 2017 year: 2017 ident: 10.1016/j.compedu.2019.103676_bib15 article-title: Editorial: Artificial neural networks as models of neural information processing publication-title: Frontiers in Computational Neuroscience – volume: Vol. 58 start-page: 167 year: 2018 ident: 10.1016/j.compedu.2019.103676_bib5 article-title: Comparative analysis of the impact of traditional versus innovative learning environment on student attitudes and learning outcomes – year: 2018 ident: 10.1016/j.compedu.2019.103676_bib28 – year: 2012 ident: 10.1016/j.compedu.2019.103676_bib36 – volume: 14 start-page: 85 year: 1998 ident: 10.1016/j.compedu.2019.103676_bib18 article-title: Support vector machines for classification and regression publication-title: ISIS Technical Report – volume: Vol. 2774 start-page: 267 year: 2003 ident: 10.1016/j.compedu.2019.103676_bib25 article-title: Preventing student dropout in distance learning systems using machine learning techniques – year: 2012 ident: 10.1016/j.compedu.2019.103676_bib43 article-title: Chapter 12 - logistic regression – ident: 10.1016/j.compedu.2019.103676_bib41 – year: 1995 ident: 10.1016/j.compedu.2019.103676_bib53 – volume: Vol. 120 start-page: 213 year: 2018 ident: 10.1016/j.compedu.2019.103676_bib10 article-title: An exploratory study of student engagement in gamified online discussions – volume: 54 start-page: 1 issue: 1/2 year: 1967 ident: 10.1016/j.compedu.2019.103676_bib42 article-title: The historical development of the Gauss linear model publication-title: Biometrika doi: 10.2307/2333849 – start-page: 155 year: 1997 ident: 10.1016/j.compedu.2019.103676_bib13 article-title: Support vector regression machines – volume: 2 start-page: 35 issue: 7 year: 2014 ident: 10.1016/j.compedu.2019.103676_bib33 article-title: Big data and learning analytics in blended learning environments: Benefits and concerns publication-title: International Journal of Artificial Intelligence and Interactive Multimedia doi: 10.9781/ijimai.2014.275 – volume: 89 start-page: 98 year: 2018 ident: 10.1016/j.compedu.2019.103676_bib55 article-title: The current landscape of learning analytics in higher education publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2018.07.027 – start-page: 69 year: 2011 ident: 10.1016/j.compedu.2019.103676_bib51 article-title: Matrix and tensor factorization for predicting student performance – ident: 10.1016/j.compedu.2019.103676_bib39 – volume: 5 start-page: 356 issue: 4 year: 2010 ident: 10.1016/j.compedu.2019.103676_bib50 article-title: Predicting and preventing student failure – using the k-nearest neighbour method to predict student performance in an online course environment publication-title: International Journal of Learning Technology archive doi: 10.1504/IJLT.2010.038772 – volume: 6 start-page: 325 issue: 4 year: 1976 ident: 10.1016/j.compedu.2019.103676_bib14 article-title: The distance-weighted k-nearest neighbour rule publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1976.5408784 – volume: 15 start-page: 133 issue: 3 year: 2012 ident: 10.1016/j.compedu.2019.103676_bib54 article-title: Dataset-driven research to support learning and knowledge analytics publication-title: Educational Technology & Society – year: 1998 ident: 10.1016/j.compedu.2019.103676_bib56 – year: 2010 ident: 10.1016/j.compedu.2019.103676_bib40 – year: 1998 ident: 10.1016/j.compedu.2019.103676_bib35 article-title: Sequential minimal optimization: A fast