An overview and comparison of supervised data mining techniques for student exam performance prediction

Recent increase in the availability of learning data has given educational data mining an importance and momentum, in order to better understand and optimize the learning process and environments in which it occurs. The aim of this paper is to provide a comprehensive analysis and comparison of state...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers and education Ročník 143; s. 103676
Hlavní autori: Tomasevic, Nikola, Gvozdenovic, Nikola, Vranes, Sanja
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.01.2020
Predmet:
ISSN:0360-1315, 1873-782X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recent increase in the availability of learning data has given educational data mining an importance and momentum, in order to better understand and optimize the learning process and environments in which it occurs. The aim of this paper is to provide a comprehensive analysis and comparison of state of the art supervised machine learning techniques applied for solving the task of student exam performance prediction, i.e. discovering students at a “high risk” of dropping out from the course, and predicting their future achievements, such as for instance, the final exam scores. For both classification and regression tasks, the overall highest precision was obtained with artificial neural networks by feeding the student engagement data and past performance data, while the usage of demographic data did not show significant influence on the precision of predictions. To exploit the full potential of the student exam performance prediction, it was concluded that adequate data acquisition functionalities and the student interaction with the learning environment is a prerequisite to ensure sufficient amount of data for analysis. •Overview of state of the art machine learning techniques in the context of student performance prediction.•Comparison of performance trends and computational requirements of analysed machine learning techniques.•Identification of optimal input data sets for optimisation of particular machine learning technique.•Artificial Neural Networks showed overall best results for solving student performance prediction tasks.
AbstractList Recent increase in the availability of learning data has given educational data mining an importance and momentum, in order to better understand and optimize the learning process and environments in which it occurs. The aim of this paper is to provide a comprehensive analysis and comparison of state of the art supervised machine learning techniques applied for solving the task of student exam performance prediction, i.e. discovering students at a “high risk” of dropping out from the course, and predicting their future achievements, such as for instance, the final exam scores. For both classification and regression tasks, the overall highest precision was obtained with artificial neural networks by feeding the student engagement data and past performance data, while the usage of demographic data did not show significant influence on the precision of predictions. To exploit the full potential of the student exam performance prediction, it was concluded that adequate data acquisition functionalities and the student interaction with the learning environment is a prerequisite to ensure sufficient amount of data for analysis. •Overview of state of the art machine learning techniques in the context of student performance prediction.•Comparison of performance trends and computational requirements of analysed machine learning techniques.•Identification of optimal input data sets for optimisation of particular machine learning technique.•Artificial Neural Networks showed overall best results for solving student performance prediction tasks.
ArticleNumber 103676
Author Tomasevic, Nikola
Vranes, Sanja
Gvozdenovic, Nikola
Author_xml – sequence: 1
  givenname: Nikola
  surname: Tomasevic
  fullname: Tomasevic, Nikola
  email: nikola_tomashevic@yahoo.com
– sequence: 2
  givenname: Nikola
  surname: Gvozdenovic
  fullname: Gvozdenovic, Nikola
– sequence: 3
  givenname: Sanja
  surname: Vranes
  fullname: Vranes, Sanja
BookMark eNqFkM1KAzEURoNUsFYfQcgLTE2ayWQGF1KKf1Bwo-AupMlNTelkapKp-vZmaFduurrwXc7HvecSjXznAaEbSqaU0Op2M9VduwPTT2eENjljlajO0JjWghWinn2M0DhnpKCM8gt0GeOGEFJWJR-j9dzjbg9h7-AbK2_wUKWCi13OLY79bthFMNiopHDrvPNrnEB_evfVQ8S2Czim3oBPGH5UizOQs1Z5DXgXwDidXOev0LlV2wjXxzlB748Pb4vnYvn69LKYLwvNBE-FYNxWhgtqa26JVoSImpWsVhZKLrgxBla8trTShldNs1oxKOumYXYlCBBesQnih14duhgDWLkLrlXhV1IiB1tyI4-25GBLHmxl7u4fp11Sw-UpKLc9Sd8faMivZZVBRu0gGzAugE7SdO5Ewx-b_45w
CitedBy_id crossref_primary_10_1080_09639284_2022_2147799
