Generative quantum learning of joint probability distribution functions
Modeling joint probability distributions is an important task in a wide variety of fields. One popular technique for this employs a family of multivariate distributions with uniform marginals called copulas. While the theory of modeling joint distributions via copulas is well understood, it gets pra...
Saved in:
| Published in: | Physical review research Vol. 4; no. 4; p. 043092 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
American Physical Society
01.11.2022
|
| ISSN: | 2643-1564, 2643-1564 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Modeling joint probability distributions is an important task in a wide variety of fields. One popular technique for this employs a family of multivariate distributions with uniform marginals called copulas. While the theory of modeling joint distributions via copulas is well understood, it gets practically challenging to accurately model real data with many variables. In this paper, we show that any copula can be naturally mapped to a multipartite maximally entangled state. Thus, the task of learning joint probability distributions becomes the task of learning maximally entangled states. We prove that a variational ansatz we christen as a “qopula” based on this insight leads to an exponential advantage over classical methods of learning some joint distributions. As an application, we train a quantum generative adversarial network (QGAN) and a quantum circuit Born machine (QCBM) using this variational ansatz to generate samples from joint distributions of two variables in historical data from the stock market. We demonstrate our generative learning algorithms on trapped ion quantum computers from IonQ for up to eight qubits. Our experimental results show interesting findings such as the resilience against noise, outperformance against equivalent classical models and 20–1000 times less iterations required to converge as compared to equivalent classical models. |
|---|---|
| AbstractList | Modeling joint probability distributions is an important task in a wide variety of fields. One popular technique for this employs a family of multivariate distributions with uniform marginals called copulas. While the theory of modeling joint distributions via copulas is well understood, it gets practically challenging to accurately model real data with many variables. In this paper, we show that any copula can be naturally mapped to a multipartite maximally entangled state. Thus, the task of learning joint probability distributions becomes the task of learning maximally entangled states. We prove that a variational ansatz we christen as a “qopula” based on this insight leads to an exponential advantage over classical methods of learning some joint distributions. As an application, we train a quantum generative adversarial network (QGAN) and a quantum circuit Born machine (QCBM) using this variational ansatz to generate samples from joint distributions of two variables in historical data from the stock market. We demonstrate our generative learning algorithms on trapped ion quantum computers from IonQ for up to eight qubits. Our experimental results show interesting findings such as the resilience against noise, outperformance against equivalent classical models and 20–1000 times less iterations required to converge as compared to equivalent classical models. |
