Lab-scaled performance evaluation of novel water-lean solvents for post combustion CO2 capture

•A 100 hr lab-scale CO2 capture was performed using a water-lean solvent, NAS.•NAS showed lower regeneration energy than aqueous MEA at the same capture rate.•A split CO2-rich stream to the desorber lowers water and solvent vapors in CO2 product.•An organic modifier added to NAS lowers the amine emi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of greenhouse gas control Jg. 111; H. C; S. 103469
Hauptverfasser: Tanthana, Jak, Mobley, Paul, Rayer, Aravind V., Gupta, Vijay, Soukri, Mustapha, Lail, Marty
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier Ltd 01.10.2021
Elsevier
Schlagworte:
ISSN:1750-5836, 1878-0148
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A 100 hr lab-scale CO2 capture was performed using a water-lean solvent, NAS.•NAS showed lower regeneration energy than aqueous MEA at the same capture rate.•A split CO2-rich stream to the desorber lowers water and solvent vapors in CO2 product.•An organic modifier added to NAS lowers the amine emission. This work focuses on demonstrating the energetic performance and operational reliability in a continuous system of RTI's water-lean solvents for post-combustion CO2 capture applications. RTI's Non-Aqueous Solvent, NAS-1A was subjected to 100 h of continuous, CO2 capture and regeneration operation using a Lab-scale Gas Absorption System (LsGAS) while the CO2 capture efficiency, mass balance, and total energy inputs were monitored. Throughout the test period, NAS-1A demonstrated stable operation with 90% CO2 capture while requiring about 15% lower total energy input for solvent regeneration compared to 30 wt% monoethanolamine (MEA) solution. The use of a slipstream of CO2-rich solvent from the absorber sump reduced the regenerated CO2 temperature before the gas was further cooled by the overhead condenser at the top of the desorber. The rich-split setup combined with a wash section may be an effective approach to remove water and solvent vapor from the regenerated CO2 as well as to recover heat at the top of the desorber. NAS-1B was later developed and included a modifier component that lowers the heat of CO2 absorption and reduces the vapor pressure of the amine component. The total energy inputs for 90% CO2 capture with NAS-1B was found to be 25% less than that of the MEA. A gas chromatograph was used to monitor the amine concentration in the gas leaving the absorber wash section. It was found that under similar operating conditions, the presence of the modifier in NAS-1B reduces the amine in the absorber off-gas from 143 ppm in NAS-1A to 20 ppm.
AbstractList •A 100 hr lab-scale CO2 capture was performed using a water-lean solvent, NAS.•NAS showed lower regeneration energy than aqueous MEA at the same capture rate.•A split CO2-rich stream to the desorber lowers water and solvent vapors in CO2 product.•An organic modifier added to NAS lowers the amine emission. This work focuses on demonstrating the energetic performance and operational reliability in a continuous system of RTI's water-lean solvents for post-combustion CO2 capture applications. RTI's Non-Aqueous Solvent, NAS-1A was subjected to 100 h of continuous, CO2 capture and regeneration operation using a Lab-scale Gas Absorption System (LsGAS) while the CO2 capture efficiency, mass balance, and total energy inputs were monitored. Throughout the test period, NAS-1A demonstrated stable operation with 90% CO2 capture while requiring about 15% lower total energy input for solvent regeneration compared to 30 wt% monoethanolamine (MEA) solution. The use of a slipstream of CO2-rich solvent from the absorber sump reduced the regenerated CO2 temperature before the gas was further cooled by the overhead condenser at the top of the desorber. The rich-split setup combined with a wash section may be an effective approach to remove water and solvent vapor from the regenerated CO2 as well as to recover heat at the top of the desorber. NAS-1B was later developed and included a modifier component that lowers the heat of CO2 absorption and reduces the vapor pressure of the amine component. The total energy inputs for 90% CO2 capture with NAS-1B was found to be 25% less than that of the MEA. A gas chromatograph was used to monitor the amine concentration in the gas leaving the absorber wash section. It was found that under similar operating conditions, the presence of the modifier in NAS-1B reduces the amine in the absorber off-gas from 143 ppm in NAS-1A to 20 ppm.
ArticleNumber 103469
Author Soukri, Mustapha
Tanthana, Jak
Gupta, Vijay
Lail, Marty
Rayer, Aravind V.
Mobley, Paul
Author_xml – sequence: 1
  givenname: Jak
  orcidid: 0000-0003-4610-0499
  surname: Tanthana
  fullname: Tanthana, Jak
  email: jtanthana@rti.org
– sequence: 2
  givenname: Paul
  surname: Mobley
  fullname: Mobley, Paul
– sequence: 3
  givenname: Aravind V.
  orcidid: 0000-0002-1894-0178
  surname: Rayer
  fullname: Rayer, Aravind V.