crossref_primary_10_1109_ACCESS_2020_2992869
crossref_primary_10_1088_1757_899X_1096_1_012083
crossref_primary_10_31681_jetol_1335906
crossref_primary_10_1155_2022_7611623
crossref_primary_10_1109_ACCESS_2022_3195531
crossref_primary_10_3390_s21196629
crossref_primary_10_1016_j_engappai_2023_106649
crossref_primary_10_1007_s10639_022_11146_w
crossref_primary_10_1177_00483931231188825
crossref_primary_10_26599_BDMA_2021_9020030
crossref_primary_10_1016_j_eswa_2023_121555
crossref_primary_10_1155_2022_5205371
crossref_primary_10_1007_s00500_020_05110_4
crossref_primary_10_1007_s10639_023_11592_0
crossref_primary_10_3390_bdcc6030094
crossref_primary_10_3390_math11143088
crossref_primary_10_22399_ijcesen_734
crossref_primary_10_3390_en16135206
crossref_primary_10_1109_ACCESS_2024_3349979
crossref_primary_10_1109_ACCESS_2022_3227505
crossref_primary_10_1177_14727978241305756
crossref_primary_10_1371_journal_pone_0309838
crossref_primary_10_1051_e3sconf_202342602044
crossref_primary_10_1109_ACCESS_2020_3031572
crossref_primary_10_1007_s11277_023_10838_x
crossref_primary_10_1155_2022_2581951
crossref_primary_10_3390_mti9070069
crossref_primary_10_1371_journal_pone_0295808
crossref_primary_10_1016_j_eswa_2022_117681
crossref_primary_10_1057_s41270_024_00290_6
crossref_primary_10_1155_2022_5100860
crossref_primary_10_1051_e3sconf_202344802003
crossref_primary_10_1111_bjet_12999
crossref_primary_10_1371_journal_pone_0276943
crossref_primary_10_1080_15391523_2024_2437741
crossref_primary_10_1088_1742_6596_1651_1_012019
crossref_primary_10_1016_j_ijedudev_2023_102814
crossref_primary_10_1007_s10639_024_13002_5
crossref_primary_10_1007_s12564_024_09933_w
crossref_primary_10_1007_s10639_023_11672_1
crossref_primary_10_1186_s40536_023_00151_1
crossref_primary_10_1186_s41239_022_00372_4
crossref_primary_10_3390_app112110237
crossref_primary_10_1007_s10639_025_13357_3
crossref_primary_10_47164_ijngc_v13i3_837
crossref_primary_10_1007_s10639_022_10925_9
crossref_primary_10_1109_ACCESS_2024_3471681
crossref_primary_10_12677_CES_2021_95202
crossref_primary_10_1016_j_heliyon_2023_e18248
crossref_primary_10_1109_ACCESS_2023_3266731
crossref_primary_10_1016_j_heliyon_2024_e40025
crossref_primary_10_3390_informatics12020044
crossref_primary_10_1007_s10462_022_10155_y
crossref_primary_10_1109_TLT_2025_3554174
crossref_primary_10_1111_exsy_13837
crossref_primary_10_1007_s13369_021_06548_w
crossref_primary_10_1016_j_caeai_2025_100369
crossref_primary_10_5753_rbie_2025_4641
crossref_primary_10_1007_s42979_024_02909_y
crossref_primary_10_1177_00131644241255109
crossref_primary_10_1371_journal_pone_0326488
crossref_primary_10_3390_pharmacy9020093
crossref_primary_10_1016_j_eswa_2023_120604
crossref_primary_10_3390_su12114663
crossref_primary_10_1155_2022_7846247
crossref_primary_10_1109_TLT_2023_3333029
crossref_primary_10_1007_s10639_023_11700_0
crossref_primary_10_1007_s10489_023_04810_2
crossref_primary_10_1016_j_compedu_2021_104397
crossref_primary_10_1371_journal_pone_0312124
crossref_primary_10_1186_s41239_021_00300_y
crossref_primary_10_1016_j_autcon_2025_105992
crossref_primary_10_1007_s13042_024_02124_4
crossref_primary_10_1007_s11205_020_02334_7
crossref_primary_10_1109_ACCESS_2024_3351186
crossref_primary_10_1177_20427530221108027
crossref_primary_10_3390_electronics11233995
crossref_primary_10_1016_j_asoc_2023_110591
crossref_primary_10_1109_ACCESS_2021_3061368
crossref_primary_10_3390_data6110110
crossref_primary_10_1007_s00500_022_06917_z
crossref_primary_10_1007_s10639_022_10926_8
crossref_primary_10_3390_electronics12030731
crossref_primary_10_1016_j_ipm_2025_104351
crossref_primary_10_1007_s13198_021_01259_9
crossref_primary_10_3390_a18050284
crossref_primary_10_3390_e24050722
crossref_primary_10_1016_j_patcog_2024_111265
crossref_primary_10_3390_math10203737
crossref_primary_10_1080_09639284_2022_2145570
crossref_primary_10_1007_s10639_023_11831_4
crossref_primary_10_1109_ACCESS_2023_3335985
crossref_primary_10_1002_cae_70007
crossref_primary_10_1109_ACCESS_2021_3105956
crossref_primary_10_1109_TBDATA_2021_3125204
crossref_primary_10_1038_s41598_025_07460_1
crossref_primary_10_3390_educsci13010017
crossref_primary_10_1177_13272314241296866
crossref_primary_10_3390_su142214795
crossref_primary_10_1007_s10639_021_10699_6
crossref_primary_10_1007_s10639_022_11152_y
crossref_primary_10_1002_cae_22572
crossref_primary_10_3390_info14080440
crossref_primary_10_1002_cae_22452
crossref_primary_10_3390_su14137654
crossref_primary_10_1016_j_ins_2020_08_017
crossref_primary_10_3390_computers11060097
crossref_primary_10_3390_math10142381
crossref_primary_10_3390_e22010012
crossref_primary_10_1080_01969722_2023_2166259
crossref_primary_10_1007_s40012_023_00388_9