algorithm for training support vector machines (PDF) publication-title: CiteSeerX – year: 2016 ident: 10.1016/j.compedu.2019.103676_bib26 – volume: 31 start-page: 304 issue: 4 year: 2014 ident: 10.1016/j.compedu.2019.103676_bib29 article-title: The big (data) bang: Policy, prospects, and challenges publication-title: The Review of Policy Research doi: 10.1111/ropr.12082 – start-page: 78 year: 2004 ident: 10.1016/j.compedu.2019.103676_bib31 article-title: Feature selection, l1 vs. l2 regularization, and rotational invariance – volume: 40 start-page: 6 issue: 4 year: 2014 ident: 10.1016/j.compedu.2019.103676_bib4 article-title: Understanding the pros and cons of big data analytics publication-title: Physician Executive – volume: Vol. 88 start-page: 84 year: 2015 ident: 10.1016/j.compedu.2019.103676_bib21 article-title: Student engagement in course-based social networks: The impact of instructor credibility and use of communication – volume: 57 start-page: 1510 issue: 10 year: 2013 ident: 10.1016/j.compedu.2019.103676_bib47 article-title: Learning analytics: Ethical issues and dilemmas publication-title: American Behavioral Scientist doi: 10.1177/0002764213479366 – year: 2011 ident: 10.1016/j.compedu.2019.103676_bib32 – volume: 1 start-page: T2A year: 2003 ident: 10.1016/j.compedu.2019.103676_bib30 article-title: Predicting student performance: An application of data mining methods with an educational web-based system publication-title: 33rd Annual Frontiers in Education – year: 2011 ident: 10.1016/j.compedu.2019.103676_bib38 – year: 1992 ident: 10.1016/j.compedu.2019.103676_bib8 – volume: 12 start-page: 17 issue: 1 year: 2013 ident: 10.1016/j.compedu.2019.103676_bib9 article-title: Using learning analytics to predict (and improve) student success: A faculty perspective publication-title: The Journal of Interactive Online Learning – volume: 16 start-page: 87 issue: 3 year: 2012 ident: 10.1016/j.compedu.2019.103676_bib12 article-title: Learning analytics considered harmful publication-title: Journal of Asynchronous Learning Networks – volume: 16 start-page: 9 year: 2012 ident: 10.1016/j.compedu.2019.103676_bib34 article-title: The evolution of big data and learning analytics in American higher education publication-title: Journal of Asynchronous Learning Networks – start-page: 305 year: 2004 ident: 10.1016/j.compedu.2019.103676_bib17 article-title: Exponential priors for maximum entropy models – volume: 1 start-page: 379 year: 1986 ident: 10.1016/j.compedu.2019.103676_bib7 article-title: Influential observations, high leverage points, and outliers in linear regression publication-title: Statistical Science doi: 10.1214/ss/1177013622 – year: 2012 ident: 10.1016/j.compedu.2019.103676_bib24 – volume: 20 start-page: 2 year: 2016 ident: 10.1016/j.compedu.2019.103676_bib2 article-title: Learning analytics methods, benefits, and challenges in higher education: A systematic literature review publication-title: Online Learning – volume: 48 start-page: 26 year: 1993 ident: 10.1016/j.compedu.2019.103676_bib16 article-title: The structure of phenotypic personality traits publication-title: American Psychologist doi: 10.1037/0003-066X.48.1.26 – volume: Vol. 26 start-page: 135 year: 2018 ident: 10.1016/j.compedu.2019.103676_bib23 article-title: A framework for sensitivity analysis of decision trees – volume: Vol. 1 year: 2001 ident: 10.1016/j.compedu.2019.103676_bib45 article-title: The application