Wide-Range Variable Cycle Engine Control Based on Deep Reinforcement Learning

In this paper, a controller design method based on deep reinforcement learning is proposed for a wide-range variable cycle engine with a turbine interstage mixed architecture. The PID controller is subject to limitations, including single-input single-output limitations, low regulation efficiency, a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Aerospace Ročník 12; číslo 5; s. 424
Hlavní autori: Ding, Yaoyao, Wang, Fengming, Mu, Yuanwei, Sun, Hongfei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.05.2025
Predmet:
ISSN:2226-4310, 2226-4310
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, a controller design method based on deep reinforcement learning is proposed for a wide-range variable cycle engine with a turbine interstage mixed architecture. The PID controller is subject to limitations, including single-input single-output limitations, low regulation efficiency, and poor adaptability when confronted with contemporary variable cycle engines that exhibit complex and multi-variable operating conditions. To solve this problem, this paper adopts a deep reinforcement learning method based on a deep deterministic policy gradient algorithm, and it applies an action space pruning technique to optimize the controller, which significantly improves the convergence speed of network training. In order to verify the control performance, two typical flight conditions are selected for simulation experiments as follows: in the first scenario, H = 0 km and Ma = 0, while in the second scenario, H = 10 km and Ma = 0.9. A comparison of the simulation results shows that the proposed deep reinforcement learning controller effectively addresses the engine’s multi-variable coupling control problem. In addition, it reduces response time by an average of 44.5%, while maintaining a similar overshoot level to that of the PID controller.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2226-4310
2226-4310
DOI:10.3390/aerospace12050424