crossref_primary_10_1038_s41598_022_15880_6
crossref_primary_10_4018_IJICTE_293235
crossref_primary_10_4018_IJVPLE_328772
crossref_primary_10_1016_j_procs_2021_03_104
crossref_primary_10_1109_ACCESS_2023_3287972
crossref_primary_10_1016_j_compedu_2020_104108
crossref_primary_10_1109_ACCESS_2025_3581751
crossref_primary_10_1109_TLT_2021_3118279
crossref_primary_10_1007_s11036_020_01699_w
crossref_primary_10_1108_TQM_07_2022_0226
crossref_primary_10_3390_app112411845
crossref_primary_10_3390_data10030027
crossref_primary_10_3390_electronics13142808
crossref_primary_10_1080_03057925_2024_2393138
crossref_primary_10_1002_cpe_7601
crossref_primary_10_1109_ACCESS_2023_3327624
crossref_primary_10_3390_info13040203
crossref_primary_10_3390_su14137965
crossref_primary_10_1007_s10648_024_09879_w
crossref_primary_10_1109_ACCESS_2023_3332818
crossref_primary_10_3389_fphy_2024_1324719
crossref_primary_10_3390_bdcc8120187
crossref_primary_10_1080_10494820_2023_2212726
crossref_primary_10_7717_peerj_cs_1699
crossref_primary_10_1016_j_engappai_2024_109189
crossref_primary_10_1108_ITSE_10_2021_0192
crossref_primary_10_3390_e23101252
crossref_primary_10_1007_s10639_024_12619_w
crossref_primary_10_1007_s12652_020_02041_8
crossref_primary_10_3390_app112110145
crossref_primary_10_46632_jitl_1_1_8
crossref_primary_10_1016_j_compeleceng_2022_107827
crossref_primary_10_1007_s10639_023_12394_0
crossref_primary_10_1109_TETC_2023_3344131
crossref_primary_10_3390_app122111251
crossref_primary_10_1016_j_heliyon_2024_e32570
crossref_primary_10_1002_cae_22678
crossref_primary_10_1080_09639284_2022_2075707
crossref_primary_10_1016_j_entcom_2024_100912
crossref_primary_10_3390_info15110738
crossref_primary_10_1007_s10639_021_10738_2
crossref_primary_10_3390_app13127334
crossref_primary_10_56294_dm2025730
crossref_primary_10_1088_1742_6596_2129_1_012047
crossref_primary_10_1109_ACCESS_2021_3088901
crossref_primary_10_1109_TLT_2021_3072159
crossref_primary_10_2478_amns_2023_2_00363
crossref_primary_10_3390_app10113894
crossref_primary_10_1016_j_compedu_2024_105093
crossref_primary_10_22144_ctujoisd_2024_321
crossref_primary_10_1007_s10639_025_13526_4
crossref_primary_10_3390_info15120777
crossref_primary_10_1007_s40692_021_00196_7
crossref_primary_10_1088_1742_6596_1852_4_042088
Cites_doi 10.2307/2333849
10.9781/ijimai.2014.275
10.1016/j.chb.2018.07.027
10.1504/IJLT.2010.038772
10.1109/TSMC.1976.5408784
10.1111/ropr.12082
10.1177/0002764213479366
10.1214/ss/1177013622
10.1037/0003-066X.48.1.26
10.1080/00031305.1992.10475879
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
DOI 10.1016/j.compedu.2019.103676
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Education
EISSN 1873-782X
ExternalDocumentID 10_1016_j_compedu_2019_103676
S0360131519302295
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
41~
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACRLP
ACTDY
ADBBV
ADEZE
ADHUB
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HF~
HLZ
HMY
HVGLF
HZ~
IHE
J1W
KOM
LG9
M3Y
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPCBC
SSB
SSO
SSS
SSZ
T5K
UNMZH
VH1
WUQ
XSW
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c375t-735f6d571f85f0ca00783438afe4575dddeb58f16cd5699bb3e48993fb70e0563
ISICitedReferencesCount 198
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000493216800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-1315
IngestDate Sat Nov 29 02:48:02 EST 2025
Tue Nov 18 21:04:42 EST 2025
Fri Feb 23 02:49:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Adult learning
Evaluation methodologies
Programming and programming languages
Intelligent tutoring systems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c375t-735f6d571f85f0ca00783438afe4575dddeb58f16cd5699bb3e48993fb70e0563
ParticipantIDs crossref_primary_10_1016_j_compedu_2019_103676
crossref_citationtrail_10_1016_j_compedu_2019_103676
elsevier_sciencedirect_doi_10_1016_j_compedu_2019_103676
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationTitle Computers and education
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Platt (bib35) 1998
Drucker, Burges, Kaufman, Smola, Vapnik (bib13) 1997
Kuzilek, Hlosta, Zdrahal (bib26) 2016
Smith (bib48) 2017
Avella, Kebritchi, Nunn, Kanai (bib2) 2016; 20
Minaei-Bidgoli, Kashy, Kortmeyer, Punch (bib30) 2003; 1
McGonagle, George, Hsu, Khim, Williams (bib28) 2018
McNeely, Hahm (bib29) 2014; 31
Verbert, Manouselis, Drachsler, Duval (bib54) 2012; 15
Baker (bib3) 2014
Tanner, Toivonen (bib50) 2010; 5
Costa, McCrae (bib8) 1992
Ding, Er, Orey (bib10) 2018; Vol. 120
Kay, Korn, Oppenheim (bib24) 2012
Shapiro, Lee, Roth, Li, Canelas (bib44) 2017; Vol. 110
Hsu, Chang, Lin (bib20) 2016
Ng (bib31) 2004
Ray (bib39) 2015
.
Chatterjee, Hadi (bib7) 1986; 1
Kotsiantis, Pierrakeas, Pintelas (bib25) 2003; Vol. 2774
Dietz-Uhler, Hurn (bib9) 2013; 12
Bottles, Begoli, Worley (bib4) 2014; 40
Dudani (bib14) 1976; 6
Picciano, Anthony (bib34) 2012; 16
Saxena (bib41) 2017
Gunn (bib18) 1998; 14
Thai-Nghe, Drumond, Horvith, Krohn-Grimberghe, Nanopoulos, Schmidt-Thieme (bib52) 2012
Thai-Nghe, Drumond, Horvath, Nanopoulos, Schmidt-Thieme (bib51) 2011
Dobson, Barnett (bib11) 2008
Rokach, Oded, Maimon (bib40) 2010
Imlawi, Gregg, Karimi (bib21) 2015; Vol. 88
Rajaraman, Ullman (bib38) 2011
Shalizi (bib43) 2012
Weber, Schek, Blott (bib56) 1998
Vapnik (bib53) 1995
Kamiński, Jakubczyk, Szufel (bib23) 2018; Vol. 26
Byers, Imms, Hartnell-Young (bib5) 2018; Vol. 58
Viberg, Hatakka, Bälter, Anna (bib55) 2018; 89
Slade, Prinsloo (bib47) 2013; 57
van Gerven, Bohte (bib15) 2017; 11
bib22
Picciano (bib33) 2014; 2
Altman (bib1) 1992; 46
Ng (bib32) 2011
Siemens, Gasevic, Haythornthwaite, Dawson, Shum, Ferguson (bib46) 2011
Marin, Robert (bib27) 2007
Goldberg (bib16) 1993; 48
Call for Papers of the 1st International Conference on Learning Analytics & Knowledge (LAK 2011)”". Retrieved 12 February 2014.
Hastie, Tibshirani, Friedman (bib19) 2008
Powell, MacNeill (bib36) 2012
Goodman (bib17) 2004
Zhang (bib57) 2016; Vol. 95
Dringus (bib12) 2012; 16
Su-In Lee, Lee, Abbeel, Andrew, Ng (bib49) 2006
Shih, Lee (bib45) 2001; Vol. 1
Seal (bib42) 1967; 54
McNeely (10.1016/j.compedu.2019.103676_bib29) 2014; 31
Drucker (10.1016/j.compedu.2019.103676_bib13) 1997
Shih (10.1016/j.compedu.2019.103676_bib45) 2001; Vol. 1
van Gerven (10.1016/j.compedu.2019.103676_bib15) 2017; 11
Weber (10.1016/j.compedu.2019.103676_bib56) 1998
Kotsiantis (10.1016/j.compedu.2019.103676_bib25) 2003; Vol. 2774
Rajaraman (10.1016/j.compedu.2019.103676_bib38) 2011
Seal (10.1016/j.compedu.2019.103676_bib42) 1967; 54
Thai-Nghe (10.1016/j.compedu.2019.103676_bib52) 2012
Verbert (10.1016/j.compedu.2019.103676_bib54) 2012; 15
Marin (10.1016/j.compedu.2019.103676_bib27) 2007
Ng (10.1016/j.compedu.2019.103676_bib32) 2011
Dringus (10.1016/j.compedu.2019.103676_bib12) 2012; 16
Costa (10.1016/j.compedu.2019.103676_bib8) 1992
Shapiro (10.1016/j.compedu.2019.103676_bib44) 2017; Vol. 110
Altman (10.1016/j.compedu.2019.103676_bib1) 1992; 46
Zhang (10.1016/j.compedu.2019.103676_bib57) 2016; Vol. 95
Smith (10.1016/j.compedu.2019.103676_bib48) 2017
Viberg (10.1016/j.compedu.2019.103676_bib55) 2018; 89
Baker (10.1016/j.compedu.2019.103676_bib3) 2014
Ding (10.1016/j.compedu.2019.103676_bib10) 2018; Vol. 120
Dudani (10.1016/j.compedu.2019.103676_bib14) 1976; 6
Hastie (10.1016/j.compedu.2019.103676_bib19) 2008
Kay (10.1016/j.compedu.2019.103676_bib24) 2012
Minaei-Bidgoli (10.1016/j.compedu.2019.103676_bib30) 2003; 1
Picciano (10.1016/j.compedu.2019.103676_bib34) 2012; 16
Shalizi (10.1016/j.compedu.2019.103676_bib43) 2012
Picciano (10.1016/j.compedu.2019.103676_bib33) 2014; 2
Tanner (10.1016/j.compedu.2019.103676_bib50) 2010; 5
Dietz-Uhler (10.1016/j.compedu.2019.103676_bib9) 2013; 12
Siemens (10.1016/j.compedu.2019.103676_bib46) 2011
Saxena (10.1016/j.compedu.2019.103676_bib41)
Chatterjee (10.1016/j.compedu.2019.103676_bib7) 1986; 1
Powell (10.1016/j.compedu.2019.103676_bib36) 2012
Hsu (10.1016/j.compedu.2019.103676_bib20) 2016
Ray (10.1016/j.compedu.2019.103676_bib39)
10.1016/j.compedu.2019.103676_bib6
Kuzilek (10.1016/j.compedu.2019.103676_bib26) 2016
McGonagle (10.1016/j.compedu.2019.103676_bib28) 2018
Dobson (10.1016/j.compedu.2019.103676_bib11) 2008
Slade (10.1016/j.compedu.2019.103676_bib47) 2013; 57
Thai-Nghe (10.1016/j.compedu.2019.103676_bib51) 2011
Goodman (10.1016/j.compedu.2019.103676_bib17) 2004
Avella (10.1016/j.compedu.2019.103676_bib2) 2016; 20
Gunn (10.1016/j.compedu.2019.103676_bib18) 1998; 14
Kamiński (10.1016/j.compedu.2019.103676_bib23) 2018; Vol. 26
Goldberg (10.1016/j.compedu.2019.103676_bib16) 1993; 48
Su-In Lee (10.1016/j.compedu.2019.103676_bib49) 2006
Vapnik (10.1016/j.compedu.2019.103676_bib53) 1995
Imlawi (10.1016/j.compedu.2019.103676_bib21) 2015; Vol. 88
Byers (10.1016/j.compedu.2019.103676_bib5) 2018; Vol. 58
Ng (10.1016/j.compedu.2019.103676_bib31) 2004
Platt (10.1016/j.compedu.2019.103676_bib35) 1998
Bottles (10.1016/j.compedu.2019.103676_bib4) 2014; 40
Rokach (10.1016/j.compedu.2019.103676_bib40) 2010
References_xml – year: 2007
  ident: bib27
  article-title: Bayesian Core: A practical approach to computational bayesian statistics
– year: 2017
  ident: bib48
  article-title: Predictive analytics with Matlab. Machine learning techniques
– volume: 14
  start-page: 85
  year: 1998
  end-page: 86
  ident: bib18
  article-title: Support vector machines for classification and regression
  publication-title: ISIS Technical Report
– volume: 16
  start-page: 87
  year: 2012
  end-page: 100
  ident: bib12
  article-title: Learning analytics considered harmful
  publication-title: Journal of Asynchronous Learning Networks
– volume: 2
  start-page: 35
  year: 2014
  end-page: 43
  ident: bib33