– sequence: 4
  givenname: Vijay
  orcidid: 0000-0001-7668-6385
  surname: Gupta
  fullname: Gupta, Vijay
– sequence: 5
  givenname: Mustapha
  surname: Soukri
  fullname: Soukri, Mustapha
– sequence: 6
  givenname: Marty
  surname: Lail
  fullname: Lail, Marty
BackLink https://www.osti.gov/biblio/1821768$$D View this record in Osti.gov
BookMark eNqFkE1PAyEURYnRxPrxC9wQ91OhUwZm4cI0fiVN3OhW8oZ5VJopNEBr_PfS1pULXUF495D7zhk59sEjIVecjTnjzc1y7JaLhRlP2ISXl3ratEdkxJVUFeNTdVzuUrBKqLo5JWcpLRlreBmMyPscuioZGLCna4w2xBV4gxS3MGwgu-BpsNSHLQ70EzLGakDwNIVhiz4nWgC6DilTE1bdJu2B2cuEGljnTcQLcmJhSHj5c56Tt4f719lTNX95fJ7dzStTS5ErwVlnJYdSyyK0TW9lzWsuWgWim9pWKslatAwQpepYJ6Y9kyBaUJ3o0bb1Obk-_FuqOJ2My2g-TPAeTdZcTbhsVAm1h5CJIaWIVpfcfsccwQ2aM72zqZd6b1PvbOqDzcLWv9h1dCuIX_9QtwcKy-5bh3FXDYvf3sVdsz64P_lvVt2SZQ
CitedBy_id crossref_primary_10_1016_j_jct_2023_107068
crossref_primary_10_1016_j_cej_2025_163988
crossref_primary_10_1016_j_jenvman_2025_126303
crossref_primary_10_1016_j_jct_2025_107580
crossref_primary_10_1016_j_cej_2025_159692
crossref_primary_10_1016_j_ces_2023_118658
Cites_doi 10.1016/j.ijggc.2018.05.010
10.1016/j.egypro.2017.03.1218
10.1016/j.ijggc.2014.04.020
10.1016/j.cej.2018.03.193
10.1016/j.apenergy.2018.09.005
10.1021/acs.iecr.7b03088
10.1016/j.ijggc.2017.03.013
10.1016/j.egypro.2014.11.063
10.1016/j.ijggc.2018.05.025
10.1016/j.egypro.2014.11.186
10.1016/j.egypro.2011.01.042
10.1016/j.rser.2014.07.093
10.1016/j.ijggc.2018.08.016
10.1016/j.ijggc.2017.03.010
10.1016/j.cep.2010.03.008
10.1016/j.egypro.2013.06.046
10.1016/j.ijggc.2013.08.014
10.1016/j.jcou.2014.12.001
10.1016/j.ijggc.2015.05.018
10.1016/j.ijggc.2021.103284
10.1016/j.cherd.2011.02.008
10.1016/j.ijggc.2009.09.010
10.1016/j.egypro.2014.11.156
10.1016/j.jcou.2018.03.001
10.1016/S1750-5836(06)00007-7
10.1002/ghg.1295
10.1002/cphc.201200363
10.1016/j.egypro.2017.03.1344
10.1016/j.jclepro.2016.11.064
10.1021/acs.iecr.6b00390
10.1016/j.egypro.2017.03.1265
10.1021/acs.jced.8b00735
10.1021/ef201963m
10.1016/j.egypro.2013.05.113
10.1016/j.ijggc.2013.03.026
10.1021/acs.energyfuels.6b00875
10.1016/j.rser.2018.07.004
10.1002/cssc.201500288
10.1016/j.egypro.2017.03.1148
10.1016/j.cej.2017.09.124
10.1021/acs.chemrev.6b00768
10.1016/j.fuel.2018.08.152
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.ijggc.2021.103469
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-0148
ExternalDocumentID 1821768
10_1016_j_ijggc_2021_103469
S1750583621002218
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JARJE
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSE
SSJ
SSR
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AALMO
AAPBV
ABPIF
ABQIS
OTOTI
ID FETCH-LOGICAL-c375t-510bf71a006fea96df73131598a5b4f978709ef0aee78b0b54d07a59a8b5def93
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704804000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1750-5836
IngestDate Thu May 18 22:31:38 EDT 2023
Tue Nov 18 22:32:04 EST 2025
Sat Nov 29 07:02:30 EST 2025
Fri Feb 23 02:41:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords amine emission
CO2 capture
lab-scale demonstration
CO2 absorption
water-lean solvent
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c375t-510bf71a006fea96df73131598a5b4f978709ef0aee78b0b54d07a59a8b5def93
Notes FE0026466
USDOE
ORCID 0000-0002-1894-0178
0000-0001-7668-6385
0000-0003-4610-0499
0000000218940178
0000000346100499
0000000176686385
OpenAccessLink https://www.osti.gov/biblio/1821768
ParticipantIDs osti_scitechconnect_1821768
crossref_citationtrail_10_1016_j_ijggc_2021_103469
crossref_primary_10_1016_j_ijggc_2021_103469
elsevier_sciencedirect_doi_10_1016_j_ijggc_2021_103469
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle International journal of greenhouse gas control
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Andrew Tobiesen, Hjarbo, Hovdahl, Aronu, Zhou, Tanthana, Mobley, Rabindran, Gupta (bib0029) 2019
Le Moullec, Neveux, Azki, Chikukwa, Hoff (bib0038) 2014; 63
Heldebrant, Koech, Glezakou, Rousseau, Malhotra, Cantu (bib0002) 2017; 117
Mathias, Zheng, Heldebrant, Zwoster, Whyatt, Freeman, Bearden, Koech (bib0030) 2015; 8
Leung, Caramanna, Maroto-Valer (bib0007) 2014; 39
Lail, Tanthana, Coleman (bib0011) 2014; 63
Barzagli, Mani, Peruzzini (bib0025) 2017; 60
Ma, Gao, Wang, Hu, Cui (bib0019) 2018; 75
Bui, Tait, Lucquiaud, Mac Dowell (bib0042) 2018; 79
Shen, Jiang, Zhang, Chen, Wang, Chen (bib0023) 2018; 230
RR, E.B.a.J. Amine regeneration process. 1979.
Zhou (bib0028) 2018
Gupta, Mobley, Tanthana, Cody, Barbee, Lee, Pope, Chartier, Thornburg, Lail (bib0047) 2021; 106
Hasib-ur-Rahman, Siaj, Larachi (bib0015) 2010; 49
Aghaie, Rezaei, Zendehboudi (bib0020) 2018; 96
Barzagli, Lai, Mani (bib0003) 2014; 63
Cheon, Jung, Lee, Kim, Im, Cheong, Kim, Park (bib0035) 2012; 13
Khakharia, Brachert, Mertens, Huizinga, Schallert, Schaber, Vlugt, Goetheer (bib0045) 2013; 19
Zhou, Tanthana, Mobley, Rabindran, Soukri, Gupta, Gohndrone, Lesemann, Lail, Tobiesen, Mejdell, Aronu, Grimstvedt, Hjarbo, Hovdahland (bib0016) 2017
Machida, Ando, Esaki, Yamaguchi, Horizoe, Kishimoto, Akiyama, Nishimura (bib0033) 2018; 75
Huang, Jing, Zhou, Lv, Zhou (bib0022) 2018; 25
Tanthana, Rayer, Gupta, Mobley, Soukri, Zhou, Lail (bib0018) 2019
Valencia-Marquez, Flores-Tlacuahuac, Vasquez-Medrano (bib0021) 2017; 168
Mobley, Rayer, Tanthana, Gohndrone, Soukri, Coleman, Lail (bib0010) 2017; 56
Majeed, Svendsen (bib0043) 2018; 333
Oexmann, Kather (bib0014) 2010; 4
DOE-NETL (bib0008) 2015
Cuéllar-Franca, Azapagic (bib0006) 2015; 9
Rayer, Mobley, Soukri, Gohndrone, Tanthana, Zhou, Lail (bib0009) 2018; 348
Woods, C, Haslbeck, Kuehn, Matuszewski, Pinkerton, Rutkowski, Schoff (bib0005) 2007
Fulk, Rochelle (bib0044) 2013; 37
Orhan, Keles, Ersan, Alper (bib0027) 2017; 114
Abu-Zahra, Schneiders, Niederer, Feron, Versteeg (bib0049) 2007; 1
Zhou, Liu, Lv, Zhou, Jing (bib0024) 2017; 60
Perry, Davis (bib0013) 2012; 26
Zhang, Kutnyakov, Koech, Zwoster, Howard, Zheng, Freeman, Heldebrant (bib0026) 2013; 37
Yang, Puxty, James, Bown, Feron, Conway (bib0012) 2016; 30
You, Lee, Kim, Lee, Hong (bib0034) 2017; 114
Cousins, Cottrell, Lawson, Huang, Feron (bib0041) 2012; 2
Cousins, Wardhaugh, Feron (bib0039) 2011; 89
Rubin, Davison, Herzog (bib0004) 2015; 40
Heldebrant, Koech, Rousseau, Glezakou, Cantu, Malhotra, Zheng, Whyatt, Freeman, Bearden (bib0017) 2017; 114
Whyatt, Freeman, Zwoster, Heldebrant (bib0031) 2016; 55
Barzagli, Mani, Peruzzini (bib0036) 2013; 16
Lin, Wong (bib0032) 2014; 26
Chowdhury, Okabe, Yamada, Onoda, Fujioka (bib0001) 2011; 4
Akinola, Oko, Wang (bib0048) 2019; 236
Kolderup, dS, Mejdell, Tobiesen, Haugen, Hoff, Josefsen, Strøm (bib0046) 2011
Dubois, Thomas (bib0037) 2017; 114
You (10.1016/j.ijggc.2021.103469_bib0034) 2017; 114
Dubois (10.1016/j.ijggc.2021.103469_bib0037) 2017; 114
Gupta (10.1016/j.ijggc.2021.103469_bib0047) 2021; 106
Andrew Tobiesen (10.1016/j.ijggc.2021.103469_bib0029) 2019
10.1016/j.ijggc.2021.103469_bib0040
Ma (10.1016/j.ijggc.2021.103469_bib0019) 2018; 75
Leung (10.1016/j.ijggc.2021.103469_bib0007) 2014; 39
Rubin (10.1016/j.ijggc.2021.103469_bib0004) 2015; 40
Zhou (10.1016/j.ijggc.2021.103469_bib0024) 2017; 60
Heldebrant (10.1016/j.ijggc.2021.103469_bib0017) 2017; 114
Chowdhury (10.1016/j.ijggc.2021.103469_bib0001) 2011; 4
DOE-NETL (10.1016/j.ijggc.2021.103469_bib0008) 2015
Valencia-Marquez (10.1016/j.ijggc.2021.103469_bib0021) 2017; 168
Akinola (10.1016/j.ijggc.2021.103469_bib0048) 2019; 236
Aghaie (10.1016/j.ijggc.2021.103469_bib0020) 2018; 96
Machida (10.1016/j.ijggc.2021.103469_bib0033) 2018; 75
Lin (10.1016/j.ijggc.2021.103469_bib0032) 2014; 26
Huang (10.1016/j.ijggc.2021.103469_bib0022) 2018; 25
Fulk (10.1016/j.ijggc.2021.103469_bib0044) 2013; 37
Cousins (10.1016/j.ijggc.2021.103469_bib0039) 2011; 89
Orhan (10.1016/j.ijggc.2021.103469_bib0027) 2017; 114
Mathias (10.1016/j.ijggc.2021.103469_bib0030) 2015; 8
Oexmann (10.1016/j.ijggc.2021.103469_bib0014) 2010; 4
Zhang (10.1016/j.ijggc.2021.103469_bib0026) 2013; 37
Shen (10.1016/j.ijggc.2021.103469_bib0023) 2018; 230
Whyatt (10.1016/j.ijggc.2021.103469_bib0031) 2016; 55
Yang (10.1016/j.ijggc.2021.103469_bib0012) 2016; 30
Barzagli (10.1016/j.ijggc.2021.103469_bib0025) 2017; 60
Heldebrant (10.1016/j.ijggc.2021.103469_bib0002) 2017; 117
Mobley (10.1016/j.ijggc.2021.103469_bib0010) 2017; 56
Hasib-ur-Rahman (10.1016/j.ijggc.2021.103469_bib0015) 2010; 49
Perry (10.1016/j.ijggc.2021.103469_bib0013) 2012; 26
Tanthana (10.1016/j.ijggc.2021.103469_bib0018) 2019
Cheon (10.1016/j.ijggc.2021.103469_bib0035) 2012; 13
Barzagli (10.1016/j.ijggc.2021.103469_bib0003) 2014; 63
Cuéllar-Franca (10.1016/j.ijggc.2021.103469_bib0006) 2015; 9
Cousins (10.1016/j.ijggc.2021.103469_bib0041) 2012; 2
Barzagli (10.1016/j.ijggc.2021.103469_bib0036) 2013; 16
Khakharia (10.1016/j.ijggc.2021.103469_bib0045) 2013; 19
Abu-Zahra (10.1016/j.ijggc.2021.103469_bib0049) 2007; 1
Lail (10.1016/j.ijggc.2021.103469_bib0011) 2014; 63
Kolderup (10.1016/j.ijggc.2021.103469_bib0046) 2011
Rayer (10.1016/j.ijggc.2021.103469_bib0009) 2018; 348
Bui (10.1016/j.ijggc.2021.103469_bib0042) 2018; 79
Zhou (10.1016/j.ijggc.2021.103469_bib0028) 2018
Majeed (10.1016/j.ijggc.2021.103469_bib0043) 2018; 333
Zhou (10.1016/j.ijggc.2021.103469_bib0016) 2017
Woods (10.1016/j.ijggc.2021.103469_bib0005) 2007
Le Moullec (10.1016/j.ijggc.2021.103469_bib0038) 2014; 63
References_xml – year: 2019
  ident: bib0018
  article-title: Experimental Study of a Hydrophobic Solvent for Natural Gas Sweetening Based on the Solubility and Selectivity for Light Hydrocarbons (CH4, C2H6) and Acid Gases (CO2 and H2S) at 298–353K
  publication-title: J. Chem. Eng. Data
– volume: 25
  start-page: 22
  year: 2018
  end-page: 30
  ident: bib0022
  article-title: A novel biphasic solvent of amino-functionalized ionic liquid for CO2 capture: high efficiency and regenerability
  publication-title: J. CO2 Utilizat.
– volume: 333
  start-page: 636
  year: 2018
  end-page: 648
  ident: bib0043
  article-title: Effect of water wash on mist and aerosol formation in absorption column
  publication-title: Chem. Eng. J.
– volume: 63
  start-page: 1795
  year: 2014
  end-page: 1804
  ident: bib0003
  article-title: Novel non-aqueous amine solvents for reversible CO2 capture
  publication-title: Energy Procedia
– volume: 60
  start-page: 120
  year: 2017
  end-page: 128
  ident: bib0024
  article-title: Evaluation of the novel biphasic solvents for CO2 capture: performance and mechanism
  publication-title: Int. J. Greenhouse Gas Control
– volume: 4
  start-page: 201
  year: 2011
  end-page: 208
  ident: bib0001
  article-title: Synthesis and selection of hindered new amine absorbents for CO2 capture
  publication-title: Energy Procedia
– volume: 114
  start-page: 1409
  year: 2017
  end-page: 1423
  ident: bib0037
  article-title: Simulations of various Configurations of the Post-combustion CO2 capture process applied to a cement plant flue gas: parametric study with different solvents
  publication-title: Energy Procedia
– volume: 96
  start-page: 502
  year: 2018
  end-page: 525
  ident: bib0020
  article-title: A systematic review on CO2 capture with ionic liquids: current status and future prospects
  publication-title: Renew. Sustain. Energy Rev.
– volume: 75
  start-page: 134
  year: 2018
  end-page: 139
  ident: bib0019
  article-title: Ionic liquid-based CO2 capture in power plants for low carbon emissions
  publication-title: Int. J. Greenhouse Gas Control
– start-page: 97
  year: 2011
  ident: bib0046
  article-title: SINTEF A18095
  publication-title: SINTEF Mater. Chem.
– volume: 114
  start-page: 756
  year: 2017
  end-page: 763
  ident: bib0017
  article-title: Are water-lean solvent systems viable for post-combustion CO2 capture?
  publication-title: Energy Procedia
– start-page: 116
  year: 2015
  ident: bib0008
  article-title: CARBON DIOXIDE CAPTURE HANDBOOK
– volume: 49
  start-page: 313
  year: 2010
  end-page: 322
  ident: bib0015
  article-title: Ionic liquids for CO2 capture—Development and progress
  publication-title: Chem. Eng. Proc.: Process Intensificat.
– volume: 230
  start-page: 726
  year: 2018
  end-page: 733
  ident: bib0023
  article-title: Biphasic solvent for CO2 capture: amine property-performance and heat duty relationship
  publication-title: Appl. Energy
– volume: 1
  start-page: 37
  year: 2007
  end-page: 46
  ident: bib0049
  article-title: CO2 capture from power plants: part I. A parametric study of the technical performance based on monoethanolamine
  publication-title: Int. J. Greenhouse Gas Control
– volume: 55
  start-page: 4720
  year: 2016
  end-page: 4725
  ident: bib0031
  article-title: Measuring nitrous oxide mass transfer into non-Aqueous CO2BOL CO2 capture solvents
  publication-title: Ind. Eng. Chem. Res.
– volume: 13
  start-page: 3365
  year: 2012
  end-page: 3369
  ident: bib0035
  article-title: Two-dimensional infrared correlation spectroscopy and principal component analysis on the carbonation of sterically hindered alkanolamines
  publication-title: Chemphyschem
– volume: 56
  start-page: 11958
  year: 2017
  end-page: 11966
  ident: bib0010
  article-title: CO2 capture using fluorinated hydrophobic solvents
  publication-title: Ind. Eng. Chem. Res.
– volume: 16
  start-page: 217
  year: 2013
  end-page: 223
  ident: bib0036
  article-title: Efficient CO2 absorption and low temperature desorption with non-aqueous solvents based on 2-amino-2-methyl-1-propanol (AMP)
  publication-title: Int. J. Greenhouse Gas Control
– volume: 79
  start-page: 134
  year: 2018
  end-page: 153
  ident: bib0042
  article-title: Dynamic operation and modelling of amine-based CO2 capture at pilot scale
  publication-title: Int. J. Greenhouse Gas Control
– volume: 89
  start-page: 1237
  year: 2011
  end-page: 1251
  ident: bib0039
  article-title: Preliminary analysis of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption
  publication-title: Chem. Eng. Res. Des.
– volume: 168
  start-page: 1652
  year: 2017
  end-page: 1667
  ident: bib0021
  article-title: An optimization approach for CO2 capture using ionic liquids
  publication-title: J. Clean. Prod.
– volume: 63
  start-page: 580
  year: 2014
  end-page: 594
  ident: bib0011
  article-title: Non-Aqueous Solvent (NAS) CO2 Capture Process
  publication-title: Energy Procedia
– volume: 75
  start-page: 1
  year: 2018
  end-page: 7
  ident: bib0033
  article-title: Low temperature swing process for CO2 absorption-desorption using phase separation CO2 capture solvent
  publication-title: Int. J. Greenhouse Gas Control
– volume: 19
  start-page: 138
  year: 2013
  end-page: 144
  ident: bib0045
  article-title: Investigation of aerosol based emission of MEA due to sulphuric acid aerosol and soot in a Post Combustion CO2 Capture process
  publication-title: Int. J. Greenhouse Gas Control
– year: 2018
  ident: bib0028
  article-title: Jak and Mobley, Paul and Rabindran, Aravind and Gupta, Vijay and Lesemann, Markus and Soukri, Mustapha and Lail, Marty and Tobiesen, Andrew and Mejdell, Thor and Aronu, Ugochukwu and Grimstvedt, Andreas and Hjarbo, Kai and Hovdahl, Lars, Pilot Testing of a Non-Aqueous Solvent (NAS) CO2 Capture Process
  publication-title: SSRN
– volume: 106
  year: 2021
  ident: bib0047
  article-title: Aerosol emissions from water-lean solvents for post-combustion CO2 capture
  publication-title: Int. J. Greenhouse Gas Control
– volume: 63
  start-page: 1470
  year: 2014
  end-page: 1477
  ident: bib0038
  article-title: Process Modifications for Solvent-based Post Combustion CO2 Capture
  publication-title: Energy Procedia
– volume: 348
  start-page: 514
  year: 2018
  end-page: 525
  ident: bib0009
  article-title: Absorption rates of carbon dioxide in amines in hydrophilic and hydrophobic solvents
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 329
  year: 2012
  end-page: 345
  ident: bib0041
  article-title: Model verification and evaluation of the rich-split process modification at an Australian-based post combustion CO2 capture pilot plant
  publication-title: Greenhouse Gases: Sci. Technol.
– volume: 117
  start-page: 9594
  year: 2017
  end-page: 9624
  ident: bib0002
  article-title: Water-lean solvents for post-combustion CO2 Capture: fundamentals, uncertainties, opportunities, and outlook
  publication-title: Chem. Rev.
– volume: 114
  start-page: 66
  year: 2017
  end-page: 71
  ident: bib0027
  article-title: Ultrasound-assisted desorption of CO2 from carbon dioxide binding organic liquids
  publication-title: Energy Procedia
– volume: 40
  start-page: 378
  year: 2015
  end-page: 400
  ident: bib0004
  article-title: The cost of CO2 capture and storage
  publication-title: Int. J. Greenhouse Gas Control
– volume: 114
  start-page: 2096
  year: 2017
  end-page: 2102
  ident: bib0034
  article-title: Screening of Biphasic Solvents for Energy Efficient CO 2 Capture
  publication-title: Energy Procedia
– volume: 37
  start-page: 1706
  year: 2013
  end-page: 1719
  ident: bib0044
  article-title: Modeling Aerosols in Amine-based CO2 Capture
  publication-title: Energy Procedia
– volume: 26
  start-page: 2512
  year: 2012
  end-page: 2517
  ident: bib0013
  article-title: CO2 Capture Using Solutions of Alkanolamines and Aminosilicones
  publication-title: Energy Fuels
– volume: 4
  start-page: 36
  year: 2010
  end-page: 43
  ident: bib0014
  article-title: Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: the misguided focus on low heat of absorption solvents
  publication-title: Int. J. Greenhouse Gas Control
– volume: 9
  start-page: 82
  year: 2015
  end-page: 102
  ident: bib0006
  article-title: Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts
  publication-title: J. CO2 Utilizat.
– volume: 39
  start-page: 426
  year: 2014
  end-page: 443
  ident: bib0007
  article-title: An overview of current status of carbon dioxide capture and storage technologies
  publication-title: Renew. Sustain. Energy Rev.
– volume: 8
  start-page: 3617
  year: 2015
  end-page: 3625
  ident: bib0030
  article-title: Measuring the absorption rate of CO2 in Nonaqueous CO2-binding organic liquid solvents with a wetted-wall apparatus
  publication-title: ChemSusChem
– year: 2017
  ident: bib0016
  publication-title: , 9th Trondheim Conference on CO2 Capture, Trondheim, Norway, June 12 - 14, 2017
– volume: 37
  start-page: 285
  year: 2013
  end-page: 291
  ident: bib0026
  article-title: CO2-binding-organic-liquids-enhanced CO2 capture using polarity-swing-assisted regeneration
  publication-title: Energy Procedia
– volume: 26
  start-page: 69
  year: 2014
  end-page: 75
  ident: bib0032
  article-title: Carbon dioxide capture and regeneration with amine/alcohol/water blends
  publication-title: Int. J. Greenhouse Gas Control
– volume: 236
  start-page: 135
  year: 2019
  end-page: 146
  ident: bib0048
  article-title: Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation
  publication-title: Fuel
– year: 2007
  ident: bib0005
  article-title: Vladimir Vaysman
  publication-title: DOE/NETL
– reference: RR, E.B.a.J. Amine regeneration process. 1979.
– year: 2019
  ident: bib0029
  article-title: Markus Lesemann, Marty Lail., Pilot plant testing using a Non-Aqueous Solvent (NAS)
  publication-title: , Kyoto, Japan
– volume: 30
  start-page: 7503
  year: 2016
  end-page: 7510
  ident: bib0012
  article-title: Toward intelligent CO2 capture solvent design through experimental solvent development and amine synthesis
  publication-title: Energy Fuels
– volume: 60
  start-page: 100
  year: 2017
  end-page: 109
  ident: bib0025
  article-title: Novel water-free biphasic absorbents for efficient CO 2 capture
  publication-title: Int. J. Greenhouse Gas Control
– volume: 75
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijggc.2021.103469_bib0033
  article-title: Low temperature swing process for CO2 absorption-desorption using phase separation CO2 capture solvent
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2018.05.010
– volume: 114
  start-page: 756
  year: 2017
  ident: 10.1016/j.ijggc.2021.103469_bib0017
  article-title: Are water-lean solvent systems viable for post-combustion CO2 capture?
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1218
– volume: 26
  start-page: 69
  year: 2014
  ident: 10.1016/j.ijggc.2021.103469_bib0032
  article-title: Carbon dioxide capture and regeneration with amine/alcohol/water blends
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2014.04.020
– volume: 348
  start-page: 514
  year: 2018
  ident: 10.1016/j.ijggc.2021.103469_bib0009
  article-title: Absorption rates of carbon dioxide in amines in hydrophilic and hydrophobic solvents
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.193
– volume: 230
  start-page: 726
  year: 2018
  ident: 10.1016/j.ijggc.2021.103469_bib0023
  article-title: Biphasic solvent for CO2 capture: amine property-performance and heat duty relationship
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.005
– volume: 56
  start-page: 11958
  issue: 41
  year: 2017
  ident: 10.1016/j.ijggc.2021.103469_bib0010
  article-title: CO2 capture using fluorinated hydrophobic solvents
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b03088
– volume: 60
  start-page: 120
  year: 2017
  ident: 10.1016/j.ijggc.2021.103469_bib0024
  article-title: Evaluation of the novel biphasic solvents for CO2 capture: performance and mechanism
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2017.03.013
– volume: 63
  start-page: 580
  year: 2014
  ident: 10.1016/j.ijggc.2021.103469_bib0011
  article-title: Non-Aqueous Solvent (NAS) CO2 Capture Process
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.11.063
– volume: 75
  start-page: 134
  year: 2018
  ident: 10.1016/j.ijggc.2021.103469_bib0019
  article-title: Ionic liquid-based CO2 capture in power plants for low carbon emissions
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2018.05.025
– volume: 63
  start-page: 1795
  year: 2014
  ident: 10.1016/j.ijggc.2021.103469_bib0003
  article-title: Novel non-aqueous amine solvents for reversible CO2 capture
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.11.186
– volume: 4
  start-page: 201
  year: 2011
  ident: 10.1016/j.ijggc.2021.103469_bib0001
  article-title: Synthesis and selection of hindered new amine absorbents for CO2 capture
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2011.01.042
– volume: 39
  start-page: 426
  year: 2014
  ident: 10.1016/j.ijggc.2021.103469_bib0007
  article-title: An overview of current status of carbon dioxide capture and storage technologies
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.07.093
– volume: 79
  start-page: 134
  year: 2018
  ident: 10.1016/j.ijggc.2021.103469_bib0042
  article-title: Dynamic operation and modelling of amine-based CO2 capture at pilot scale
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2018.08.016
– volume: 60
  start-page: 100
  year: 2017
  ident: 10.1016/j.ijggc.2021.103469_bib0025
  article-title: Novel water-free biphasic absorbents for efficient CO 2 capture
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2017.03.010
– volume: 49
  start-page: 313
  issue: 4
  year: 2010
  ident: 10.1016/j.ijggc.2021.103469_bib0015
  article-title: Ionic liquids for CO2 capture—Development and progress
  publication-title: Chem. Eng. Proc.: Process Intensificat.
  doi: 10.1016/j.cep.2010.03.008
– volume: 37
  start-page: 1706
  year: 2013
  ident: 10.1016/j.ijggc.2021.103469_bib0044
  article-title: Modeling Aerosols in Amine-based CO2 Capture
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.06.046
– volume: 19
  start-page: 138
  year: 2013
  ident: 10.1016/j.ijggc.2021.103469_bib0045
  article-title: Investigation of aerosol based emission of MEA due to sulphuric acid aerosol and soot in a Post Combustion CO2 Capture process
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2013.08.014
– volume: 9
  start-page: 82
  year: 2015
  ident: 10.1016/j.ijggc.2021.103469_bib0006
  article-title: Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts
  publication-title: J. CO2 Utilizat.
  doi: 10.1016/j.jcou.2014.12.001
– start-page: 97
  year: 2011
  ident: 10.1016/j.ijggc.2021.103469_bib0046
  article-title: Emission Reducing Technologies H&ETQP Amine6 SINTEF A18095
  publication-title: SINTEF Mater. Chem.
– volume: 40
  start-page: 378
  year: 2015
  ident: 10.1016/j.ijggc.2021.103469_bib0004
  article-title: The cost of CO2 capture and storage
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2015.05.018
– volume: 106
  year: 2021
  ident: 10.1016/j.ijggc.2021.103469_bib0047
  article-title: Aerosol emissions from water-lean solvents for post-combustion CO2 capture
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2021.103284
– volume: 89
  start-page: 1237
  issue: 8
  year: 2011
  ident: 10.1016/j.ijggc.2021.103469_bib0039
  article-title: Preliminary analysis of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2011.02.008
– volume: 4
  start-page: 36
  issue: 1
  year: 2010
  ident: 10.1016/j.ijggc.2021.103469_bib0014
  article-title: Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: the misguided focus on low heat of absorption solvents
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2009.09.010
– volume: 63
  start-page: 1470
  year: 2014
  ident: 10.1016/j.ijggc.2021.103469_bib0038
  article-title: Process Modifications for Solvent-based Post Combustion CO2 Capture
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.11.156
– volume: 25
  start-page: 22
  year: 2018
  ident: 10.1016/j.ijggc.2021.103469_bib0022
  article-title: A novel biphasic solvent of amino-functionalized ionic liquid for CO2 capture: high efficiency and regenerability
  publication-title: J. CO2 Utilizat.
  doi: 10.1016/j.jcou.2018.03.001
– volume: 1
  start-page: 37
  issue: 1
  year: 2007
  ident: 10.1016/j.ijggc.2021.103469_bib0049
  article-title: CO2 capture from power plants: part I. A parametric study of the technical performance based on monoethanolamine
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/S1750-5836(06)00007-7
– year: 2018
  ident: 10.1016/j.ijggc.2021.103469_bib0028
  publication-title: SSRN
– year: 2017
  ident: 10.1016/j.ijggc.2021.103469_bib0016
– volume: 2
  start-page: 329
  issue: 5
  year: 2012
  ident: 10.1016/j.ijggc.2021.103469_bib0041
  article-title: Model verification and evaluation of the rich-split process modification at an Australian-based post combustion CO2 capture pilot plant
  publication-title: Greenhouse Gases: Sci. Technol.
  doi: 10.1002/ghg.1295
– volume: 13
  start-page: 3365
  issue: 14
  year: 2012
  ident: 10.1016/j.ijggc.2021.103469_bib0035
  article-title: Two-dimensional infrared correlation spectroscopy and principal component analysis on the carbonation of sterically hindered alkanolamines
  publication-title: Chemphyschem
  doi: 10.1002/cphc.201200363
– volume: 114
  start-page: 2096
  year: 2017
  ident: 10.1016/j.ijggc.2021.103469_bib0034
  article-title: Screening of Biphasic Solvents for Energy Efficient CO 2 Capture
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1344
– volume: 168
  start-page: 1652
  year: 2017
  ident: 10.1016/j.ijggc.2021.103469_bib0021
  article-title: An optimization approach for CO2 capture using ionic liquids
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.11.064
– volume: 55
  start-page: 4720
  issue: 16
  year: 2016
  ident: 10.1016/j.ijggc.2021.103469_bib0031
  article-title: Measuring nitrous oxide mass transfer into non-Aqueous CO2BOL CO2 capture solvents
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b00390
– volume: 114
  start-page: 1409
  year: 2017
  ident: 10.1016/j.ijggc.2021.103469_bib0037
  article-title: Simulations of various Configurations of the Post-combustion CO2 capture process applied to a cement plant flue gas: parametric study with different solvents
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1265
– year: 2007
  ident: 10.1016/j.ijggc.2021.103469_bib0005
  article-title: Vladimir Vaysman Cost and Performance Baseline for Fossil Energy Plants
  publication-title: DOE/NETL
– year: 2019
  ident: 10.1016/j.ijggc.2021.103469_bib0018
  article-title: Experimental Study of a Hydrophobic Solvent for Natural Gas Sweetening Based on the Solubility and Selectivity for Light Hydrocarbons (CH4, C2H6) and Acid Gases (CO2 and H2S) at 298–353K
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.8b00735
– ident: 10.1016/j.ijggc.2021.103469_bib0040
– volume: 26
  start-page: 2512
  issue: 4
  year: 2012
  ident: 10.1016/j.ijggc.2021.103469_bib0013
  article-title: CO2 Capture Using Solutions of Alkanolamines and Aminosilicones
  publication-title: Energy Fuels
  doi: 10.1021/ef201963m
– volume: 37
  start-page: 285
  year: 2013
  ident: 10.1016/j.ijggc.2021.103469_bib0026
  article-title: CO2-binding-organic-liquids-enhanced CO2 capture using polarity-swing-assisted regeneration
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.05.113
– start-page: 116
  year: 2015
  ident: 10.1016/j.ijggc.2021.103469_bib0008
– volume: 16
  start-page: 217
  year: 2013
  ident: 10.1016/j.ijggc.2021.103469_bib0036
  article-title: Efficient CO2 absorption and low temperature desorption with non-aqueous solvents based on 2-amino-2-methyl-1-propanol (AMP)
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2013.03.026
– volume: 30
  start-page: 7503
  issue: 9
  year: 2016
  ident: 10.1016/j.ijggc.2021.103469_bib0012
  article-title: Toward intelligent CO2 capture solvent design through experimental solvent development and amine synthesis
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.6b00875
– year: 2019
  ident: 10.1016/j.ijggc.2021.103469_bib0029
  article-title: Markus Lesemann, Marty Lail., Pilot plant testing using a Non-Aqueous Solvent (NAS)
– volume: 96
  start-page: 502
  year: 2018
  ident: 10.1016/j.ijggc.2021.103469_bib0020
  article-title: A systematic review on CO2 capture with ionic liquids: current status and future prospects
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.07.004
– volume: 8
  start-page: 3617
  issue: 21
  year: 2015
  ident: 10.1016/j.ijggc.2021.103469_bib0030
  article-title: Measuring the absorption rate of CO2 in Nonaqueous CO2-binding organic liquid solvents with a wetted-wall apparatus
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500288
– volume: 114
  start-page: 66
  year: 2017
  ident: 10.1016/j.ijggc.2021.103469_bib0027
  article-title: Ultrasound-assisted desorption of CO2 from carbon dioxide binding organic liquids
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1148
– volume: 333
  start-page: 636
  year: 2018
  ident: 10.1016/j.ijggc.2021.103469_bib0043
  article-title: Effect of water wash on mist and aerosol formation in absorption column
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.124
– volume: 117
  start-page: 9594
  issue: 14
  year: 2017
  ident: 10.1016/j.ijggc.2021.103469_bib0002
  article-title: Water-lean solvents for post-combustion CO2 Capture: fundamentals, uncertainties, opportunities, and outlook
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00768
– volume: 236
  start-page: 135
  year: 2019
  ident: 10.1016/j.ijggc.2021.103469_bib0048
  article-title: Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.08.152
SSID ssj0061148
Score 2.3695383
Snippet •A 100 hr lab-scale CO2 capture was performed using a water-lean solvent, NAS.•NAS showed lower regeneration energy than aqueous MEA at the same capture...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 103469
SubjectTerms amine emission
CO2 absorption
CO2 capture
lab-scale demonstration
water-lean solvent
Title Lab-scaled performance evaluation of novel water-lean solvents for post combustion CO2 capture
URI https://dx.doi.org/10.1016/j.ijggc.2021.103469
https://www.osti.gov/biblio/1821768
Volume 111
WOSCitedRecordID wos000704804000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-0148
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061148
  issn: 1750-5836
  databaseCode: AIEXJ
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEE9RCmgP3IKj-O09VlURICgIlSonrF17NziKbCtOTPtD-L_M2Lu204qIHrhYkeVZrT1fZmdG38wQ8iZigSO8MLFE6jNsqm1bwueOJUTg20rhfKSoGTYRnp1F8zn7Ohr9NrUw9SrM8-jykpX_VdVwD5SNpbO3UHe3KNyA36B0uILa4fpPiv_EhVXBlwdPshxUBfRtvRvuRlHL1eQXOJpra4XJeNhT3RS7Ie2wLKoNks0FjvoCgZMvziThpek-YpzZ3WzioAfFAsk8P4ttJScLXhk6fJ8kyDFfr0m6XaXQZ5xsc3WdrfiNX-l522teZ3k6uZh2lKFt2bq-F9lSU4F0-sKxOyKcsbjgsmDpV7BjkrUBbo2qPXO9dp7LDXvfph6W02y5WGBDSsee9k_vdte-dup1XERDc1vGzSIxLhK3i9whB07oM7D3B8cfTucfzREfYBDZVNrqvZt2Vg1x8MZe_ubyjEGZ2cCbOX9IHugwhB638HlERjJ_TO4PmlM-IT96INEBkGgPJFoo2gCJ9kCiBkgUBCgCifZAogAkqoH0lHx_d3p-8t7S0zisxA39jQXGW6jQ5vD6SnIWpCp0bRe84Yj7wlMMLT-TasalDCMxE76XzkLuMx4JP5WKuc_IOC9y-ZxQ7HEXsEiFEDN5rvR5kkJgrJwUjk9bzcQhccwHixPdqh4npqziPco6JG87obLt1LL_8cBoItbOZutExoCt_YJHqDcUwjbLCfLRQAridBtC9xe328URudf_KV6S8Wa9la_I3aTeZNX6tYbdH47wrNM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lab-scaled+performance+evaluation+of+novel+water-lean+solvents+for+post+combustion+CO2+capture&rft.jtitle=International+journal+of+greenhouse+gas+control&rft.au=Tanthana%2C+Jak&rft.au=Mobley%2C+Paul&rft.au=Rayer%2C+Aravind+V.&rft.au=Gupta%2C+Vijay&rft.date=2021-10-01&rft.issn=1750-5836&rft.volume=111&rft.spage=103469&rft_id=info:doi/10.1016%2Fj.ijggc.2021.103469&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijggc_2021_103469
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-5836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-5836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-5836&client=summon