of nearest neighbour algorithm on creating an adaptive on-line learning system – year: 2006 ident: 10.1016/j.compedu.2019.103676_bib49 – year: 2011 ident: 10.1016/j.compedu.2019.103676_bib46 – year: 2017 ident: 10.1016/j.compedu.2019.103676_bib48 – year: 2007 ident: 10.1016/j.compedu.2019.103676_bib27 – volume: Vol. 95 start-page: 340 year: 2016 ident: 10.1016/j.compedu.2019.103676_bib57 article-title: Can MOOCs be interesting to students? An experimental investigation from regulatory focus perspective – year: 2014 ident: 10.1016/j.compedu.2019.103676_bib3 – year: 2008 ident: 10.1016/j.compedu.2019.103676_bib11 – year: 2016 ident: 10.1016/j.compedu.2019.103676_bib20 – year: 2008 ident: 10.1016/j.compedu.2019.103676_bib19 – volume: Vol. 110 start-page: 35 year: 2017 ident: 10.1016/j.compedu.2019.103676_bib44 article-title: Understanding the massive open online course (MOOC) student experience: An examination of attitudes, motivations, and barriers – volume: 46 start-page: 175 issue: 3 year: 1992 ident: 10.1016/j.compedu.2019.103676_bib1 article-title: Introduction to kernel and nearest-neighbour nonparametric regression publication-title: The American Statistician doi: 10.1080/00031305.1992.10475879 |
| SSID | ssj0004645 |
| Score | 2.6652937 |
| Snippet | Recent increase in the availability of learning data has given educational data mining an importance and momentum, in order to better understand and optimize... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103676 |
| SubjectTerms | Adult learning Evaluation methodologies Intelligent tutoring systems Programming and programming languages |
| Title | An overview and comparison of supervised data mining techniques for student exam performance prediction |
| URI | https://dx.doi.org/10.1016/j.compedu.2019.103676 |
| Volume | 143 |
| WOSCitedRecordID | wos000493216800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-782X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004645 issn: 0360-1315 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ji9swFBbpTA-9lK50uqFDb0FTJ7Is6RjKdKMMhZkOuRnZlkoziW2STBr66_ueJdvpNHSDXkywUWT0fX7vs_wWQl5kyiVFpAwrnLAsBknCtDYFk5EDf25MljVf8C8-yNNTNZ3qj4NB3ebCbOayLNV2q-v_CjWcA7AxdfYv4O7-FE7AbwAdjgA7HP8I-AkIwA1aAPu1TVrrOw0OV1c1XluBzsTg0OGiaRAx7Eq5NuUZmqKzGCRgt2aBlY273IJ6iR92OjDbEgehNYSv92zbmJF-B3th0AHnnnqX1bzzBW821TeYqdp78QL8qLdiZ6acmd0NinF0bYOiy5zpw5R8tlbERtynch5bb3yV5AwUy_QH6-yrOP1k6f2mwwyBqnFbC4SMxgoCibxWWbvx1Wc4H04HejXCDuY3yOFYCg128HDy7mT6fieXtmls3d1fn_X1cu9k-_XMjkY5v0Nuh5cLOvGkuEsGtryHfbkDHvfJ50lJW3JQwIr25KCVoz05KJKDenLQnhwUiEADOSiSg-6Qg_bkeEA-vT45f_WWhVYbLOdSrJnkAp5ZIUdOCRflBpUjj7kyzsYg6AtwgplQbpTkhUi0zjJuY3hT5y6TkQUNzR-Sg7Iq7SNCrRE5LHM-EiqJbZSocSwNdinQoCWVKI5I3C5Ymoc69NgOZZ62AYezNKxziuuc-nU-IsfdsNoXYvndANWikQY16VViChT69dDH_z70CbnVPwNPycF6eWWfkZv5Zv1ltXweyPYd6xuheg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+overview+and+comparison+of+supervised+data+mining+techniques+for+student+exam+performance+prediction&rft.jtitle=Computers+and+education&rft.au=Tomasevic%2C+Nikola&rft.au=Gvozdenovic%2C+Nikola&rft.au=Vranes%2C+Sanja&rft.date=2020-01-01&rft.pub=Elsevier+Ltd&rft.issn=0360-1315&rft.eissn=1873-782X&rft.volume=143&rft_id=info:doi/10.1016%2Fj.compedu.2019.103676&rft.externalDocID=S0360131519302295 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1315&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1315&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1315&client=summon |