  article-title: Big data and learning analytics in blended learning environments: Benefits and concerns
  publication-title: International Journal of Artificial Intelligence and Interactive Multimedia
– year: 2012
  ident: bib43
  article-title: Chapter 12 - logistic regression
  publication-title: In: Carnegie melon university
– volume: 89
  start-page: 98
  year: 2018
  end-page: 110
  ident: bib55
  article-title: The current landscape of learning analytics in higher education
  publication-title: Computers in Human Behavior
– volume: Vol. 95
  start-page: 340
  year: 2016
  end-page: 351
  ident: bib57
  article-title: Can MOOCs be interesting to students? An experimental investigation from regulatory focus perspective
  publication-title: Computers & education
– start-page: 78
  year: 2004
  end-page: 85
  ident: bib31
  article-title: Feature selection, l1 vs. l2 regularization, and rotational invariance
  publication-title: Proceedings of the 21st international conference on machine learning (ICML), Banff, Canada, 04-08. July, 2004
– start-page: 305
  year: 2004
  end-page: 312
  ident: bib17
  article-title: Exponential priors for maximum entropy models
  publication-title: Proceedings of the human language technology conference of the north American chapter of the association for computational linguistics (HLT-NAACL), 02-07. May 2004
– volume: 5
  start-page: 356
  year: 2010
  end-page: 377
  ident: bib50
  article-title: Predicting and preventing student failure – using the k-nearest neighbour method to predict student performance in an online course environment
  publication-title: International Journal of Learning Technology archive
– year: 2006
  ident: bib49
  article-title: Efficient L1 regularized logistic regression
– volume: 31
  start-page: 304
  year: 2014
  end-page: 310
  ident: bib29
  article-title: The big (data) bang: Policy, prospects, and challenges
  publication-title: The Review of Policy Research
– volume: 40
  start-page: 6
  year: 2014
  end-page: 12
  ident: bib4
  article-title: Understanding the pros and cons of big data analytics
  publication-title: Physician Executive
– reference: Call for Papers of the 1st International Conference on Learning Analytics & Knowledge (LAK 2011)”". Retrieved 12 February 2014.
– volume: 6
  start-page: 325
  year: 1976
  end-page: 327
  ident: bib14
  article-title: The distance-weighted k-nearest neighbour rule
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– year: 2018
  ident: bib28
  article-title: Backpropagation, Brilliant.org
– start-page: 155
  year: 1997
  end-page: 161
  ident: bib13
  article-title: Support vector regression machines
  publication-title: Advances in neural information processing systems
– year: 2011
  ident: bib38
  article-title: “Mining of massive datasets, ch. 3,” finding similar items
– volume: 1
  start-page: T2A
  year: 2003
  end-page: T18
  ident: bib30
  article-title: Predicting student performance: An application of data mining methods with an educational web-based system
  publication-title: 33rd Annual Frontiers in Education
– volume: 54
  start-page: 1
  year: 1967
  end-page: 24
  ident: bib42
  article-title: The historical development of the Gauss linear model
  publication-title: Biometrika
– volume: 48
  start-page: 26
  year: 1993
  end-page: 34
  ident: bib16
  article-title: The structure of phenotypic personality traits
  publication-title: American Psychologist
– volume: 46
  start-page: 175
  year: 1992
  end-page: 184
  ident: bib1
  article-title: Introduction to kernel and nearest-neighbour nonparametric regression
  publication-title: The American Statistician
– volume: 16
  start-page: 9
  year: 2012
  end-page: 20
  ident: bib34
  article-title: The evolution of big data and learning analytics in American higher education
  publication-title: Journal of Asynchronous Learning Networks
– year: 2016
  ident: bib20
  article-title: A practical guide to support vector classification
– volume: 11
  year: 2017
  ident: bib15
  article-title: Editorial: Artificial neural networks as models of neural information processing
  publication-title: Frontiers in Computational Neuroscience
– volume: Vol. 1
  year: 2001
  ident: bib45
  article-title: The application of nearest neighbour algorithm on creating an adaptive on-line learning system
  publication-title: 31st annual frontiers in education conference
– year: 1992
  ident: bib8
  article-title: Revised NEO personality inventory (NEO-PI-R) and NEO five-factor inventory (NEO-FFI) manual
– year: 2012
  ident: bib24
  article-title: Legal, risk and ethical aspects of analytics in higher education
– volume: Vol. 26
  start-page: 135
  year: 2018
  end-page: 159
  ident: bib23
  article-title: A framework for sensitivity analysis of decision trees
  publication-title: Central european journal of operations research
– volume: Vol. 58
  start-page: 167
  year: 2018
  end-page: 177
  ident: bib5
  article-title: Comparative analysis of the impact of traditional versus innovative learning environment on student attitudes and learning outcomes
  publication-title: Studies in educational evaluation
– year: 1998
  ident: bib35
  article-title: Sequential minimal optimization: A fast algorithm for training support vector machines (PDF)
  publication-title: CiteSeerX
– year: 2011
  ident: bib46
  article-title: Open learning analytics: An integrated & modularized platform
– volume: 1
  start-page: 379
  year: 1986
  end-page: 416
  ident: bib7
  article-title: Influential observations, high leverage points, and outliers in linear regression
  publication-title: Statistical Science
– volume: Vol. 120
  start-page: 213
  year: 2018
  end-page: 226
  ident: bib10
  article-title: An exploratory study of student engagement in gamified online discussions
  publication-title: Computers & education
– volume: Vol. 88
  start-page: 84
  year: 2015
  end-page: 96
  ident: bib21
  article-title: Student engagement in course-based social networks: The impact of instructor credibility and use of communication
  publication-title: Computers & education
– volume: 12
  start-page: 17
  year: 2013
  end-page: 26
  ident: bib9
  article-title: Using learning analytics to predict (and improve) student success: A faculty perspective
  publication-title: The Journal of Interactive Online Learning
– year: 1998
  ident: bib56
  article-title: A quantitative analysis and performance study for similarity search methods in high dimensional spaces
– year: 2011
  ident: bib32
  article-title: “CS229 lecture notes,” stanford machine learning
– year: 2014
  ident: bib3
  article-title: Data mining for education
– volume: Vol. 110
  start-page: 35
  year: 2017
  end-page: 50
  ident: bib44
  article-title: Understanding the massive open online course (MOOC) student experience: An examination of attitudes, motivations, and barriers
  publication-title: Computers & education
– year: 2008
  ident: bib19
  article-title: The elements of statistical learning
– volume: 15
  start-page: 133
  year: 2012
  end-page: 148
  ident: bib54
  article-title: Dataset-driven research to support learning and knowledge analytics
  publication-title: Educational Technology & Society
– volume: Vol. 2774
  start-page: 267
  year: 2003
  end-page: 274
  ident: bib25
  article-title: Preventing student dropout in distance learning systems using machine learning techniques
  publication-title: 7th international conference on knowledge-based intelligent information & engineering systems, lecture notes in artificial intelligence
– start-page: 129
  year: 2012
  end-page: 153
  ident: bib52
  article-title: Factorization techniques for predicting student performance
  publication-title: Educational recommender systems and technologies: Practices and challenges
– year: 2015
  ident: bib39
  article-title: Decision tree – simplified! Analytics vidhya, business analytics
– year: 2010
  ident: bib40
  article-title: Data mining and knowledge discovery handbook
– ident: bib22
  article-title: International educational data mining society
– year: 1995
  ident: bib53
  article-title: The nature of statistical learning theory
– reference: .
– year: 2016
  ident: bib26
  article-title: “Open university learning analytics dataset,” copyright © by the paper's authors
– volume: 20
  start-page: 2
  year: 2016
  ident: bib2
  article-title: Learning analytics methods, benefits, and challenges in higher education: A systematic literature review
  publication-title: Online Learning
– year: 2008
  ident: bib11
  article-title: An introduction to generalized linear models
– volume: 57
  start-page: 1510
  year: 2013
  end-page: 1529
  ident: bib47
  article-title: Learning analytics: Ethical issues and dilemmas
  publication-title: American Behavioral Scientist
– start-page: 69
  year: 2011
  end-page: 78
  ident: bib51
  article-title: Matrix and tensor factorization for predicting student performance
  publication-title: Proceedings of the 3rd international conference on computer supported education (CSEDU 2011), noordwijkerhout, The Netherlands
– year: 2017
  ident: bib41
  article-title: How the naive Bayes classifier works in machine learning
– year: 2012
  ident: bib36
  article-title: “Institutional readiness for analytics,” a briefing paper, CETIS analytics series
– ident: 10.1016/j.compedu.2019.103676_bib6
– start-page: 129
  year: 2012
  ident: 10.1016/j.compedu.2019.103676_bib52
  article-title: Factorization techniques for predicting student performance
– volume: 11
  issue: 2017
  year: 2017
  ident: 10.1016/j.compedu.2019.103676_bib15
  article-title: Editorial: Artificial neural networks as models of neural information processing
  publication-title: Frontiers in Computational Neuroscience
– volume: Vol. 58
  start-page: 167
  year: 2018
  ident: 10.1016/j.compedu.2019.103676_bib5
  article-title: Comparative analysis of the impact of traditional versus innovative learning environment on student attitudes and learning outcomes
– year: 2018
  ident: 10.1016/j.compedu.2019.103676_bib28
– year: 2012
  ident: 10.1016/j.compedu.2019.103676_bib36
– volume: 14
  start-page: 85
  year: 1998
  ident: 10.1016/j.compedu.2019.103676_bib18
  article-title: Support vector machines for classification and regression
  publication-title: ISIS Technical Report
– volume: Vol. 2774
  start-page: 267
  year: 2003
  ident: 10.1016/j.compedu.2019.103676_bib25
  article-title: Preventing student dropout in distance learning systems using machine learning techniques
– year: 2012
  ident: 10.1016/j.compedu.2019.103676_bib43
  article-title: Chapter 12 - logistic regression
– ident: 10.1016/j.compedu.2019.103676_bib41
– year: 1995
  ident: 10.1016/j.compedu.2019.103676_bib53
– volume: Vol. 120
  start-page: 213
  year: 2018
  ident: 10.1016/j.compedu.2019.103676_bib10
  article-title: An exploratory study of student engagement in gamified online discussions
– volume: 54
  start-page: 1
  issue: 1/2
  year: 1967
  ident: 10.1016/j.compedu.2019.103676_bib42
  article-title: The historical development of the Gauss linear model
  publication-title: Biometrika
  doi: 10.2307/2333849
– start-page: 155
  year: 1997
  ident: 10.1016/j.compedu.2019.103676_bib13
  article-title: Support vector regression machines
– volume: 2
  start-page: 35
  issue: 7
  year: 2014
  ident: 10.1016/j.compedu.2019.103676_bib33
  article-title: Big data and learning analytics in blended learning environments: Benefits and concerns
  publication-title: International Journal of Artificial Intelligence and Interactive Multimedia
  doi: 10.9781/ijimai.2014.275
– volume: 89
  start-page: 98
  year: 2018
  ident: 10.1016/j.compedu.2019.103676_bib55
  article-title: The current landscape of learning analytics in higher education
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2018.07.027
– start-page: 69
  year: 2011
  ident: 10.1016/j.compedu.2019.103676_bib51
  article-title: Matrix and tensor factorization for predicting student performance
– ident: 10.1016/j.compedu.2019.103676_bib39
– volume: 5
  start-page: 356
  issue: 4
  year: 2010
  ident: 10.1016/j.compedu.2019.103676_bib50
  article-title: Predicting and preventing student failure – using the k-nearest neighbour method to predict student performance in an online course environment
  publication-title: International Journal of Learning Technology archive
  doi: 10.1504/IJLT.2010.038772
– volume: 6
  start-page: 325
  issue: 4
  year: 1976
  ident: 10.1016/j.compedu.2019.103676_bib14
  article-title: The distance-weighted k-nearest neighbour rule
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/TSMC.1976.5408784
– volume: 15
  start-page: 133
  issue: 3
  year: 2012
  ident: 10.1016/j.compedu.2019.103676_bib54
  article-title: Dataset-driven research to support learning and knowledge analytics
  publication-title: Educational Technology & Society
– year: 1998
  ident: 10.1016/j.compedu.2019.103676_bib56
– year: 2010
  ident: 10.1016/j.compedu.2019.103676_bib40
– year: 1998
  ident: 10.1016/j.compedu.2019.103676_bib35
  article-title: Sequential minimal optimization: A fast algorithm for training support vector machines (PDF)
  publication-title: CiteSeerX
– year: 2016
  ident: 10.1016/j.compedu.2019.103676_bib26
– volume: 31
  start-page: 304
  issue: 4
  year: 2014
  ident: 10.1016/j.compedu.2019.103676_bib29
  article-title: The big (data) bang: Policy, prospects, and challenges
  publication-title: The Review of Policy Research
  doi: 10.1111/ropr.12082
– start-page: 78
  year: 2004
  ident: 10.1016/j.compedu.2019.103676_bib31
  article-title: Feature selection, l1 vs. l2 regularization, and rotational invariance
– volume: 40
  start-page: 6
  issue: 4
  year: 2014
  ident: 10.1016/j.compedu.2019.103676_bib4
  article-title: Understanding the pros and cons of big data analytics
  publication-title: Physician Executive
– volume: Vol. 88
  start-page: 84
  year: 2015
  ident: 10.1016/j.compedu.2019.103676_bib21
  article-title: Student engagement in course-based social networks: The impact of instructor credibility and use of communication
– volume: 57
  start-page: 1510
  issue: 10
  year: 2013
  ident: 10.1016/j.compedu.2019.103676_bib47
  article-title: Learning analytics: Ethical issues and dilemmas
  publication-title: American Behavioral Scientist
  doi: 10.1177/0002764213479366
– year: 2011
  ident: 10.1016/j.compedu.2019.103676_bib32
– volume: 1
  start-page: T2A
  year: 2003
  ident: 10.1016/j.compedu.2019.103676_bib30
  article-title: Predicting student performance: An application of data mining methods with an educational web-based system
  publication-title: 33rd Annual Frontiers in Education
– year: 2011
  ident: 10.1016/j.compedu.2019.103676_bib38
– year: 1992
  ident: 10.1016/j.compedu.2019.103676_bib8
– volume: 12
  start-page: 17
  issue: 1
  year: 2013
  ident: 10.1016/j.compedu.2019.103676_bib9
  article-title: Using learning analytics to predict (and improve) student success: A faculty perspective
  publication-title: The Journal of Interactive Online Learning