| ArticleNumber | 043092 |
| Author | Nguyen, Jason Schouela, Adam Wright, Ken Zhu, Elton Yechao Johri, Sonika Bacon, Dave Sosnova, Ksenia Esencan, Mert Kim, Jungsang Muir, Mark Pisenti, Neal Murgai, Nikhil |
| Author_xml | – sequence: 1 givenname: Elton Yechao orcidid: 0000-0002-4497-2093 surname: Zhu fullname: Zhu, Elton Yechao – sequence: 2 givenname: Sonika surname: Johri fullname: Johri, Sonika – sequence: 3 givenname: Dave surname: Bacon fullname: Bacon, Dave – sequence: 4 givenname: Mert surname: Esencan fullname: Esencan, Mert – sequence: 5 givenname: Jungsang surname: Kim fullname: Kim, Jungsang – sequence: 6 givenname: Mark orcidid: 0000-0003-2952-9525 surname: Muir fullname: Muir, Mark – sequence: 7 givenname: Nikhil surname: Murgai fullname: Murgai, Nikhil – sequence: 8 givenname: Jason surname: Nguyen fullname: Nguyen, Jason – sequence: 9 givenname: Neal surname: Pisenti fullname: Pisenti, Neal – sequence: 10 givenname: Adam surname: Schouela fullname: Schouela, Adam – sequence: 11 givenname: Ksenia surname: Sosnova fullname: Sosnova, Ksenia – sequence: 12 givenname: Ken surname: Wright fullname: Wright, Ken |
| BookMark | eNqFkMFqAjEQhkOxUGt9h30BbbKb7GYvhSKtFYQWac9hNjvRyJrYJAq-fbW2ULz0ND8D883Md0t6zjskJGN0zBgt7t9Wh7jA_QIjQtCrMR9TXtA6vyL9vOTFiImS9_7kGzKMcU0pzQVjXIo-mU7RYYBk95h97sCl3SbrjjBn3TLzJlt761K2Db6BxnY2HbLWxhRss0vWu8zsnD6FeEeuDXQRhz91QD6en94nL6P563Q2eZyPdFGJNOJFw4ThHFhDNbQ5A102JTQUUEiNtWYahBbSCCE51jmXFUpuNMtLwZrWFAMyO3NbD2u1DXYD4aA8WPXd8GGpICSrO1SCC0kRKslpzeVxSdFilVPN0TCoWXtkPZxZOvgYAxqlbYLTOymA7RSj6mRZXVhWXJ0tHwHyAvB70L-jXxEbjD8 |
| CitedBy_id | crossref_primary_10_1007_s42484_023_00117_0 crossref_primary_10_1007_s42484_024_00165_0 crossref_primary_10_1103_PhysRevResearch_7_013177 crossref_primary_10_1016_j_sysarc_2025_103431 crossref_primary_10_3390_app13106308 crossref_primary_10_22331_q_2025_05_28_1755 crossref_primary_10_1007_s13218_024_00864_7 crossref_primary_10_1038_s41534_024_00805_0 crossref_primary_10_1038_s41534_025_01078_x crossref_primary_10_1103_PhysRevResearch_6_033291 crossref_primary_10_1145_3682071 crossref_primary_10_1038_s41534_023_00730_8 |
| Cites_doi | 10.26421/QIC19.13-14-3 10.1097/HP.0b013e3182799307 10.1137/S0097539795293172 10.3390/e20080583 10.1016/j.insmatheco.2005.01.008 10.1103/PhysRevLett.113.130503 10.1103/PhysRevLett.126.190505 10.1007/978-1-4612-2854-7 10.1088/1367-2630/aa5e47 10.23919/ACC.1987.4789489 10.1103/PhysRevLett.121.040502 10.1007/978-3-319-29659-3 10.1103/PhysRevA.99.032331 10.1038/s41467-018-07090-4 10.1111/j.1540-6261.1952.tb01525.x 10.1103/PhysRevApplied.16.024051 10.1103/PhysRevX.12.031010 10.1103/PhysRevLett.103.150502 10.1103/PhysRevLett.83.1874 10.1109/9.119632 10.1016/j.aml.2013.04.005 10.1038/s41567-021-01287-z 10.1038/s41586-019-1666-5 10.1109/TIP.2017.2685345 10.1126/sciadv.aaw9918 10.1038/s41567-019-0648-8 10.1109/TPAMI.2020.2970919 10.1098/rspa.2010.0301 10.1038/s41467-021-21728-w 10.1007/978-1-4614-7138-7 10.1038/s41534-019-0157-8 10.17578/17-1/2-2 10.1126/sciadv.aav2761 10.1038/s41467-019-13534-2 