Experimental Validation of a Rule-Based Energy Management Strategy for Low-Altitude Hybrid Power Aircraft

In the electrification of low-altitude aircraft, aviation hybrid power systems have become one of the core research areas in this field due to their significant advantages of low emissions and long endurance. The energy management strategy is an important part of the design of aviation hybrid power...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Aerospace Ročník 12; číslo 9; s. 758
Hlavní autoři: She, Yunfeng, Fu, Kunkun, Diao, Bo, Sun, Maosheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2025
Témata:
ISSN:2226-4310, 2226-4310
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the electrification of low-altitude aircraft, aviation hybrid power systems have become one of the core research areas in this field due to their significant advantages of low emissions and long endurance. The energy management strategy is an important part of the design of aviation hybrid power systems and has a significant impact on the performance and safety.This paper first develops a 200 kW dual DC-bus series hybrid power system prototype for low-altitude aircraft and its Simulink simulation model; then, it proposes a rule-based energy management strategy that uses the smoothness of the state of charge (SOC) of energy storage batteries as a coordination criterion. The strategy is validated via ground tests, where the battery SOC remains above 30%, the system response time is within 5 s, and the DC-bus voltage fluctuation is within 1%. These results demonstrate the strategy’s feasibility, providing a reference for designing and implementing series hybrid power systems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2226-4310
2226-4310
DOI:10.3390/aerospace12090758