– volume: 16
  start-page: 87
  issue: 3
  year: 2012
  ident: 10.1016/j.compedu.2019.103676_bib12
  article-title: Learning analytics considered harmful
  publication-title: Journal of Asynchronous Learning Networks
– volume: 16
  start-page: 9
  year: 2012
  ident: 10.1016/j.compedu.2019.103676_bib34
  article-title: The evolution of big data and learning analytics in American higher education
  publication-title: Journal of Asynchronous Learning Networks
– start-page: 305
  year: 2004
  ident: 10.1016/j.compedu.2019.103676_bib17
  article-title: Exponential priors for maximum entropy models
– volume: 1
  start-page: 379
  year: 1986
  ident: 10.1016/j.compedu.2019.103676_bib7
  article-title: Influential observations, high leverage points, and outliers in linear regression
  publication-title: Statistical Science
  doi: 10.1214/ss/1177013622
– year: 2012
  ident: 10.1016/j.compedu.2019.103676_bib24
– volume: 20
  start-page: 2
  year: 2016
  ident: 10.1016/j.compedu.2019.103676_bib2
  article-title: Learning analytics methods, benefits, and challenges in higher education: A systematic literature review
  publication-title: Online Learning
– volume: 48
  start-page: 26
  year: 1993
  ident: 10.1016/j.compedu.2019.103676_bib16
  article-title: The structure of phenotypic personality traits
  publication-title: American Psychologist
  doi: 10.1037/0003-066X.48.1.26
– volume: Vol. 26
  start-page: 135
  year: 2018
  ident: 10.1016/j.compedu.2019.103676_bib23
  article-title: A framework for sensitivity analysis of decision trees
– volume: Vol. 1
  year: 2001
  ident: 10.1016/j.compedu.2019.103676_bib45
  article-title: The application of nearest neighbour algorithm on creating an adaptive on-line learning system
– year: 2006
  ident: 10.1016/j.compedu.2019.103676_bib49
– year: 2011
  ident: 10.1016/j.compedu.2019.103676_bib46
– year: 2017
  ident: 10.1016/j.compedu.2019.103676_bib48
– year: 2007
  ident: 10.1016/j.compedu.2019.103676_bib27
– volume: Vol. 95
  start-page: 340
  year: 2016
  ident: 10.1016/j.compedu.2019.103676_bib57
  article-title: Can MOOCs be interesting to students? An experimental investigation from regulatory focus perspective
– year: 2014
  ident: 10.1016/j.compedu.2019.103676_bib3
– year: 2008
  ident: 10.1016/j.compedu.2019.103676_bib11
– year: 2016
  ident: 10.1016/j.compedu.2019.103676_bib20
– year: 2008
  ident: 10.1016/j.compedu.2019.103676_bib19
– volume: Vol. 110
  start-page: 35
  year: 2017
  ident: 10.1016/j.compedu.2019.103676_bib44
  article-title: Understanding the massive open online course (MOOC) student experience: An examination of attitudes, motivations, and barriers
– volume: 46
  start-page: 175
  issue: 3
  year: 1992
  ident: 10.1016/j.compedu.2019.103676_bib1
  article-title: Introduction to kernel and nearest-neighbour nonparametric regression
  publication-title: The American Statistician
  doi: 10.1080/00031305.1992.10475879
SSID ssj0004645
Score 2.6652937
Snippet Recent increase in the availability of learning data has given educational data mining an importance and momentum, in order to better understand and optimize...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103676
SubjectTerms Adult learning
Evaluation methodologies
Intelligent tutoring systems
Programming and programming languages
Title An overview and comparison of supervised data mining techniques for student exam performance prediction
URI https://dx.doi.org/10.1016/j.compedu.2019.103676
Volume 143
WOSCitedRecordID wos000493216800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-782X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004645
  issn: 0360-1315
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ji9swFBbpTA-9lK50uqFDb0FTJ7Is6RjKdKMMhZkOuRnZlkoziW2STBr66_ueJdvpNHSDXkywUWT0fX7vs_wWQl5kyiVFpAwrnLAsBknCtDYFk5EDf25MljVf8C8-yNNTNZ3qj4NB3ebCbOayLNV2q-v_CjWcA7AxdfYv4O7-FE7AbwAdjgA7HP8I-AkIwA1aAPu1TVrrOw0OV1c1XluBzsTg0OGiaRAx7Eq5NuUZmqKzGCRgt2aBlY273IJ6iR92OjDbEgehNYSv92zbmJF-B3th0AHnnnqX1bzzBW821TeYqdp78QL8qLdiZ6acmd0NinF0bYOiy5zpw5R8tlbERtynch5bb3yV5AwUy_QH6-yrOP1k6f2mwwyBqnFbC4SMxgoCibxWWbvx1Wc4H04HejXCDuY3yOFYCg128HDy7mT6fieXtmls3d1fn_X1cu9k-_XMjkY5v0Nuh5cLOvGkuEsGtryHfbkDHvfJ50lJW3JQwIr25KCVoz05KJKDenLQnhwUiEADOSiSg-6Qg_bkeEA-vT45f_WWhVYbLOdSrJnkAp5ZIUdOCRflBpUjj7kyzsYg6AtwgplQbpTkhUi0zjJuY3hT5y6TkQUNzR-Sg7Iq7SNCrRE5LHM-EiqJbZSocSwNdinQoCWVKI5I3C5Ymoc69NgOZZ62AYezNKxziuuc-nU-IsfdsNoXYvndANWikQY16VViChT69dDH_z70CbnVPwNPycF6eWWfkZv5Zv1ltXweyPYd6xuheg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+overview+and+comparison+of+supervised+data+mining+techniques+for+student+exam+performance+prediction&rft.jtitle=Computers+and+education&rft.au=Tomasevic%2C+Nikola&rft.au=Gvozdenovic%2C+Nikola&rft.au=Vranes%2C+Sanja&rft.date=2020-01-01&rft.pub=Elsevier+Ltd&rft.issn=0360-1315&rft.eissn=1873-782X&rft.volume=143&rft_id=info:doi/10.1016%2Fj.compedu.2019.103676&rft.externalDocID=S0360131519302295
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1315&client=summon