10.1038/s41534-021-00456-5 10.1017/CBO9780511804090 10.1038/s41534-020-00288-9 10.1007/s00477-014-0946-8 10.1103/PhysRevX.12.021037 10.1103/PhysRevA.98.012324 10.1088/1742-6596/698/1/012003 10.3141/2262-20 10.1103/PhysRevA.98.062324 10.1038/s41534-019-0223-2 10.1016/j.jbankfin.2010.07.021 10.1038/s41567-018-0124-x 10.1103/PhysRevLett.109.050505 10.1093/mnras/202.3.615 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1103/PhysRevResearch.4.043092 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2643-1564 |
| ExternalDocumentID | oai_doaj_org_article_54580ea78409486ab3de720c4ef1a91d 10_1103_PhysRevResearch_4_043092 |
| GroupedDBID | 3MX AAFWJ AAYXX AECSF AFGMR AFPKN AGDNE ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E ROL |
| ID | FETCH-LOGICAL-c375t-43b15f44a1b0cad21ac6b6ab0ae58ce9c1ca5c58f5584e92487e84fc12651bdf3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000884810400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2643-1564 |
| IngestDate | Fri Oct 03 12:52:29 EDT 2025 Sat Nov 29 03:21:05 EST 2025 Tue Nov 18 21:11:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-43b15f44a1b0cad21ac6b6ab0ae58ce9c1ca5c58f5584e92487e84fc12651bdf3 |
| ORCID | 0000-0002-4497-2093 0000-0003-2952-9525 |
| OpenAccessLink | https://doaj.org/article/54580ea78409486ab3de720c4ef1a91d |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_54580ea78409486ab3de720c4ef1a91d crossref_citationtrail_10_1103_PhysRevResearch_4_043092 crossref_primary_10_1103_PhysRevResearch_4_043092 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Physical review research |
| PublicationYear | 2022 |
| Publisher | American Physical Society |
| Publisher_xml | – name: American Physical Society |
| References | PhysRevResearch.4.043092Cc60R1 PhysRevResearch.4.043092Cc28R1 PhysRevResearch.4.043092Cc26R1 PhysRevResearch.4.043092Cc7R3 PhysRevResearch.4.043092Cc9R1 C. C. Aggarwal (PhysRevResearch.4.043092Cc4R1) 2016 PhysRevResearch.4.043092Cc7R1 PhysRevResearch.4.043092Cc7R2 PhysRevResearch.4.043092Cc43R1 PhysRevResearch.4.043092Cc43R2 PhysRevResearch.4.043092Cc45R1 PhysRevResearch.4.043092Cc45R2 PhysRevResearch.4.043092Cc24R1 PhysRevResearch.4.043092Cc62R1 PhysRevResearch.4.043092Cc22R1 PhysRevResearch.4.043092Cc41R1 A. Paszke (PhysRevResearch.4.043092Cc47R1) 2019 PhysRevResearch.4.043092Cc6R1 D. P. Kingma (PhysRevResearch.4.043092Cc14R1) PhysRevResearch.4.043092Cc2R1 H. Joe (PhysRevResearch.4.043092Cc12R1) 1997 PhysRevResearch.4.043092Cc36R1 PhysRevResearch.4.043092Cc59R1 PhysRevResearch.4.043092Cc59R2 PhysRevResearch.4.043092Cc30R1 PhysRevResearch.4.043092Cc57R1 PhysRevResearch.4.043092Cc34R1 PhysRevResearch.4.043092Cc11R1 S. Zacks (PhysRevResearch.4.043092Cc3R1) 1992 PhysRevResearch.4.043092Cc27R1 PhysRevResearch.4.043092Cc25R1 PhysRevResearch.4.043092Cc48R1 S. Arora (PhysRevResearch.4.043092Cc50R1) 2009 PhysRevResearch.4.043092Cc29R1 PhysRevResearch.4.043092Cc44R1 G. James (PhysRevResearch.4.043092Cc1R1) 2013 PhysRevResearch.4.043092Cc46R1 PhysRevResearch.4.043092Cc23R1 PhysRevResearch.4.043092Cc40R1 PhysRevResearch.4.043092Cc61R1 PhysRevResearch.4.043092Cc21R1 PhysRevResearch.4.043092Cc42R1 PhysRevResearch.4.043092Cc63R1 H. v. Storch (PhysRevResearch.4.043092Cc5R1) 1999 PhysRevResearch.4.043092Cc39R1 PhysRevResearch.4.043092Cc37R1 PhysRevResearch.4.043092Cc58R1 N. Tagasovska (PhysRevResearch.4.043092Cc38R2) 2019 PhysRevResearch.4.043092Cc31R1 PhysRevResearch.4.043092Cc54R1 PhysRevResearch.4.043092Cc10R1 PhysRevResearch.4.043092Cc33R1 PhysRevResearch.4.043092Cc52R1 |
| References_xml | – ident: PhysRevResearch.4.043092Cc58R1 doi: 10.26421/QIC19.13-14-3 – ident: PhysRevResearch.4.043092Cc6R1 doi: 10.1097/HP.0b013e3182799307 – ident: PhysRevResearch.4.043092Cc33R1 doi: 10.1137/S0097539795293172 – ident: PhysRevResearch.4.043092Cc23R1 doi: 10.3390/e20080583 – volume-title: Advances in Neural Information Processing Systems 32 year: 2019 ident: PhysRevResearch.4.043092Cc47R1 – ident: PhysRevResearch.4.043092Cc9R1 doi: 10.1016/j.insmatheco.2005.01.008 – ident: PhysRevResearch.4.043092Cc59R2 doi: 10.1103/PhysRevLett.113.130503 – ident: PhysRevResearch.4.043092Cc61R1 doi: 10.1103/PhysRevLett.126.190505 – volume-title: Introduction to Reliability Analysis: Probability Models and Statistical Methods year: 1992 ident: PhysRevResearch.4.043092Cc3R1 doi: 10.1007/978-1-4612-2854-7 – ident: PhysRevResearch.4.043092Cc39R1 doi: 10.1088/1367-2630/aa5e47 – ident: PhysRevResearch.4.043092Cc43R1 doi: 10.23919/ACC.1987.4789489 – ident: PhysRevResearch.4.043092Cc26R1 doi: 10.1103/PhysRevLett.121.040502 – volume-title: Recommender Systems: The Textbook year: 2016 ident: PhysRevResearch.4.043092Cc4R1 doi: 10.1007/978-3-319-29659-3 – ident: PhysRevResearch.4.043092Cc42R1 doi: 10.1103/PhysRevA.99.032331 – ident: PhysRevResearch.4.043092Cc45R1 doi: 10.1038/s41467-018-07090-4 – volume-title: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings ident: PhysRevResearch.4.043092Cc14R1 – ident: PhysRevResearch.4.043092Cc2R1 doi: 10.1111/j.1540-6261.1952.tb01525.x – ident: PhysRevResearch.4.043092Cc30R1 doi: 10.1103/PhysRevApplied.16.024051 – ident: PhysRevResearch.4.043092Cc31R1 doi: 10.1103/PhysRevX.12.031010 – ident: PhysRevResearch.4.043092Cc34R1 doi: 10.1103/PhysRevLett.103.150502 – ident: PhysRevResearch.4.043092Cc54R1 doi: 10.1103/PhysRevLett.83.1874 – ident: PhysRevResearch.4.043092Cc43R2 doi: 10.1109/9.119632 – ident: PhysRevResearch.4.043092Cc37R1 doi: 10.1016/j.aml.2013.04.005 – ident: PhysRevResearch.4.043092Cc62R1 doi: 10.1038/s41567-021-01287-z – ident: PhysRevResearch.4.043092Cc22R1 doi: 10.1038/s41586-019-1666-5 – ident: PhysRevResearch.4.043092Cc11R1 doi: 10.1109/TIP.2017.2685345 – ident: PhysRevResearch.4.043092Cc27R1 doi: 10.1126/sciadv.aaw9918 – ident: PhysRevResearch.4.043092Cc60R1 doi: 10.1038/s41567-019-0648-8 – volume-title: Advances in Neural Information Processing Systems year: 2019 ident: PhysRevResearch.4.043092Cc38R2 – ident: PhysRevResearch.4.043092Cc57R1 doi: 10.1109/TPAMI.2020.2970919 – ident: PhysRevResearch.4.043092Cc48R1 doi: 10.1098/rspa.2010.0301 – ident: PhysRevResearch.4.043092Cc45R2 doi: 10.1038/s41467-021-21728-w – volume-title: An Introduction to Statistical Learning: With Applications in R year: 2013 ident: PhysRevResearch.4.043092Cc1R1 doi: 10.1007/978-1-4614-7138-7 – ident: PhysRevResearch.4.043092Cc24R1 doi: 10.1038/s41534-019-0157-8 – ident: PhysRevResearch.4.043092Cc7R2 doi: 10.17578/17-1/2-2 – ident: PhysRevResearch.4.043092Cc29R1 doi: 10.1126/sciadv.aav2761 – ident: PhysRevResearch.4.043092Cc41R1 doi: 10.1038/s41467-019-13534-2 – ident: PhysRevResearch.4.043092Cc44R1 doi: 10.1038/s41534-021-00456-5 – volume-title: Computational Complexity: A Modern Approach year: 2009 ident: PhysRevResearch.4.043092Cc50R1 doi: 10.1017/CBO9780511804090 – ident: PhysRevResearch.4.043092Cc52R1 doi: 10.1038/s41534-020-00288-9 – ident: PhysRevResearch.4.043092Cc7R3 doi: 10.1007/s00477-014-0946-8 – ident: PhysRevResearch.4.043092Cc63R1 doi: 10.1103/PhysRevX.12.021037 – ident: PhysRevResearch.4.043092Cc25R1 doi: 10.1103/PhysRevA.98.012324 – volume-title: Statistical Analysis in Climate Research year: 1999 ident: PhysRevResearch.4.043092Cc5R1 – ident: PhysRevResearch.4.043092Cc40R1 doi: 10.1088/1742-6596/698/1/012003 – ident: PhysRevResearch.4.043092Cc10R1 doi: 10.3141/2262-20 – ident: PhysRevResearch.4.043092Cc36R1 doi: 10.1103/PhysRevA.98.062324 – ident: PhysRevResearch.4.043092Cc28R1 doi: 10.1038/s41534-019-0223-2 – ident: PhysRevResearch.4.043092Cc7R1 doi: 10.1016/j.jbankfin.2010.07.021 – volume-title: Multivariate Models and Multivariate Dependence Concepts year: 1997 ident: PhysRevResearch.4.043092Cc12R1 – ident: PhysRevResearch.4.043092Cc21R1 doi: 10.1038/s41567-018-0124-x – ident: PhysRevResearch.4.043092Cc59R1 doi: 10.1103/PhysRevLett.109.050505 – ident: PhysRevResearch.4.043092Cc46R1 doi: 10.1093/mnras/202.3.615 |
| SSID | ssj0002511485 |
| Score | 2.4586847 |
| Snippet | Modeling joint probability distributions is an important task in a wide variety of fields. One popular technique for this employs a family of multivariate... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 043092 |
| Title | Generative quantum learning of joint probability distribution functions |
| URI | https://doaj.org/article/54580ea78409486ab3de720c4ef1a91d |
| Volume | 4 |
| WOSCitedRecordID | wos000884810400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2643-1564 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511485 issn: 2643-1564 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2643-1564 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511485 issn: 2643-1564 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQBRIL4inKSx5Y09qxHdsjoBYGqBAC1C1y_EBF0EKbVmLh27GdtCosMLBkiOIoOte-D-XecwA4RUbr1CGeFISkCaUOJ1JglhCm_LHEQts4lfZ4zXs90e_L2yWpr9ATVtEDV8C1w48dZBWPhYjIVEGM5SnS1DqsJDbB-yIul4qp4IND4kwFm7fuINIODZV3djbvZ2vRVmC7kum3eLRE2x_jS3cTbNSJITyrPmgLrNjhNliLDZp6sgMuK37o4Jzg-9TDMX2FteLDExw5-DwaDEsY5GEq4u0PaAIlbq1mBUP4ijtsFzx0O_cXV0ktgpBowlmZUFJg5ihVuEBamRQrnRUeBqQs80hKjbVimgnHfCphfTUluBXUaZxmDBfGkT3QGI6Gdh9AV2SWS5dJayTVlCuHfHJitECpYpbSJuBzKHJdM4QHoYqXPFYKiOQ_QMxpXoHYBHix8q1iyfjDmvOA9uL5wHMdb3jr57X189-sf_AfLzkE62kYaogThkegUY6n9his6lk5mIxP4sby15vPzhf2h9dt |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+quantum+learning+of+joint+probability+distribution+functions&rft.jtitle=Physical+review+research&rft.au=Zhu%2C+Elton+Yechao&rft.au=Johri%2C+Sonika&rft.au=Bacon%2C+Dave&rft.au=Esencan%2C+Mert&rft.date=2022-11-01&rft.issn=2643-1564&rft.eissn=2643-1564&rft.volume=4&rft.issue=4&rft_id=info:doi/10.1103%2FPhysRevResearch.4.043092&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevResearch_4_043092 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon |